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Figure 1: Confidence map overlayed over in-
put RGB image. Brighter white tiles indicate
a higher likelihood of explosive being present.
Produced using DINOv2 vit-g reg.

1 Introduction

Deep neural networks require substantial amounts
of data to maintain high performance on novel data
(LeCun et al., 2015). For many general computer
vision tasks, this isn’t a problem due to the avail-
ability of large, publicly accessible datasets (e.g.,
ImageNet, COCO). There are also more specialized
public datasets, for example, tracking pedestrians
from UAV footage (UAV123, VisDrone). However,
when the objective shifts to adapting computer vi-
sion neural networks for military applications, the
challenge of data scarcity becomes critical because
military equipment is highly classified. In such sce-
narios, options for gathering data on such objects
are limited to: 1) ally captured imagery; 2) im-
agery uploaded on the internet by enemy soldiers
showcasing their equipment. This challenge is
compounded by the fact that battlefield equipment
is continuously evolving and capturing images of
such equipment is both dangerous and difficult. In
this light, quickly adapting to new equipment with
minimal data offers a significant advantage. The
task of adapting models to recognize new objects

Figure 2: Composite image of the confidence, atten-
tion and RGB image. Bright yellow areas are have
the highest attention, purple areas have the lowest.
Produced using DINOv2 vit-g reg.

with limited examples is known as few-shot clas-
sification. This is optimally addressed using pre-
trained foundational models which can be tuned to
new tasks with just a few examples.

The challenge in acquiring images for various
military equipment models also continues with
mines. Collecting anti-tank mines is relatively man-
ageable as they are not triggered by human weight,
allowing them to be placed on different terrains
in secure locations to generate an almost infinite
amount of training data. Conversely, finding and
safely disarming seismic mines (e.g., POM-2 and
POM-3) is nearly impossible. It is reasonable to
forecast that in the future more sophisticated mine
models will be equally, if not more, challenging to
collect safely.

Leveraging drone imagery for mine detection
is highly feasible, especially considering the
widespread availability of drones in Ukraine. There
are several compelling reasons to use them as safe
and effective tools for mine detection: 1) Ukraini-
ans already possess a substantial number of drones,
eliminating the need for additional investment in



new hardware; 2) drones are operated remotely,
which allows for scouting fields without endanger-
ing lives; 3) drones can cover and document much
larger areas of land quickly compared to on-foot
efforts.

2 Related Work

Creating a robust computer vision model that can
detect various types of mines from limited data typ-
ically requires leveraging insights from previously
learned tasks. Foundational models are designed
specifically to be adapted for arbitrary tasks with a
few examples. These models are trained for tens of
thousands of hours on datasets which are too large
for humans to label. Foundational models can be
subdivided further into 2 subclasses: 1) weakly-
supervised models trained on image-text pairs with
text captions serving as labels; 2) self-supervised
models trained on images only without relying on
any labels whatsoever. The former approach was
shown by OpenAI with CLIP (Radford et al., 2021)
to work very well for knowledge transfer given
a large enough training dataset. Whilst the latter
approach is shown to work with architectures like
MAE (He et al., 2022), DINO (Caron et al., 2021),
DINOv2 (Oquab et al., 2024) and I-JEPA (Assran
et al., 2023).

CLIP allows for two significantly different ap-
proaches of classifying images for downstream
tasks. It is possible to use the cosine similarity
metric between image and text embeddings in the
same way as it was used during the training pro-
cedure of CLIP. Additionally, there is an option of
“linear probing” i.e. training a linear classifier on
top of features extracted by CLIP. According to the
findings in the CLIP paper the first approach allows
for great zero-shot performance, whilst the second
one is known as “linear probing” is able to surpass
zero-shot only given enough examples per class.
It was found that the number of examples needed
per class to surpass zero-shot highly depends on
the target classification dataset. We expect our
model to require only a few examples per class
due to our dataset being similar to EuroSAT and
FGVCAircraft datasets. We speculate that just like
with EuroSAT, CLIP will struggle to classify our
images using cosine similarity due to them being
taken from a flying camera with 90-degree angle to-
wards the ground. Furthermore, we expect similar
benefits from linear probing as seen in FGVCAir-
craft, because it consists of highly technical aircraft

names (similar to names of mines) unknown to a
layman and therefore unlikely to appear in captions
of images scraped off of the internet.

In contrast, self-supervised models can only have
their knowledge adapted for another task using lin-
ear probing. This is due to self-supervised models
being trained on tasks that are not useful on their
own. This makes only their extracted features the
only way of re-purposing their understanding of
images.

Both the weakly-supervised CLIP and the self-
supervised models mentioned employ (Dosovitskiy
et al., 2021) Vision Transformers (ViT) to extract
image features, setting the top benchmark perfor-
mances. The difference lies mainly in their training
data and methods. Convolutional networks have
also been tested but tend to lag behind ViT in per-
formance.

3 Methodology

3.1 Models

We compare DINOv2 and I-JEPA self-supervised
models. We avoid testing MAE altogether be-
cause of relatively poor feature transfer to down-
stream tasks. DINOv2 is chosen over DINO for its
advancements in training scale and methodology.
Moreover, we test DINOv2 with registers (Darcet
et al., 2023) which maintains the performance of
DINOv2 while producing attention maps without
arbitrary peaks. DINOv2 features a CLS token for
linear probing, unlike I-JEPA. To compact I-JEPA’s
multi-token embeddings into a single token, we
average the last layer as it was done by the authors
of I-JEPA (Assran et al., 2023).

Considering the rapid developments in deep
learning, comparing older weakly-supervised mod-
els like CLIP by OpenAI to newer self-supervised
models might not yield fair insights. Thus, we opt
for the more recent CLIP weights by (Fang et al.,
2023), trained on selectively filtered data for en-
hanced downstream task performance. This model
is trained with significantly more data – approxi-
mately 5 billion images as opposed to the 400 mil-
lion used in the original CLIP. The authors demon-
strate that their data filtering networks effectively
select high-quality data, as evidenced by superior
downstream performance using ViT-L image fea-
ture extractor when compared to both the original
CLIP weights from OpenAI and open-source CLIP
variants using larger ViTs (Cherti et al., 2022).

We limit our comparison to the largest avail-



able models, which have proven to perform best
in downstream tasks without sacrificing efficiency.
For instance, processing a 4000× 3000 image, di-
vided into 252 patches of 224 × 224, takes only
10 seconds on RTX3090 with the largest ViT-giant
models.

3.2 Dataset
Our partners have provided (Visible, Thermal)
aligned image pairs of minefields (4000 × 3000
for visible and 640× 480 for thermal resolutions).
These images showcase disarmed mines within a
training polygon, predominantly anti-tank for safer
collection. Considering foundational models are
trained solely on the visible light spectrum, we’ve
excluded the thermal images from our experiments.

The visible light images have a much higher res-
olution (4000×3000) than the standard (224×224)
used in foundational model training. To adapt
without losing detail, we slice these into non-
overlapping 224 × 224 patches. This method en-
sures mines occupy a substantial portion of the im-
age area, making it likely that foundational models
will produce embeddings focused on them. More-
over, this tactic allows for parallel processing of an
image’s patches, maximizing GPU efficiency and
speeding up inference.

For every foundational model tested, we precom-
pute image embeddings for our training and vali-
dation sets, storing them in the safetensors format
for swift access during training. This precomputa-
tion streamlines efficient linear probe hyperparam-
eter optimization. The safetensors files categorize
patches into one of three classes: empty, suspicious,
explosive for patches with no annotations, those
with potentially misleading objects (like garbage,
vehicles, etc.), and those with any explosive (includ-
ing mines and unexploded ordinances). Patches
containing both suspicious objects and explosives
are given explosive label.

3.3 Visualizing Predictions
To make model predictions interpretable by hu-
mans we overlay a grayscale heatmap indicating
the “explosive” probability of each patch onto the
original image, as illustrated in fig. 1. According
to our sources real battlefields contain a lot of de-
bris making the visualization of suspicious patches
impractical. However, heatmaps inferred using the
linear probe are difficult to interpret. Given a patch
which is flagged to be “dangerous” it is impossible
to understand what pixels lead to that classification.

To demystify the model’s decisions we visualized
the attention maps between CLS token and other
image patches in the final transformer layer. The
attention heatmap generated using this approach
effectively creates a low-resolution foreground-
background segmentation. Examples of such at-
tention maps from a single attention head can be
seen in fig. 3. In easy cases where there is a single
obvious foreground object the attention map has
an obvious cluster of high attention values at its
location. In cases where there are multiple objects
in a single patch the attention heatmap is harder to
interpret e.g. in the last 2 images where no obvious
object was distinguishable the attention is spread
more evenly across the image.

However, ViTs have multiple attention heads,
with each head evaluating different token channels
and producing different attention maps. To visu-
alize everything that the model considers we take
the maximum attention between all heads at each
token as can be seen in fig. 2.

Figure 3: Examples of DINO CLS token attention maps

4 Results

Our initial tests were done using 155k training im-
age patches from 11 training packets (data collected
from a single flight) each containing 14k images
on average. All large packets with more than 20k
image patches were subsampled to 20k in order to
force the model to learn various backgrounds. For
validation purposes, we selected an image batch
that contained the most diverse collection of mines
available at the time of testing and subsampled it
to 20,000 image patches as well. Additionally, to
gauge the model’s performance against a substan-
tially different dataset, we created an adversarial
Molehill dataset by flying over a Lithuanian coun-
tryside field populated with molehills with a dif-
ferent drone. This dataset included anti-tank mine-
sized anomalies not seen in the training data. We
used the Molehill dataset exclusively as a test set
to assess the robustness of models that performed
well during validation and not for choosing the top
model from hyperparameter optimization.



Model Val micro-F1 Val macro-F1 Val Binary Accuracy Molehill Accuracy
I-JEPA vit-h 0.434 0.635 0.826 0.642
I-JEPA vit-g 0.411 0.611 0.819 0.536
DINOv2 vit-l 0.559 0.672 0.850 0.489
DINOv2 vit-l reg 0.473 0.647 0.819 0.355
DINOv2 vit-g 0.546 0.685 0.846 0.525
DINOv2 vit-g reg 0.606 0.697 0.853 0.376
CLIP-DFN-5B 0.524 0.697 0.830 0.733

Table 1: Metrics from Best-Performing Hyperparameter Configuration of Each Architecture

Hyperparam Searched Values
Learning Rate {10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}
Weight Decay {0.0005, 0.0}
Optimizer {SGD, Adam}

Table 2: Hyperparameter Search Space.

To measure validation performance we used the
F1 score. To combat the fact that > 95% of patches
are of the empty class, we compute both micro-
averaged and macro-averaged F1 scores. Micro-
averaged F1 indicates the model’s performance for
the validation set i.e. the expected performance
if a patch is sampled from the validation set with
uniform probability. Whereas macro-averaged F1
score indicates performance on a minefield where
all 3 classes of patches are equally likely. Even
though such a minefield is unlikely to be seen in
the real world it serves as a much better indicator
of mine, rather than empty patch, detection per-
formance. To optimize for the macro-averaged
performance we subsampled embeddings of each
training packet to contain a uniform distribution of
classes. The subsampling was repeated for each
training epoch to increase diversity in embeddings
of the empty class.

Hyperparameter optimization focused on vali-
dation performance for each architectural model.
We conducted a grid-search across values shown
in table 2. DINOv2 authors conducted a similar
hyperparameter search to measure linear probing
capabilities on standard benchmarks. Contrary to
their approach, we precompute image embeddings
and we could not perform any image augmenta-
tions during training.

Results of different hyperparameter configura-
tions that achieved the highest Val macro-F1 for
each architecture are presented in table 1. In gen-
eral, models trained on larger datasets achieved
higher Val macro-F1 scores: the lowest score was
with I-JEPA models trained on Imagenet-22k with

14M images, whereas DINOv2 trained on 1.2B
images and CLIP-DFN-5B on 5B images showed
comparable F1 scores. CLIP and DINOv2 vit-g
share are tied in Val macro-F1, however CLIP’s
Molehill Accuracy is an promising sign of its high
precision and potentially better generalization. Ad-
ditionally, we introduce Binary Accuracy metric
which measures how often a image patch that has
any annotation is assigned

5 Conclusion

Linear probing of foundational vision models
achieves solid results without the need for expen-
sive training or custom architecture design. Fur-
thermore, there is a lot of room for improvements.
Increasing the training set size and diversity should
produce more general models. This can be done
both by collecting more data and introducing train-
ing image augmentations. Secondly, since the
drone flies around in a path where its images have
significant overlap, it is likely that even better re-
sults could be attained by combining predictions
of the same geographic coordinate locations from
different viewpoints. Lastly, the expensive fine-
tuning of foundational models could be the final
step towards squeezing out the most performance
from them.
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