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Abstract. This research paper introduces an advanced quantization
methodology that leverages both Bayesian inference and geometric in-
sights to optimize the encoding of high-dimensional latent variables. Our
approach intelligently prioritizes variables based on their informational
significance, effectively balancing computational efficiency with model
fidelity. By incorporating a novel Bayesian statistical model, we eval-
uate variable importance and model stability across various computa-
tional platforms, including NVIDIA, Intel, and AMD hardware. Empiri-
cal results demonstrate significant enhancements in processing efficiency
and resource utilization, making our methodology highly suitable for de-
ployment in resource-constrained environments. This study sets a new
benchmark for quantization practices in machine learning, particularly
in applications requiring real-time data processing.

Keywords: Geometric Bayesian Quantization · SRate-Distortion Opti-
mization · Probabilistic Modeling.

1 Introduction

Traditional quantization methods primarily focus on efficiency, often overlooking
the complex underlying data geometry and parameter uncertainty. This over-
sight can result in suboptimal performance, particularly in tasks involving high-
dimensional data. To overcome these limitations, we propose a novel quantization
approach that incorporates Bayesian inference principles with geometric insights
from Riemannian manifolds (2; 3). This method allows for a more sophisticated
quantization process that assesses not just the values but also the uncertainties
and geometric structure of the model space.

Integrating geometric structures into statistical inference has been explored,
yet its application in quantization remains limited. Traditional quantization
focuses on computational efficiency at the expense of accuracy, often ignor-
ing the significant impact of data geometry on model performance (4). Works
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such as Variational Autoencoders (VAEs) by (2) employ variational inference
for Bayesian approximation but do not address geometric quantization directly.
Likewise, (5) and (1) have applied probabilistic and Bayesian methods within
neural networks and matrix factorization, yet without integrating geometric in-
sights into quantization.

Our approach is inspired by these seminal works but extends them by explic-
itly incorporating Riemannian geometry into the quantization process, which is
particularly beneficial for managing complex data representations and large-scale
Bayesian models (3; 4).

2 Methodology

The foundation of our proposed method is to assess the informational value of
each latent variable zi by evaluating its variance σ2

i (x) and its contribution to the
posterior probability. Latent variables with low variability and lesser impact on
the posterior probability can be selectively omitted from the encoding process,
thus reducing the model’s complexity and improving computational efficiency.

2.1 Quantization Algorithm

Evaluation of Variable Importance The importance score Si for each latent
variable is computed based on its posterior variance and the mutual information
between zi and observed data x, expressed as:

Si =
1

σ2
i (x)

I(zi;x)

where I(zi;x) can be approximated by the dependency of x on zi captured
through Variational Inference.
Threshold Determination A threshold T is established to balance between
compression efficiency and accuracy. This threshold can be dynamically adjusted
or fixed based on empirical evaluation.
Selective Encoding For latent variables where Si < T , these variables are not
encoded directly. Instead, their most probable values or mean values, given by
µi(x), are used during the decompression phase. This strategy modifies the tra-
ditional encoding process by integrating a decision rule based on the importance
scores and threshold.
Rate-Distortion Optimization The optimization of the rate-distortion func-
tion incorporates a penalty for omitting critical variables and is formulated as:

min
ξi

{
1

2σ2
i (x)

(
F−1(ξi)− µi(x)

)2
+ λR(ξi) + ρ1Si<T

}
where ρ is the penalty for skipping important variables, and 1Si<T is an indicator
function that is active when Si < T . Algorithm 1 provide how the step by step
process of selective encoding quantization occurs.
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Algorithm 1 Selective Encoding Quantization
1: Input: Latent variables z, observed data x, parameters (λ, ρ, T )
2: Output: Quantized representation ξ of z
3: Compute the posterior variance σ2

i (x) for each dimension i of z.
4: Calculate the mutual information I(zi;x) for each dimension.
5: Determine the importance score Si for each latent variable zi:
6: for i = 1 to K do
7: Si =

1
σ2
i (x)

I(zi;x)

8: end for
9: Establish the threshold T for important variables.

10: Encode each variable:
11: for i = 1 to K do
12: if Si < T then
13: Skip direct encoding of zi.
14: Use µi(x) or mean value for decompression.
15: else
16: Quantize zi using the CDF and inverse CDF:
17: ξi = F (F−1(zi))
18: Optimize the rate-distortion trade-off:
19: Minimize 1

2σ2
i (x)

(F−1(ξi)− µi(x))
2 + λR(ξi) + ρ1Si<T

20: end if
21: end for
22: return the quantized values ξ.

Fig. 1. Computational Time Across Different Systems
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3 Experiments

This bar chart illustrates the time required for quantization and dequantization
on NVIDIA DGX H200, Intel, and AMD systems (see Fig. 1). Quantization refers
to time it takes to convert continuous variable values into discrete counterparts.
Dequantization refers Time to revert the quantized data back to its original
form.

4 Conclusion

This study introduced a novel Bayesian-Geometric quantization technique that
significantly enhances the efficiency of machine learning models by intelligently
prioritizing variable encoding. Future research could explore adaptive threshold
mechanisms and extend this approach to real-time machine learning applications,
potentially incorporating deep learning frameworks to further validate and refine
the quantization process.
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