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I. INTRODUCTION

As Moore’s Law drives the semiconductor industry towards
achieving ever-smaller feature sizes (≤10nm) and increased
transistor density, the traditional methods of patterning face
challenges. New approaches, including emerging lithography
technologies like Extreme-Ultra-Violet-Lithography (EUVL)
(≤7nm), high-NA EUVL (≤2nm), and other alternatives, are
(being) developed to keep pace with Moore’s Law and maintain
the relentless pursuit of smaller feature sizes. The escalating
complexity of semiconductor devices necessitates a correspond-
ing elevation in process control. This entails the integration of
precise metrology, sophisticated data analysis, and cutting-edge
defect inspection methodologies. The prevailing state-of-the-
art (SOTA) defect detection tools, whether optical or e-beam
based, exhibit specific limitations. These tools rely on rule-
based techniques for defect classification and detection, which
introduces constraints in their adaptability and effectiveness.
The use of rule-based approaches implies that these tools are
programmed with predefined criteria to identify and classify
defects. While this methodology is effective for well-understood
and predictable defect patterns, it becomes increasingly chal-
lenging when dealing with complex, evolving, or stochastic
defects [1], specifically in the presence of reduced signal-to-
noise ratio (SNR) and image contrast.

Due to the inadequacy of rule-based methods at advanced
nodes [2], DL-based object detectors have emerged as the state-
of-the-art for stochastic defect inspection [3]. However, the
acquisition of a relevant stochastic defect dataset for training
ML models faces considerable challenges within the semi-
conductor manufacturing domain. Not only is such a dataset
rare and inherently noisy, but its acquisition is also a costly
endeavor. The rarity of stochastic defect instances makes it
challenging to compile a comprehensive dataset that accurately
represents the diverse range of stochastic defects encountered
in real-world semiconductor manufacturing processes. Addi-
tionally, two significant bottlenecks further complicate the use
of stochastic defect datasets in semiconductor manufacturing
defect detection: (a) class imbalance, which arises when certain
defect types are underrepresented or occur infrequently in the
dataset, leading to a skewed distribution. This imbalance can
compromise the model’s ability to generalize and accurately
detect defects across all classes. (b) insufficient dataset size,
as a limited amount of data may not adequately capture the
variability and complexity of stochastic defects. The inherent

Fig. 1: Representative sample SEM images illustrating example
defect types in the datasets used in this study

diversity of semiconductor manufacturing processes demands
large and representative datasets to ensure the robust training of
machine learning models. Addressing these challenges requires
innovative approaches to dataset acquisition, including strategic
data augmentation techniques to enhance dataset diversity.
Collaboration within the industry and the development of
shared datasets could also contribute to mitigating the issues
associated with rare, noisy, and expensive stochastic defect
datasets. Overcoming these challenges is pivotal for advancing
the capabilities of machine learning models in semiconductor
manufacturing defect detection. In this research work, we use
Denoising Diffusion Probabilistic Models (DDPM) to generate
realistic semiconductor wafer SEM images, thereby increasing
defect inspection training data and improving defect inspection
performance. Our main contributions are:

i) we propose a patch-based generative framework utilizing
DDPM to generate SEM images that include intended defect
classes with randomly variable instances, aiming to address
class-imbalance and data insufficiency bottlenecks. This ap-
proach leads to an enhancement in defect detection perfor-
mance, particularly in terms of precision and recall.

ii) our proposed approach generates synthetic images that
closely resemble real ones, preserving actual characteristics
without the need for prior knowledge of imaging settings (Best-
Known-Methods).

iii) we demonstrated that a defect detector trained on a gener-
ated defect dataset, either independently or in combination with
a limited real dataset, can achieve a similar or improved mAP
on real wafer SEM images during validation/testing compared
to when trained exclusively on a real defect dataset. This trend
was consistent across three different SEM datasets, validating
the capability of DDPM to generate images with characteristics
identical to real SEM images.

Finally, iv) our proposed approach demonstrates the capabil-
ity to transfer defect types, critical dimensions, and imaging
conditions from one specified CD/Pitch and metrology specifi-
cations to another CD/Pitch and metrology specifications.

II. METHODOLOGY

A. Proposed Diffusion-based Approach

Due to their success in numerous other applications, and
flexible usage, we investigate the potential of DDPM as a
generative tool to solve the problem of low data availability
in semiconductor defect inspection application. Our proposed
approach does not train the diffusion model on the real SEM
wafer images directly. Instead, various small patches are ex-
tracted from the original image. Each patch has a class label as
either the defect type present inside the patch, or background
(defect-free). The DDPM model is then trained in a class
conditional manner on these patches. Fig.2 depicts our proposed
framework towards generating synthetic realistic SEM image
dataset containing multiple defect types.



Fig. 2: High level overview of the proposed approach towards synthetic SEM image dataset generation containing multi defect
types.

After training, synthetic images are generated using an
inpainting procedure. First, the method displayed in Fig.3 is
used to generate full-size, defect-free, synthetic images. After-
wards, crops of these full-size images are inpainted to simulate
intended defect types, resulting in the final synthetic images
containing defects.

This patch-based approach offers three advantages over train-
ing directly on full-size SEM images: i) significantly reduced
training time. ii) control over the number of defects in the
generated images, enabling the generation of full-scale images
with defect numbers not present in the real SEM dataset. iii)
Training on patches results in larger datasets, thereby enhancing
the learning process.

B. Datasets

In this research work, we validate our proposed approach
on three semiconductor SEM datasets: Hexagonal Contact-Hole
arrays (HEXCH-DSA), Line-Space After Develop Inspection
(LS-ADI), and Line-Space After Etch Inspection (LS-AEI).
Each of these contains only real SEM wafer images, and
no defects are synthetic or intentionally placed. The different
defect types for each dataset are: i) partially closed hole,
missing hole, and closed patch for HEXCH-DSA, ii) gap,
probable gap, bridge, microbridge, linecollapse for LS-ADI, and
finally iii) thin bridge, single bridge, line collapse, multi brige
horizontal, and multi bridge non-horizontal for LS-AEI.

C. Diffusion Model: Implementation and Training

The diffusion model used in this research work is as im-
plemented by Nichol et al. [4], with cosine noise schedule

Fig. 3: Proposed approach to generate full-size, defect-free
SEM image (archetype) using patch based method

and 1000 sample steps. On each real SEM dataset, the model
is trained using a learning rate of 0.0001 until convergence.
We have added the inpainting functionality to the existing
code, with implementation inspired by [5]. We have trained
the models on a default image size of 128 pixels. However,
some defect types such as linecollapse or closed patch exceed
this limit. Thus, we have separately trained a model instance
on larger image sizes to generate these defect types.

D. Training: Object Detection

In section III-B, defect detector is trained on three datasets
(LS-ADI, HEXCH-DSA, LS-AEI) under different configura-
tions (real, synthetic, combined). Due to its fast training time,
YOLOv5n has been selected as defect detector [6] to validate
the use of generated synthetic images in training object detec-
tors. Each model is initialised from COCO pretrained weights,
trained for 200 epochs with batch size of 32, and with early
stopping criteria enabled. The weights with best performance
on validation dataset are selected for use in hereafter men-
tioned experimentations. Code and all other hyperparameters
of YOLOv5n are used as implemented by Ultralytics [7].

E. Labeling of Synthetic Images

To utilize synthetic images in training supervised defect
detectors, such as YOLO, they must first be annotated/labelled.
We propose labeling synthetic images by applying a defect
detector already trained on real data. However, training defect
detectors on synthetic data poses an additional challenge, as it
may yield worse predictions compared to human annotation.
This challenge arises due to two reasons: i) Synthetic images
lack sufficient resemblance to the original data, and ii) Labeling
errors in synthetic training data result in suboptimal learning
signals, affecting performance on real test data. Not only have
we tackled above mentioned challenges with our proposed
approach, but we have also demonstrated in the next section
how generated synthetic images and associated labeling quality
improved or performed as per on defect detection task.

III. RESULTS

A. Qualitative Evaluation of Synthetic Images

Synthetic images generated by the proposed DDPM-based
approach are evaluated qualitatively. First, visual comparison
does not yield any differentiating characteristics between syn-
thetic defects (Fig.6) and those obtained from SEM tools (val-
idated with several anonymous SEM image experts). Beyond
visual comparison, line-edge-roughness and critical dimension
(CD) are crucial metrology parameters in semiconductor pat-
terning, towards validating device electrical characteristics and
performance. To generate synthetic or artificial SEM images,
with or without defects, using conventional software such as
ARTIMAGEN [8], [9], it is essential to be aware of industry
Best-Known-Methods (BKM) settings to comply with tool



(a) Real (b) Simulation (c) Proposed

Fig. 4: Comparison between (a) real SEM image, (b)
image generated with software simulation, and (c) image
generated with our proposed method.

Fig. 5: Linescan plot for generated (using our proposed ap-
proach) and real SEM image

imaging conditions. Without appropriate values for parameters
like pixel size, number of frames in acquisition, accelerating
voltage, probe current, etc., it becomes quite challenging to gen-
erate synthetic images that closely resemble real images. Addi-
tionally, using incorrect parameter values can introduce digital
artifacts into the synthetic images, rendering them unsuitable
for ML model training and, consequently, compromising the
preservation of original device characteristics. Contrary to this,
our proposed approach generates synthetic images that closely
resemble real images and preserve actual characteristics without
requiring prior knowledge of BKM settings, as shown in Fig.4.
Fig.5 shows the line-scan plots of generated (by our proposed
approach) and real SEM image (for Line-Space feature), which
can be used to compare CD and roughness parameters between
these two. Lastly, Fig.7 presents inference results on generated
synthetic and real images (test set) from a defect detector
trained solely on real data. Both the inference confidence and
classification accuracy on semantic contexts (such as probable
gap and gap), as well as the line-scan plots of original and
synthetic data (for line-space feature), appear nearly identical.
This strongly indicates that generated synthetic images are
sufficiently similar to the original data, supporting their use
in expanding the size of the semiconductor defect inspection
dataset.

B. Training Defect Detectors with Synthetic Images

Second, we demonstrate that synthetic images generated with
the proposed approach can be succesfully used in training defect

Fig. 6: Examples of generated defect instances against real SEM
image of same defect type

(a) Closed Patch (b) Linecollapse (c) (p)gap

Fig. 7: Inference results for real (top), and synthetic
(down) images

TABLE I: Statistics of real and synthetic training datasets

Real Synthetic Real+ Synthetic

L
S-

A
D

I

Instances

pgap 315 1375 1690
microbridge 380 1477 1857
linecollapse 550 501 1051

bridge 238 406 644
gap 1046 2155 3201

Total Images 1053 1199 2252

H
E

X
C

H
Instances

cp 74 210 284
pch 94 434 528
mh 30 591 621

Total Images 174 420 594
L

S-
A

E
I

Instances

multi bridge nh 160 120 280
multi bridge h 80 143 223

linecollapse 202 248 450
single bridge 240 245 485
thin bridge 241 354 595

Total Images 920 932 1864

detectors. We have trained defect detectors with generated
synthetic counterparts of each investigated dataset in two con-
figurations as: (1) with synthetic dataset only and, (2) combined
with real dataset. Statistics of real and synthetic datasets are
shown in table I.

Fig.8 shows the AP and AR scores per defect class on LS-
ADI real test dataset, achieved by YOLOv5n model trained
on either real, synthetic, or combined datasets. While some
deviations and deficits are present, no major performance
drops are observed when training on synthetic data. Thus, the
proposed DDPM approach generates images based on the LS-
ADI dataset, which can be properly utilized for training defect
detectors, as no major performance deficits are encountered
when switching from training on real data, to training only on
synthetic data. Training only on the combination of the real and
synthetic dataset does not yield any performance gains, despite
the larger size of the combined dataset.

Fig.9 shows the AP and AR scores per defect class on
LS-AEI real test dataset by model trained on real, synthetic
or combined datasets. A scenario similar to the LS-ADI is
observed, where training on the synthetic dataset does not lead
to major performance deficits.

Fig. 8: AP and AR scores achieved on real ADI test dataset



Fig. 9: AP and AR scores achieved on real AEI test dataset

Fig. 10: AP and AR scores achieved on real HEXCH-DSA test
dataset

Finally, Fig.10 shows the AP and AR scores on HEXCH-
DSA real test dataset by model trained on the different dataset
configurations. On HEXCH test data, a definite performance
improvement has been observed when model is trained on
the combined synthetic+real dataset. HEXCH dataset is sig-
nificantly smaller in size compared to the other two datasets
(table.I). This may explain that, while model did not benefit
from training on synthetic+real data for LS datasets, the model
significantly benefited for HEXCH-DSA dataset, as combining
both synthetic and real data increased the dataset size (without
altering real characteristics of the image/defect features) to
properly learn the required defect features.

Table II shows the mAP and mAR scores achieved on the
different real SEM test datasets, for different training dataset
configurations. This table summarises that, while training only
on synthetic data does not provide clear benefits in all scenarios,
it never causes significant performance drops, against training
only on real dataset. This validates that the synthetic images
generated by proposed method can have valid usage in training
defect detection models, by replacing or combining with real
SEM images datasets for different process steps.

C. Defect Transfer

SEM wafer images can vary significantly depending on
factors such as dose/focus used, design geometrical patterns,
critical dimension, resist profiles, or underlayers. Consequently,
significant numbers of SEM images have to be acquired and
labeled for each set/combination of process parameters to
train a defect detection model. Furthermore, as defect types
are stochastic in nature, two challenging scenarios may occur

TABLE II: mAP and mAR scores achieved on real test data

Dataset (test split) Metric YOLOv5n with Training Data
Real Synthetic Real+Synthetic

Real ADI-LS mAP 0.878 0.845 0.839
mAR 0.864 0.819 0.839

Real HEXCH-DSA mAP 0.853 0.873 0.933
mAR 0.78 0.85 0.874

Real AEI-LS mAP 0.973 0.943 0.951
mAR 0.943 0.911 0.946

Fig. 11: Proposed framework can generate defect types outside
its typical process parameters, to prepare defect detectors for
unexpected scenarios.

quite frequently, as (i) a given defect type/class has a very
small probability to occur in that process while training defect
detection models (class imbalance), or (ii) relevant defect SEM
images dataset to train a model is not just rare and noisy, but
also very expensive to get (limited training dataset size).

In these cases, without sufficient images of certain defect
types available at a certain process step, deploying an industry-
compliant ML-based defect detection framework may be prob-
lematic, as overall model convergence can not be guaranteed
towards generalizability and robustness due to model’s under-
fitting for those defect type’s features.

To mitigate this, we have examined whether the proposed
approach can generate instances outside of the extent of corre-
sponding defect type’s typical process context. In this way, the
proposed generative model can be trained on different processes
and their associated defect types concurrently. Afterwards,
defect instances can be generated for a process where the
given type has not been encountered yet (or encountered in
limited numbers). This generated dataset can then be used to
train ML-based defect detectors towards detecting the given
defect types in the new environment. Our proposed approach
is demonstrated in Fig.11

The proposed approach manages to successfully generate
defect instances outside of the process parameters they were
encountered in during training. However, as of now, no dataset
which allows extensive investigation of this proposed ”defect
transfer” approach, is available to the authors. Therefore, quan-
titative experimentation and validation with this approach is left
for future research directions.
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