Logical and Relational Learning
A novel synthesis

Luc De Raedt
luc.deraedt@cs.kuleuven.be

KATHOLIEKE UNIVERSITEIT

LEUVEN

ECML/PKDD 2008




What is Logical and
Relational Learning ?

They all study the same problem




The Problem

Learning from structured data, involving
® objects, and
® relationships amongst them

and possibly

® using background knowledge




Purpose of this talk

Relational learning is sometimes viewed as a new
problem, but it has a long history

Emphasize the role of symbolic representations (graphs &
logic) and knowledge

A modern view
® |ogic as a toolbox for machine learning
Overview of some of the available tools and techniques

lllustration of their use in some of our recent work




Overview

MOTIVATION

REPRESENTATIONS OF THE DATA
The LOGIC of LEARNING
METHODOLOGY and SYSTEMS
LOGIC, RELATIONS and PROBABILITY
ILLUSTRATION in LINK MINING




The MOTIVATION




Case |: Structure Activity
Relationship Prediction

Active

C%JOQQ [Srinivasan et al. Al] 96]

4-nitropenta [cd]pyrene
Structural alert:

Inactive @ Y=Z
N+

General Purpose
Logic Learning System

Data = Set of Small Graphs Uses and Produces
Knowledge




Using and Producing
Knowledge

LRL can use and produce knowledge
Result of learning task is understandable and interpretable

Logical and relational learning algorithms can use
background knowledge, e.g. ring structures




Data = Large (Probabilistic) Network
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Questions to ask

How to support the life scientist in using and discovering new knowledge in
the network ?

Is gene X involved in disease Y ?

Should there be a link between gene X and disease Y ? If so, what type
of link ?

What is the probability that gene X is connected to disease Y ?
Which genes are similar to X w.r.t. disease Y?

Which part of the network provides the most information (network
extraction) ?




-
® T[ravian: A massively multiplayer real-time strategy game
® Commercial game run by TravianGames GmbH

® ~3.000.000 players spread over different “worlds”
~25.000 players in one world

[Thon et al. ECML 08]




World Dynamigs

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLO08]
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Emerging Data Sets

In many application areas :

® vision, surveillance, activity recognition,
robotics, ...

data in relational format are becoming available
use of knowledge and reasoning is essential

in Travian -- ako STRIPS representation




GerHome Example

Action and Activity Learning

(a) Segmentation (b) Classification (c) Tracking

(courtesy of Francois Bremond, INRIA-Sophia-Antipolis)

http://www-sop.inria.fr/orion/personnel/Francois.Bremond/topicsText/gerhomeProject.html




The LRL Problem

Learning from structured data, involving
® objects, and relationships amongst them
® possibly using background knowledge
Very often :

® examples are small graphs or elements of a large
network (possibly evolving over time)

® many different types of applications and challenges




REPRESENTING

the DATA




Represent the data
Hierarchy

exambple

example

example

example
example
example exampl
example
example
example

single-table single-table 2 relations multi-table
single-tuple multiple-tuple edge / vertex multiple-tuple
attribute-value multi-instance graphs & networks relational




Attribute-Value

exambple
example
example

— Traditional Setting in Machine Learning

example .
cxomo (cf. standard tools like Weka)
exambple
example
example

single-table
single-tuple
attribute-value




Multi-Instance
[Dietterich et al. Al] 96]

exambpl

An example is positive if
there exists a tuple in the example
cxama that satisfies particular properties

exampl

. Boundary case between relational
single-table
multiple-tuple and propositional learning.

multi-instance

A lot of interest in past |10 years

Applications: vision, chemo-informatics, ...




Encoding Graphs




Encoding Graphs

atom(|,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c¢).
atom(6,c). bond(3,4,s).
atom(7,c). bond(l,2,s).
atom(8,0). bond(2,3,d).




Encoding Graphs

2 relations
edge / vertex
graphs & networks




Encoding Graphs

atom(1,cl,21,0.297)
atom(2,c,21,0187)
atom(3,c,21,-0.143)
atom(4,c,21,-0.143)
atom(5,¢,21,-0.143)
atom(6,c,21,-0.143) bond(3,4,s).
atom(7,c,21,-0.143) bond(1,2,s).
atom(8,0,52,0.98) bond(2,3,d).

Note: add identifier for molecule




Encoding Knowledge

Use background knowledge in
form of rules

* encode hierarchies
halogen(A):- atom(X,f)
halogen(A):- atom(X,cl)
halogen(A):- atom(X,br)
halogen(A):- atom(X;i)
halogen(A):- atom(X,as)
*encode functional group

benzene-ring :- ...

intentional versus extentional encodings




Relational
Representation

multi-table
multiple-tuple
relational




Relational versus
Graphs

Advantages Relational
® background knowledge in the form of rules, ontologies, features, ...
® relations of arity > 2 (but hypergraphs)

graphs capture structure but annotations with many features/labels is
non-trivial

Advantages Graphs
e efficiency and scalability
® full relational is more complex

®  matrix operations




The Hierarchy

example
example
example
example
example
example exampl
example
example
example

single-table single-table 2 relations multi-table
single-tuple multiple-tuple edge / vertex multiple-tuple
attribute-value multi-instance graphs & networks relational




Two questions

UPGRADING : Can we develop systems that work
with richer representations (starting from systems for
simpler representations)?

PROPOSITIONALISATION: Can we change the
representation from richer representations to simpler
ones ! (So we can use systems working with simpler
representations)

Sometimes uses AGGREGATION




Representational
Hierarchy -- Systems

at | att ] at atlat|atlat|at

example
example
example
example
example
example exampl
example
example
example

single-table single-table 2 relations multi-table
single-tuple multiple-tuple edge / vertex multiple-tuple
attribute-value multi-instance graphs & networks relational




The Upgrading
Methodology

Start from existing system for simpler
representation

Extend it for use with richer representation
(while trying to keep the original system as a
special case)

lllustrations follow.




Learning Tasks

rule-learning & decision trees [Quinlan 90], [Blockeel 96]
frequent and local pattern mining [Dehaspe 98]

distance-based learning (clustering & instance-based learning)
[Horvath, 01], [Ramon 00]

probabilistic modeling (cf. statistical relational learning)
reinforcement learning [Dzeroski et al. 01]
kernel and support vector methods

Logical and relational representations can (and have been) used for all
learning tasks and techniques




Propositionalization

exambple

example

example

example
example
example exampl
example
example
example

single-table single-table 2 relations multi-table
single-tuple multiple-tuple edge / vertex multiple-tuple
attribute-value multi-instance graphs & networks relational

Downgrading the data !




Propositionalization

PARTICIPANT Table

NAME JOB COMPANY PARTY R_NUMBER
adams researcher scuf no 23
blake president jvt yes
king manager ucro no 78
miller manager jvt yes 14
scott | researcher scuf ' yes ' 94
turner researcher ucro no 81

SUBSCRIPTION Table

NAME COURSE

5 adams \ erm

adams s02
adams | srw
blake

blake |

king

king |

king

COMPANY Table COURSE Table king \

miller

scott |

scott

turner |

turner

COMPANY TYPE COURSE LENGTH TYPE
jt | commercial cso introductory
scuf university erm introductory
ucro university so2 introductory
Srw advanced




Table-based
Propositionalization

Deﬁne new I"e|ati0n PARTICIPANT Table

NAME JOB COMPANY PARTY R_NUMBER
adams ‘ researcher scuf no 23
blake president jvt yes 5
king | manager ucro no 78
miller manager jvt yes 14

P (N ,J , C ) P, R, C O, L) - scott ‘ researcher scuf yes 94

turner researcher ucro no 81

participant(N,},C,PR),
COURSE Table SUBSCRIPTION Table

SUbSCI’IbES(N,CO), COURSE ‘ LEN2GTH TYPE NAME COeL'J.:.:SE

cso introductory adams ‘

erm 3 introductory adams s02

so2 | 4 introductory adams | srw

Iength (CO’ L) ° Srw 3 advanced blake cso
blake | erm

king Cso

king | erm

king sS02

Multi-relational — multi-instance dng | s

miller so2

under certain conditions — atttribute-value it | e

arntt rw




Query-based
Propositionalization

Compute a set of relevant
features or queries.

Typically, (variant of) local
pattern mining.

E.g. find all frequent or
correlated subgraphs.

Use each feature as boolean
attribute.

Good results in graph
classification (using SVMs).




Aggregation

att ‘ att \

<

&
<

from multi-tuple relations to single-tuple




Aggregation

SUBSCRIPTION Table

Introduce new attribute NAME  COURSE
adams ‘ erm
For instance : e o adams, 3

® number of courses
followed

miller
scott |
scott
turner ‘
turner

multi-instance/tuple — attribute-value




Propositionalization
and Aggregation

Often useful to reduce more expressive representation to simpler
one but almost always results in information loss or combinatorial
explosion

Shifts the problem

® how to find the right features / attributes
One example

® features = paths in a graph (for instance)

® which ones to select?

still requires “relational” methods




The LOGIC of LEARNING

Coverage and Generality




Typical Machine Learning
Problem

Given

®3a set of examples E

®2a background theory B

@3 |ogic language Le to represent examples
@3 |ogic language Lh to represent hypotheses
®a relation on Le x Lh

®a |oss function

Find

® A hypothesis h in Lh that minimizes the loss function w.r.t. the
examples E taking B into account




The Hypothesis
Language

Prolog OWL First Order Logic

Graphs SQL Description Logic

Relational Calculi Entity-Relationship Model

Choice probably not that important
though implementation & manipulation




Covers Relation




Covers Relation

Subgraph Isomorphism
(bijection)
or
Homomorphism
(injection)




Coverage

positive :- atom(A,c),
atom(B,c),
bond(A,B,s),

Ol-subsumption
(bijection)
or
theta-subsumption
(injection)

atom(|,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c¢).
atom(6,c).  bond(3,4,s).
atom(7/,c). bond(1,2,s).
atom(8,0).  bond(2,3,d).




Coverage

positive :- halogen(A),
halogen(B), atom(|,cl).

bond(A,B,s), atom(2,c).
halogen(A):- atom(X,f) atom(3,c).
halogen(A):- atom(X,cl) atom(4,c).

halogen(A):- atom(X,br) atom(5,c).
halogen(A):- atom(X.i) atom(6,c).  bond(3,4,s).
halogen(A):- atom(Xas)
atom(7/,c). bond(1,2,s).
atom(8,0).  bond(2,3,d).

Deduction




Generality Relation

An essential component of Symbolic Learning systems

G is more general than S if all examples covered by S are
also covered by G

Using graphs
® subgraph isomorphism or homeomorphism

In logic

® theta or Ol subsumption, in general GES




Generality Relation

positive :- atom(X,c) F positive :- atom(X,c), atom(Y,o0)

but also

positive :- halogen(X)
F positive :- atom(X,c)
halogen(X) :- atom(X,c)




GES

S follows deductively from G
G follows inductively from S
therefore induction is the inverse of deduction

this is an operational point of view because there
are many deductive operators + that implement F

take any deductive operator and invert it and one
obtains an inductive operator




Various frameworks for generality

Depending on the form of G and S
single clause

clausal theory
Relative to a background theory B U G F S
Depending on the choice of |- to invert

subsumption (most popular)




Subsumption in 3 Steps

Subsumption ~ generalization of graph
morphisms

|. propositional
2.atoms

3. clauses (rules)




Propositional Logic

{f,mb,mn} = n =f:-b,n
GES ifandonlyif GCS
just like item-sets




Logical Atoms

Does g=participant(adams, X, kul) match
s=participant(adams,researcher, kul) ?

Yes, because there is a substitution 0={X/
researcher} such that gB=s

more complicated, account for variable unification




Subsumption in Clauses

Combine propositional and atomic
subsumption.

G subsumes S if and only if there is a
substitution O such that GOCS.

Graph - homeomorphism as special case




Subsumption Relation

Subgraph Isomorphism
(bijection)
or
Homomorphism
(injection)

0={G/8,A/5,B/4,C/3,D/2,E/7,F/6}




Subsumption

positive :- atom(A,c), atom(|,cl).
atom(B,c), atom(2,c).
bond(A,B9S)’ atom(3,C).
atom(4,c).

Ol-subsumption atom(3,c).

(bijection) atom(6,c).  bond(3,4,s).

or atom(7/,c). bond(1,2,s).

theta-subsumption atom(8,0).  bond(2,3,d).
(injection)

0={G/8,A/5,B/4,C/3,D/2,E/7,F/6}




Subsumption

Well-understood and studied, but complicated.

Testing subsumption (and subgraph-
ismorphism) is NP-complete

Infinite chains (up and downwards exist)

Syntactic variants exist when working with
homeomorphism (but not for isomorphism).

Computation of lub (lgg) and glb




Theta-subsumption
lattice

Tmxy)
—m(X,Y), \

m(X, Z) mW Y)/
%MJ‘ ] &

/——mXY \ /—m(xv) s(X) \
' m(XZ r(X \

) , —m(X,Y),m(X,Z),s(X) )

/ | Fd
\ /

m

J” 1], [e2])

subgraph homeomorphism




Using Generality

To define the search space that is traversed.

Cf. frequent item-set mining, concept-learning.




Generality

Different types of search strategy:

all solutions (freq. item-sets), top-k solutions (branch
and bound algo.), heuristic (concept-learning)




CRN

Generality relations and refinement operators are well-
understood; they apply to simpler structures such as
graphs (canonical form -- lexicographic orders)




Refinement

Graphs :
Adding edges

Relational learning
Adding literals
bond(A,B,s), bond(B,C,d), ...




SYSTEMS &

METHODOLOGY




Representational
Hierarchy -- Systems

at | at | att| at atlatlatlatlat
exambple examnbl
example

example exampl
example
example
example exampl

exambple
example
example

single-table single-table 2 relations multi-table
single-tuple multiple-tuple edge / vertex multiple-tuple
attribute-value multi-instance graphs & networks relational

UPGRADING




Two messages

LRL applies essentially to any machine learning and data mining
task, not just concept-learning

® distance based learning, clustering, descriptive learning,
reinforcement learning, bayesian approaches

there is a recipe that is being used to derive new LRL algorithms
on the basis of propositional ones

® not the only way to LRL




Learning Tasks

rule-learning & decision trees [Quinlan 90], [Blockeel 96]
frequent and local pattern mining [Dehaspe 98]

distance-based learning (clustering & instance-based learning)
[Horvath, 01], [Ramon 00]

probabilistic modeling (cf. statistical relational learning)
reinforcement learning [Dzeroski et al. 01]
kernel and support vector methods

Logical and relational representations can (and have been) used for all
learning tasks and techniques




The RECIPE

Start from well-known propositional learning system
Modify representation and operators

® e.g. generalization/specialization operator, similarity
measure, ...

® often use theta-subsumption as framework for generality

Build new system, retain as much as possible from propositional
one




LRL Systems and
techniques

FOIL ~ CN2 — Rule Learning (Quinlan MLJ 90)

Tilde ~ C4.5 — Decision Tree Learning (Blockeel & DR Al] 98)
Warmr ~ Apriori — Association rule learning (Dehaspe 98)
Progol ~~ AQ — Rule learning (Muggleton NGC 95)

Graph miners ...




A case : FOIL

Learning from entailment -- the setting BuHEFe

Given

molecule(225). bond(225,f1_1,f1_2,7).
logmutag(225,0.64) . bond(225,f1_2,f1_3,7).
lumo (225,-1.785). bond(225,f1_3,f1_4,7).
logp(225,1.01). bond (225,f1_4,f1_5,7).
nitro(225,[f1_4,f1_8,f1_10,f1_9]). bond(225,f1_5,f1_1,7).
atom(225,f1_1,¢,21,0.187). bond (225,f1_8,f1_9,2).
atom(225,f1_2,c,21,-0.143). bond (225,f1_8,f1_10,2).
atom(225,f1_3,c,21,-0.143). bond(225,f1_1,f1_11,1).
atom(225,f1_4,c,21,-0.013). bond (225,f1_11,f1_12,2).
atom(225,f1_5,0,52,-0.043). bond(225,f1_11,f1_13,1).

ring_size_5(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).
hetero_aromatic_5_ring(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).

mutagenic(225), ... I elalslEEu- ST RPN
Find
mutagenic (M) :- nitro(M,R1), logp(M,C), C > 1 . IEERIES




Searching for a rule

Greedy separate-and-conquer for rule set
Greedy general-to-specific search for single rule

:- atom(X,A,¢)

Coverage = 0.65 .- atom(X,A,n),bond(A,B)

Coverage = 0.6

:- atom(X,A,n)

Coverage = 0.7
.- atom(X,A,n),charge(A,0.82)

Coverage = 0.75
- atom(XA,f)

Coverage = 0.6




Searching for a rule

Greedy separate-and-conquer for rule set
Greedy general-to-specific search for single rule

:- atom(X,A,¢)

Coverage = 0.65 .- atom(X,A,n),bond(A,B)

Coverage = 0.6

:- atom(X,A,n)

Coverage = 0.7
.- atom(X,A,n),charge(A,0.82)

Coverage = 0.75
- atom(XA,f)

Coverage = 0.6

mutagenic(X) :- atom(X,A,n),charge(A,0.82)




FOIL

.- atom(X,A,c) .- atom(X,A,c),bond(A,B)

Coverage = 0.7 Coverage = 0.8

- atom(X,A,n) - atom(X,A,c),charge(A,0.82)

Coverage = 0.6

:- atom(X,Af)

Coverage = 0.6

Coverage = 0.6

mutagenic(X) :- atom(X,A,n),charge(A,0.82)




FOIL

- atom(X,A,c) .- atom(X,A,c),bond(A,B)

Coverage = 0.7 Coverage = 0.8

- atom(X,A,n) - atom(X,A,c),charge(A,0.82)

Coverage = 0.6

:- atom(X,A/f)

Coverage = 0.6

mutagenic(X) :- atom(X,A,c),bond(A,B)

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

Coverage = 0.6




mutagenic(X) :- atom(X,A,c),bond(A,B)

mutagenic(X) :- atom(X,A,c),charge(A,0.45)

mutagenic(X) :- atom(X,A,n),charge(A,0.82)




FOIL

Key ideas / contributions
® determine the representation of examples and hypotheses

select the right type of coverage and generality
(subsumption)

keep existing algorithm (CN2) but replace operators
keep search strategy

fast implementation.




Tilde

Logical Decision Trees (Blockeel & De Raedt Al] 98)

Negative Examples

Positive Examples

V| VY

OV |V




A logical decision tree

triangle(T1)

N\

n(T1,T2) circle(C

AN

triangle(T2) no no yes

IF triangle(T1),in(T1, T2),triangle(T2) THEN Class = yes
ELSIF triangle(T1),in(T1, T2) THEN Class = no

ELSIF triangle(T1) THEN Class = no

ELSIF circle(C) THEN Class = no

ELSE Class = yes




The RECIPE

Relevant for ALL levels of the hierarchy
Still being applied across data mining,
® mining from graphs, trees, and sequences

Works in both directions

® upgrading and downgrading !!!

Mining from graphs or trees as downgraded Relational Learning

Many of the same problems / solutions apply to graphs as to
relational representations




From Upgrading to
Downgrading

Work at the right level of representation
® trade-off between expressivity & efficiency

The old challenge: upgrade learning techniques for simpler
representations to richer ones.

The new challenge: downgrade more expressive ones to simpler
ones for efficiency and scalability; e.g. graph miners.

Note: systems using rich representations form a baseline, and can
be used to test out ideas.

Relevant also for ALL machine learning and data mining tasks




Learning Tasks

Logical and relational representations can (and have been) used for all
learning tasks and techniques

® rule-learning & decision trees
® frequent and local pattern mining
distance-based learning (clustering & instance-based learning)

probabilistic modeling (cf. statistical relational learning)

reinforcement learning

kernel and support vector methods




Typical Machine Learning
Problem

Given

®3a set of examples E

®2a background theory B

@3 |ogic language Le to represent examples
@3 |ogic language Lh to represent hypotheses
®a relation on Le x Lh

®a |oss function

Find

® A hypothesis h in Lh that minimizes the loss function w.r.t. the
examples E taking B into account




Three possible
SETTINGS

Learning from entailment (FOIL)

® covers(H,e)iff H|=e
Learning from interpretations

® covers(H,e) iff e is a model for H
Learning from proofs or traces.

® covers(H,e) iff e is proof given H

The setting can matter a lot
A Knowledge Representation Issue




Learning from interpretations

o {triangle(tl), circle(cl), inside(cl,tl)}

o {triangle(t3), triangle(t4), inside(t3,t4), circle(c5)}

® triangle(T) :- circle(C), inside(T,C)
® |[F there is a circle C inside an object T THENT is a triangle
® false :- circle(Cl), circle(C2), inside(C1,C2)

® NO circle is inside another circle ...




Learning from interpretations

e Positive: { human(luc), human(lieve), male(luc), female(lieve)}

(positives only)
(maximally specific that covers example)
® human(X) :- female(X)
® human(X) :- male(X)
® false :- male(X), female(X)
® male(X); female(X) :- human(X)

OFTEN used for finding INTEGRITY CONSTRAINTS / FREQ. PATTERN MINING




Learning from Proofs

E I
xamples
t([the,turtles,sleep],the, [turtles,sleep])

@

sentence (A, B) :- noun_phrase(C, A, D), verb_phrase(C, D, B).
noun_phrase(A, B, C) :- article(A, B, D), noun(A, D, C).
verb_phrase(A, B, C) :- intransitive_verb(A, B, C).
article(singular, A, B) :- terminal(A, a, B).
art?cle(singular, A, B) :- term?nal(A, the, B). Hypothesis
article(plural, A, B) :— terminal (A, the, B).
noun(singular, A, B) :- terminal(A, turtle, B).

noun(plural, A, B) :— terminal (A, turtles, B).
intransitive_verb(singular, A, B) :- terminal(A, sleeps, B).
intransitive_verb(plural, A, B) :- terminal(A, sleep, B).
terminal ([A|B] ,A,B).

Used in Treebank Grammar Learning & Program Synthesis




Use of different Settings

Learning from entailmep

Different settings
provide different levels
of information about
target program

(cf. De Raedt,Al] 97)

c
O
=
(q¥)
&
C
Q
£

Learningn.  .ces/proofs
— Typically used for hard problems, when
other settings seem to fail or fail to scale up
— E.g., program synthesis from examples,
grammar induction, multiple predicate learning




LOGIC, RELATIONS and

PROBABILITY

Joint work with Kristian Kersting et al.




Statistical Relational
Learning

Logic and relations alone are often insufficient

® but can be combined with probabilistic
reasoning and models

® use logic as a toolbox




Some SRL formalisms

‘93 94 95 96 97

‘99 ‘00 ‘02 03 Present Future
>

First KBMC approaches: W

Breese, Prob. Horn
Bacchus, Abduction: Poole
Charniak, |

Glesner, ‘
Goldman, PRISM: Kameya, Sato
Koller,

Poole, Wellmann

Logical Bayesian Networks:
Blockeel,Bruynooghe,
Fierens,Ramon,

LOHMMSs: De Raedt, Kersting,

Raiko

RMMs: Anderson,Domingos,
H Weld

BLPs: Kersting, De Raedt
' LPAD: Bruynooghe

\/ennekenc \/erbaeten
I VI NUV LugiC: Domingos,

Richardson
“ CLP(BN): Cussens,Page,

Qazi,Santos Costa




PLL:What Changes ?

Clauses annotated with probability labels

® E.g.in Sato’s Prism, Eisele and Muggleton’s SLPs, Kersting and De Raedt’s
BLPs, ...

Prob. covers relation covers(e,H U B) = P(e | H,B)

® Probability distribution P over the different values e can take; so far only
(true,false)

Knowledge representation issue

® Define probability distribution on examples / individuals

® What are these examples / individuals ? [cf. SETTINGS]




Two key approaches

® Logical Probability Models [MLNs, PRMs, BLPs, ...]
e Knowledge Based Model Construction, use (clausal) logic as a template

® generate graphical model on which to perform probabilistic inference and
learning

® Probabilistic Logical Models [ICL, PRISM, ProbLog, SLPs, ...]
® Annotate logic with probabilities
e perform inference and learning in logic

® illustrate the idea of upgrading




Probabilistic generative SRL
Problem

Given

® a set of examples E

® a background theory B

® a language Le to represent examples

® a language Lh to represent hypotheses

®a relation on Le x Lh
Find

® hypothesis h" maximizing some score based on the probabilistic covers
relation; often some kind of maximum likelihood




PLL: Three Issues

® Clauses + Probability Labels

® Parameter Estimation
® | earning probability labels for fixed clauses
® Structure learning

® | earning both components




PLL: Three Settings

® Probabilistic learning from interpretations

® Bayesian logic programs, Koller’s PRMs, Domingos’ MLN:s,
Vennekens’ LPADs

® Probabilistic learning from entailment

® Eisele and Muggleton’s Stochastic Logic Programs, Sato’s
Prism, Poole’s ICL, De Raedt et al’s ProbLog

® Probabilistic learning from proofs

® L earning the structure of SLPs; a tree-bank grammar based
approach,Anderson et al's RMMs, Kersting et al.




Learning from
Interpretations

Possible Worlds -- Knowledge Based Model
Construction

Bayesian logic programs (Kersting & De Raedt)
Markov Logic (Richardson & Domingos)

Probabilistic Relational Models (Getoor, Koller, et
al.)

Relational Bayesian Nets (Jaeger), ...




Bayesian Networks

-
R

P(E,B,A,),M) = P(E).P(B).P(A|E). P(A|B).P(J|A).P(M|A)

sasehquare, INTERPRETATION
a::zmaf}—’ ' earthquake, burglary. STAT E/ D ESC RI PTI O N
marycalls :- alarm. {A, ﬂE,_| B, J, M}

johncalls:- alarm.




Probabilistic Relational Models (PRMs)

[Getoor,Koller, Pfeffer]

[Getoor,Koller, Pfeffer]




Probabilistic Relational Models (PRMs)

father (Father,Person) . mother (Mother, Person) .

bt (Person,27) .

pc (Person, PC) .

mc (Person,MC) .

Dependencies (CPDs associated with):

:—- pc(Person,PC), mc(Person, MC).

bt (Person, 27T)

.pc(Person,”C) :- pc_ father (Father,PCf), mc_father (Father, MCE).

Iew .

pc_father (Person,PCf) | father( ,Person) ,pc ( ,PC) .




Probabilistic Relational Models (PRMs)
Bayesian Logic Programs (BLPs)

father (rex, fred) . mother (ann, fred) .
father (brian,doro). mother (utta, doro).
father (fred, henry) . mother (doro,henry) .

pc_father (Person,PCf) | father( ,Person) ,pc ( ,PC) .

mc (Person,C) | pc_mother (Person,PCm), pc_mother (Person,MCm) .
pc(Person,PC) | pc_father (Person,PCf), mc_father (Person,MCf) .
bt (Person,27) | pc(Person,PC), mc(Person, MC).




Knowledge Based Model
Construction

Advantages
same intension used for multiple extensions
parameters are being shared / tied together
unification is essential
learning becomes feasible
Typical use includes
prob. inference P(Q | E), P(bt(mary) | bt(john) =o-)

max. likelihood parameter estimation & structure learning




Bayesian Logic Programs

% apriori nodes
nat(0) .

% aposteriori nodes
nat(s(X)) | nat(X).

% apriori nodes O
state (0) . @
% aposteriori nodes

state (s (Time)) | state(Time).
output (Time) | state(Txe)

% apriori nodes

nl (0) . é
(0) o@

% aposteriori nodes

nl (s (TimeSlice) | n2(TimeSlice).

n2 (TimeSlice) | nl(TimeSlice) .

n3 (TimeSlice) | nl(TimeSlice), n2(TimeSlice).

Prolog and Bayesian Nets as Special Case

108



os lool

vols Windoa lelp

regisiral i
Jreghstradon_sadsfor

L Graph | 0

lew Imid.

Ielygences
stdere raniegil

paite




Learning from Proofs
Probabilistic Context Free Grammars

1.0:S-> NP, VP
1.0 : NP -> Art, Noun / \ \

0.6 :Art->a
0.4 : Art -> the Art Noun Verb

0.1 : Noun -> turtle 0.4 ’0.1 T-OS
0.1 : Noun -> turtles

. turtle sleeps
0.5:VP -> Verb
0.5: VP -> Verb, NP P(parse tree) = 1x1x.5x.1x.4x.05

0.05 : Verb -> sleep
0.05 : Verb -> sleeps




PCFGs

P(parse tree) = ||, p;’

where p; is the probability of rule ¢
and c¢; the number of times

it is used in the parse tree

P(sentence) = )

p:parsetree P(p)

Observe that derivations always succeed, that is
S—T,QQand T — R,U
always yields

S —R,U,Q




Probabilistic DCG

1.0 S -> NP(Num), VP(Num)

1.0 NP(Num) -> Art(Num), Noun(Num)
0.6 Art(sing) -> a

0.2 Art(sing) -> the

0.2 Art(plur) -> the

0.1 Noun(sing) -> turtle

0.1 Noun(plur) -> turtles

0.5 VP(Num) -> Verb(Num)

0.5 VP(Num) -> Verb(Num), NP(Num)
0.05 Verb(sing) -> sleep

0.05 Verb(plur) -> sleeps

S

/ \
NP(s) VP(s)

1 0.5

Art(s) Noun(s) Verb(s)

ol2 1_1 0.05

The turtle sleeps

P(derivation tree) = 1x1x.5x.1x .2 x.05




In SLP notation

sentence(A, B) :- noun_phrase(C, A, D), verb_phrase(C, D, B).
noun_phrase(A, B, C) :- article(A, B, D), noun(A, D, C).
verb_phrase(A, B, C) :- intransitive_verb(A, B, C).
article(singular, A, B) :- terminal(A, a, B).
article(singular, A, B) :- terminal(A, the, B).
article(plural, A, B) :— terminal (A, the, B).
noun(singular, A, B) :- terminal (A, turtle, B).

noun(plural, A, B) :— terminal (A, turtles, B).
intransitive_verb(singular, A, B) :- terminal(A, sleeps, B).
intransitive_verb(plural, A, B) :- terminal(A, sleep, B).
terminal ([A|B],A,B).

S,Sleep],[])=1l6 si'the,turtles,sleep],[]

np(pl,[the,turtles,sleep], [sleep]) vp(pl,[sleep],[])

a(pl,[the,turtles,sleep],[turtles,sleep]) n(pl,[turtles,sleep],[sleep]) iv(pl,[sleep],[])

t([the,turtles,sleep],the,[turtles,sleep]) “‘“turtles,sleep],turtles, [sleep]) t([sleep],sleep,[])




Probabilistic DCG

S

1.0 S -> NP(Num), VP(Num) / \
1.0 NP(Num) -> Art(Num), Noun(Num)

0.6 Art(sing) -> a NP(s) VP(s)
0.2 Art(sing) -> the

0.2 Art(plur) -> the

0.1 Noun(sing) -> turtle Art(s) Noun(s)

1

0.1 Noun(plur) -> turtles

i \What about
Sing) -> sleep

P(derivation tree) = 1x1x.5x.1x .2 x.05
0.05 Verb(plur) -> sleeps




SLPs

Pi(derivation) = ||, p;’

where p; is the probability of rule ¢
and c¢; the number of times

it is used in the parse tree

Observe that some derivations now fail due to unification, that
np(Num) — art(Num), noun(Num) and art(sing) — a
noun(plural) — turtles

Normalization necessary

P,(proo
Py(proof) = sraerool)




Example Application

* Consider traversing a university website
* Pages are characterized by predicate
department(cs,nebel) denotes the page of cs
following the link to nebel
* Rules applied would be of the form
department(cs,nebel) :-
prof(nebel), in(cs), co(ai), lecturer(nebel,ai).
pagetypel (tl,t2) :-
typel (tl), type2(t2), type3(t3), pagetype2(t2,t3)
* SLP models probabilities over traces / proofs / web logs

department(cs,nebel), lecturer(nebel,ai007),
course(ai007,burgard), ...

This is actually a Logical Markov Model




Logical Markov Model

0.1 prof(nebel).
0.05 prof(burgard).

An interesting application exist using RMMs
[Anderson and Domingos, KDD 03]




Probabilities on Proofs

Two views

stochastic logic programs define a prob. distribution over
atoms for a given predicate.

The sum of the probabilities = |.
Sampling. Like in probabilistic grammars.

distribution semantics define a prob. distribution over
possible worlds/interpretations. Degree of belief.




Notch receptor processing
BiologicalProcess

= GO:GO:0007220

~eptor processing
alProcess

v.olZ GO:GO:0007220 )
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0.197
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-participates_in Cgl(l;lca;roq?)rggggf; .
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EntrezGene:81751
participates _in
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participates_in
0.190

-participa
0.18¢

-participates_in

0.220

presenilin 2
Gene
EntrezGene:81751

Gene

BiologicalProcess 025
" Notcrireceptor processingh"‘-»...,‘
is_homologous_to BiologicalProcess )
0.512 GO:G0:0007220 py
-participates_in
0.197 A /
\\_} integral to nuclear inner
CellularComponent
< GO:GO:0005639
-is_found_in is.-tiomalginates, in
0.259 0.530198 ¢
participates_in
0.219
participates _in — - .
0.220 -participates_in -partic
0.207 0
-is_found_in ‘ \
0.271
-participates_in N\
0.229
participates_in
0.192
is_hon
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<
phenotype

probability of
connection?

gene

Two terminal network. reliability problem [NP-hard]
Work-by Helsinki group Biomine project-[Sevon, Toivonen et al/ DILS 06]

Originally formulated as a pragbabilistic network’
We: upgrade towards probabilistic logic (ProbLog)
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Distribution Semantics

® Due to Taisuke Sato

® provides a natural basis for many probabilistic
logics

® PRISM (Sato & Kameya), PHA & ICL (Poole),
ProbLog (De Raedt et al.), CP-logic
(Vennekens, ...)

® Will represent a simplified and unifying view as
in ProbLog [De Raedt et al.]




Distribution Semantics

® probabilistic predicates F
define using p : q(ti,...,tn)

denotes that ground atoms q(ti,...,tn)0 are true with
probability p

assume all ground probabilistic atoms to be marginally
independent

® |ogical ones DB

® define as usual using logic program -- WE : PATH predicate

® a similar semantics has been reinvented many times ----




Example in ProblLog

ProbLog theory T

[De Raedt, Kimmig, Toivonen, ||CAIl 07]

facts mutually independent

logical part L

:] y_edge(1l,2).
:] r edge(2,3).
:] g_edge(3,4).




Sampllng Subprograms

e Biased coins
* |Independent




Queries

—)

D-@
/\.|_>

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z) . I \ /I \

P(gT)= ) P(S|T)

SCL,SkEq




Queries

Key Point

of ProbLog and Logic
path(x,y) :- edge(x,y) *
a

path(x,y) :- edge(x,z), path(y,z) ‘
ny relation can be defined

P(gT)= )  P(SIT)

SCL,SkEq




Query Probability

using proofs

B 08 = D@

0.9 |
A |D
0.5 : * proofs overlap

F
0.7 . disjoint sum

e NP-hard

* approximation algorithm

[De Raedt et al, ||JCAIl 07]
P(path(1,4)|T)

— P(ABC + ABEH + ...+ FDBEH)
g — e o
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Query Probability

using Proofs

Prism (Sato) and ICL (Poole) avoid the
disjoint problem by requiring that
explanations do not overlap




Most likely proof /

explanation
@ B 0.8 ©

0.9 :
& example
5 0 O-@

Abduction

D A B © C
O.9®0.8 0.6@

ABC




Semantics ProblLog

Not really new, rediscovered many times
Intuitively, a probabilistic database
Formally, a distribution semantics [Sato 95]

Other systems, such as Sato’s Prism and Poole’s ICL avoid the disjoint sum
problem

® assume that explanations / proofs are mutually exclusive, that is,
e PAvBvC)=P(A) +P@B)+PC)

Long term vision: develop an optimized probabilistic Prolog implementation
in which other SRL formalisms can be compiled. (work together with Vitor
Santos Costa and Bart Demoen, integration in YAP Prolog planned)




An ILLUSTRATION in

LINK MINING




Some learning tasks

Following the upgrading idea
|. explanation based learning
2. local pattern mining
3. theory compression

4. parameter learning




|. Explanation Based Learning
as presenteg erald Dejong

Example:

no burned

d (fire, |
world (fire hands

meat, ...)

“Hey! Look what Zog do!”

Explanation: use stick
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<
phenotype

most similar pairs ?

gene >/

'Network around
Alzheimer Disease
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Most Likely Generalized

Explanation
@ B 0.8 ©

0.9 :
& example
5 0 O-@

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z)

OA BOC
O9®O8 0.6@

Kimmig et. al. Best Paper l

Award ECML 2007 O——®




Generalize Explanation

©A®BOC@

$

O——=O®




Prolog Setting

path(1,4). proof tree

™~

edge(1,2). path(2,4).
e N
y_edge(1l,2). edge (2, 3) . pathﬁ3,4).

concrete r_edge(2,3). edge (3,4) .

explanation g edge(3,4).
path(P,S) —

y edge(P,Q) ,r edge(Q,R),g edge(R,S).




Use of Generalized
Explanation

® O—@®

@BO.S

0.9
A




Use of Generalized
Explanation

® O——® @-D 0.72
®—® 0.63

0.9/2 =223, . @—® 0.40
% ®—-®@ 0.35
@—@ 0.14

reasoning by similarity / analogy




Experiments

depth

nodes edges

g ng pt

Pos

Alzl
Alz2
Alz3
Alz4

1

122 259
658 3544
351 7T

3364 17666

15 3
17 20 4
72 33
130 55

182
272

5112
16770

87470

Astl 127 241 | 7 12 2| 42 642
Ast2| 5 381 787 |11 12 2| 110 902
Table 1. Graph characteristics: search depth used during graph extraction, numbers of
nodes and edges, number of genes annotated resp. not annotated with the correspond-
ing disease and number of phenotypes, number of positive and negative examples for
connecting two genes and a phenotype.

O | O s O
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Experiments

Alzl Astl
pos(5) posn pos_a prec|pos(1l) pos(3) pos(5) posn pos_a prec
3.95 6.91 16.820.46| 1.00 3.00 4.86 6.86 10.57 0.23
3.60 7.37 18.65 0.42| 0.86 86 471 6.86 14.56 0.22
4.09 23.20 126.09 0.48| 1.00 71 414 6.86 28.00 0.24
3.58 7.37 18.80 0.42| 0.86 29 3.43 5.14 28.00 0.15
Astl| 0.09 0.44 2.07 2.07 0.02] 1.00 3.00 4.86 17.14 17.14 0.34
Ast2| 0.08 0.38 2.00 2.00 0.01| 0.86 BT 4.29 16.57 16.57 0.20
Table 2. Averaged results over all examples learned on Alzl resp. Astl and ev aluated
on 6 different graphs: number of positives among the first £ answers for k£ = 1,3, 5,
number of positves returned before the first negative, absolute number of positives
returned, and precision.

pos(1) pos(3]
Alzl| 0.95
Alz2| 0.84
Alz3| 0.99
Alz4| 0.84

o Ot
JAJ;-CQV

=INESESEY
[Sv] B v ey}
W N

o
b
()
N

142



PEBL Contributions

® EBL in probabilistic context
® Multiple explanations: most likely one

® Reasoning by analogy:
background knowledge + likelihood




2. Probabilistic Pattern Mining

What are the most likely explanations the
examples have in common ? @ @

criterion: average probability is higher
than threshold @ @

5, B 08 = ® ®

% ' D@

@@

no definition of path




Probabilistic Pattern Mining

@D
© @
@ ®
D@
@@

no definition of path




3. Probabilistic Theory Compression/
Revision

® Given
® pos / neg interactions

® Say (green, blue) / (red, blue)

® Find small network (k links)
that maximizes prob positives
and minimized prob negatives

De Raedt et al. ML) 08
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Probabilistic Theory Compression

m Reduce to at most k edges (greedy approach, reusing BDDs
for scoring)

m Example: Green and blue should be connected, red and blue
not (all edges have probability 0.5)

N

initially
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4. Parameter Estimation

using least

squares and
gradient @—-1 0.72

®—® 0.63

, Jot , 3—® 0.40
e

D—-@ 0.35
@—-@ 0.14
Gutmann et al. ECML 08

4




Parameter Estimation

using least

squares and
gradient @—-1 0.72

®—® 0.63

0.9/2 =223, . @—® 0.40
% ®—-®@ 0.35
@—@ 0.14

Gutmann et al. ECML 08




Experiments

® For all of the settings specified, we did set
up experiments that show that meaningful
links can be (re)-discovered




Conclusions

Logic and relational learning toolbox (take what you need)

rules & background knowledge
generality & operators

upgrading & downgrading

graphs & relational database & logic
learning settings
propositionalization & aggregation

probabilistic logics



Further Reading

- ‘q
Luc De Raedt g P —

agical and
elational Learning

Logical and Relational Learning

Springer, 2008, 401 pages, in print.

(should be on display at the Springer booth)




Thanks to

Collaborators on previous tutorials and specific
aspects of this work, esp.

® Kristian Kersting, Angelika Kimmig, Hannu
Toivonen




