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What is Logical and 
Relational Learning ?

Inductive
 Logic 

Program
ming

(Statistical) Relational 
Learning

Multi-Relational Data 

Mining

Mining and Learning in 
Graphs

UNION  of 

They all study the same problem
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The Problem

Learning from structured data, involving

• objects, and 

• relationships amongst them

and possibly

• using background knowledge 
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Purpose of this talk

• Relational learning is sometimes viewed as a new 
problem, but it has a long history

• Emphasize the role of symbolic representations (graphs & 
logic) and knowledge  

• A modern view 

•  logic as a toolbox for machine learning

• Overview of some of the available tools and techniques

• Illustration of their use in some of our recent work
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Overview

MOTIVATION

REPRESENTATIONS OF THE DATA

The LOGIC of LEARNING

METHODOLOGY and SYSTEMS

LOGIC, RELATIONS and PROBABILITY

ILLUSTRATION in LINK MINING
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The MOTIVATION
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Case 1: Structure Activity 
Relationship Prediction

O CH=N-NH-C-NH 2O=N

O - O

nitrofurazone
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4-nitropenta[cd]pyrene
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6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene
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O      O
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4-nitroindole

Y=Z

Active

Inactive

Structural alert:

[Srinivasan et al. AIJ 96]

Data = Set of Small Graphs

General Purpose
Logic Learning System

Uses and Produces
Knowledge
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Using and Producing 
Knowledge

 LRL can use and produce knowledge

Result of learning task is understandable and interpretable

Logical and relational learning algorithms can use 
background knowledge, e.g.  ring structures 
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gene

protein

pathway

cellular
component

homologgroup

phenotype

biological
process

locus

molecular
function has

is homologous to

participates in

participates in
is located in

is related to

refers to
belongs to

is found in

codes for

subsumes,
interacts with

is found in

participates in

refers to

Case 2: Biological Networks
Biomine Database @ Helsinki

Data = Large  (Probabilistic) Network
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Network around 
Alzheimer Disease
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presenilin 2
Gene

EntrezGene:81751

Notch receptor processing
BiologicalProcess
GO:GO:0007220
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-participates_in
0.220

BiologicalProcess

Gene
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Questions to ask
How to support the life scientist in using and discovering new knowledge in 
the network ?

• Is gene X involved in disease Y ?

• Should there be a link between gene X and disease Y ? If so, what type 
of link ? 

• What is the probability that gene X is connected to disease Y ? 

• Which genes are similar to X w.r.t. disease Y?

• Which part of the network provides the most information (network 
extraction) ?

• ...
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Case 3: Evolving Networks

• Travian:  A massively multiplayer real-time strategy game

• Commercial game run by TravianGames GmbH

• ~3.000.000 players spread over different “worlds”

• ~25.000 players in one world
[Thon et al. ECML 08]
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World Dynamics
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[Thon, Landwehr, De Raedt, ECML08]
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World Dynamics
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World Dynamics
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World Dynamics
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World Dynamics
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World Dynamics
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Emerging Data Sets

In many application areas :

• vision, surveillance, activity recognition, 
robotics, ...

• data in relational format are becoming available

• use of knowledge and reasoning is essential

• in Travian -- ako STRIPS representation
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GerHome Example

Action and Activity Learning

(courtesy of Francois Bremond, INRIA-Sophia-Antipolis)

http://www-sop.inria.fr/orion/personnel/Francois.Bremond/topicsText/gerhomeProject.html
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The LRL Problem

Learning from structured data, involving

• objects, and relationships amongst them

• possibly using background knowledge

Very often :

• examples are small graphs or elements of a large 
network (possibly evolving over time)

• many different types of applications  and challenges
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REPRESENTING 
the DATA
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Represent the data
Hierarchy  
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Attribute-Value
at
t 

at
t 

at
t 

att at
t example

example
example
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example
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single-table 
single-tuple

attribute-value

Traditional Setting in Machine Learning
(cf. standard tools like Weka)
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Multi-Instance
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t 
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single-table 
multiple-tuple
multi-instance

[Dietterich et al. AIJ 96]

An example is positive if 
there exists a tuple in the example
 that satisfies particular properties

Boundary case between relational 
and propositional learning.

A lot of interest in past 10 years

Applications: vision, chemo-informatics, ...
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Encoding Graphs
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Encoding Graphs

atom(1,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c).
atom(6,c).
atom(7,c).
atom(8,o).
...

bond(3,4,s).
bond(1,2,s).
bond(2,3,d).
...
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Encoding Graphs
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Encoding Graphs
atom(1,cl,21,0.297)

atom(2,c,21, 0187)

atom(3,c,21,-0.143)

atom(4,c,21,-0.143)

atom(5,c,21,-0.143)

atom(6,c,21,-0.143)

atom(7,c,21,-0.143)

atom(8,o,52,0.98)

...

bond(3,4,s).

bond(1,2,s).

bond(2,3,d).

...

12

3
4

7
6

5

9

8

14 10

13
12

11

16
15

17

Note:  add identifier for molecule
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Encoding Knowledge
Use background knowledge in 
form of rules 

• encode hierarchies 

halogen(A):- atom(X,f)

halogen(A):- atom(X,cl)

halogen(A):- atom(X,br)

halogen(A):- atom(X,i)

halogen(A):- atom(X,as)

•encode functional group

benzene-ring :-  ...

intentional versus extentional encodings
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Relational 
Representation
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Relational versus 
Graphs

Advantages Relational

• background knowledge in the form of rules, ontologies, features, ...

• relations of arity > 2 (but hypergraphs)

• graphs capture structure but annotations with many features/labels is 
non-trivial 

Advantages Graphs

• efficiency and scalability

• full relational is more complex

• matrix operations
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The Hierarchy  
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Two questions

UPGRADING : Can we develop systems that work 
with richer representations (starting from systems for 
simpler representations)? 

PROPOSITIONALISATION: Can we change the 
representation from richer representations to simpler 
ones ?  (So we can use systems working with simpler 
representations)  

Sometimes uses AGGREGATION
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Representational 
Hierarchy  -- Systems
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The Upgrading 
Methodology

Start from existing system for simpler 
representation

Extend it for use with richer representation 
(while trying to keep the original system as a 
special case)

Illustrations follow.
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Learning Tasks

• rule-learning & decision trees  [Quinlan 90], [Blockeel 96]

• frequent and local pattern mining [Dehaspe 98]

• distance-based learning (clustering & instance-based learning) 
[Horvath, 01], [Ramon 00]

• probabilistic modeling (cf. statistical relational learning)

• reinforcement learning [Dzeroski et al. 01]

• kernel and support vector methods

Logical and relational representations can (and have been) used for all 
learning tasks and techniques 
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Propositionalization
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Downgrading the data ?
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Propositionalization
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Table-based 
Propositionalization

Define new relation 

p(N,J,C,P,R,Co,L) :-   

   participant(N,J,C,P,R),

   subscribes(N,Co),

   length(Co,L).

Multi-relational  → multi-instance
under certain conditions → atttribute-value
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Query-based
Propositionalization

Compute a set of relevant 
features or queries. 

Typically, (variant of) local 
pattern mining.

E.g. find all frequent or 
correlated subgraphs.

Use each feature as boolean 
attribute. 

Good results in graph 
classification (using SVMs).
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Aggregation
att att att att att 

tuple
tuple
tuple
tuple
tuple
tuple
tuple
tuple
tuple
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at
t tuple

tuple

tuple

...

from multi-tuple relations to single-tuple 
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Introduce new attribute

For instance : 

• number of courses 
followed

multi-instance/tuple   → attribute-value

Aggregation

adams, 3 
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Propositionalization 
and Aggregation

Often useful to reduce more expressive representation to simpler 
one but almost always results in information loss or combinatorial 
explosion

Shifts the problem 

•  how to find the right features / attributes

One example 

• features = paths in a graph (for instance)

• which ones to select ?

still requires “relational” methods
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The LOGIC of LEARNING 
Coverage and Generality
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Typical Machine Learning 
Problem• Given

•a set of examples E 

•a background theory B 

•a logic language Le to represent examples 

•a logic language Lh to represent hypotheses

•a covers relation on Le x Lh

•a loss function

• Find 

•A hypothesis h in Lh that minimizes the loss function w.r.t. the  
examples E taking B into account
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 The Hypothesis 
Language

SQL

Prolog First Order Logic

Relational Calculi Entity-Relationship Model

Description Logic

OWL

Choice probably not that important 
though implementation & manipulation

Graphs
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o

Covers Relation
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Covers Relation

o

12
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A B
C

D

E
F

G

Subgraph Isomorphism
(bijection)

or 
Homomorphism

(injection)
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Coverage

OI-subsumption
(bijection)

or 
theta-subsumption

(injection)

atom(1,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c).
atom(6,c).
atom(7,c).
atom(8,o).
...

bond(3,4,s).
bond(1,2,s).
bond(2,3,d).
...

positive :-  atom(A,c), 
atom(B,c), 

bond(A,B,s),
....
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Coverage

Deduction

atom(1,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c).
atom(6,c).
atom(7,c).
atom(8,o).
...

bond(3,4,s).
bond(1,2,s).
bond(2,3,d).
...

positive :-  halogen(A), 
halogen(B), 
bond(A,B,s),

....
halogen(A):- atom(X,f)

halogen(A):- atom(X,cl)

halogen(A):- atom(X,br)

halogen(A):- atom(X,i)

halogen(A):- atom(X,as)
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Generality Relation
An essential component of Symbolic Learning systems

G is more general than S if all examples covered by S are 
also covered by G

Using graphs

• subgraph isomorphism or homeomorphism

In logic

• theta or OI subsumption, in general  G ⊧ S
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Generality Relation

positive :- atom(X,c) ⊧ positive :- atom(X,c), atom(Y,o)

but also 

positive :- halogen(X)

halogen(X) :- atom(X,c)      
⊧ positive :- atom(X,c)
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G ⊧ S 

S follows deductively from G

G follows inductively from S

therefore induction is the inverse of deduction

this is an operational point of view because there 
are many deductive operators ⊦ that implement ⊧

take any deductive operator and invert it and one 
obtains an inductive operator
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Various frameworks for generality

Depending on the form of G and S 

single clause

clausal theory

Relative to a background theory B U G ⊧ S 

Depending on the choice of ⊦ to invert

subsumption (most popular) 
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Subsumption in 3 Steps

Subsumption ~ generalization of graph 
morphisms

1. propositional

2. atoms

3. clauses (rules)
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Propositional Logic

{f,¬b,¬n}   =  f IF b and n  = f :- b, n
G ⊧ S  if and only if G ⊆ S

just like item-sets
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Logical Atoms
Does g=participant(adams, X, kul) match

s=participant(adams,researcher, kul) ?

Yes, because there is a substitution θ={X/
researcher} such that gθ=s

more complicated, account for variable unification 
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Subsumption in Clauses

Combine propositional and atomic 
subsumption.  

G subsumes S if and only if there is a 
substitution θ such that Gθ⊆S.

Graph - homeomorphism as special case
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Subsumption Relation

o

12

3
4

7
6

5

9

8

14 10

13
12

11

16
15

17

A B
C

D

E
F

G

Subgraph Isomorphism
(bijection)

or 
Homomorphism

(injection)
θ={G/8,A/5,B/4,C/3,D/2,E/7,F/6}
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Subsumption

OI-subsumption
(bijection)

or 
theta-subsumption

(injection)

atom(1,cl).
atom(2,c).
atom(3,c).
atom(4,c).
atom(5,c).
atom(6,c).
atom(7,c).
atom(8,o).
...

bond(3,4,s).
bond(1,2,s).
bond(2,3,d).
...

positive :-  atom(A,c), 
atom(B,c), 

bond(A,B,s),
....

θ={G/8,A/5,B/4,C/3,D/2,E/7,F/6}
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Subsumption
Well-understood and studied, but complicated. 

Testing subsumption (and subgraph-
ismorphism) is NP-complete

Infinite chains (up and downwards exist)

Syntactic variants exist when working with 
homeomorphism (but not for isomorphism).

Computation of lub (lgg) and glb
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Theta-subsumption 
lattice

subgraph homeomorphism
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Using Generality

To define the search space that is traversed.

Cf. frequent item-set mining, concept-learning.
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Different types of search strategy:  

all solutions (freq. item-sets), top-k solutions (branch 
and bound algo.), heuristic (concept-learning) 

Generality
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Generality relations and refinement operators are well-
understood; they apply to simpler structures such as 
graphs (canonical form -- lexicographic orders)

G ⊧ S 
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Refinement

Graphs :

Adding edges

Relational learning

Adding literals

bond(A,B,s), bond(B,C,d), ...
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SYSTEMS & 
METHODOLOGY
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Representational 
Hierarchy  -- Systems
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2 relations
edge / vertex

graphs & networks 

UPGRADING
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Two messages

LRL applies essentially to any machine learning and data mining 
task, not just concept-learning

• distance based learning, clustering, descriptive learning, 
reinforcement learning, bayesian approaches

there is a recipe that is being used to derive new LRL algorithms 
on the basis of propositional ones

• not the only way to LRL
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Learning Tasks

• rule-learning & decision trees  [Quinlan 90], [Blockeel 96]

• frequent and local pattern mining [Dehaspe 98]

• distance-based learning (clustering & instance-based learning) 
[Horvath, 01], [Ramon 00]

• probabilistic modeling (cf. statistical relational learning)

• reinforcement learning [Dzeroski et al. 01]

• kernel and support vector methods

Logical and relational representations can (and have been) used for all 
learning tasks and techniques 
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The RECIPE

Start from well-known propositional learning system

Modify representation and operators

• e.g. generalization/specialization operator, similarity 
measure, …

• often use theta-subsumption as framework for generality

Build new system, retain as much as possible from propositional 
one
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LRL Systems and 
techniques

FOIL ~ CN2 – Rule Learning (Quinlan MLJ 90)

Tilde ~ C4.5 – Decision Tree Learning (Blockeel & DR AIJ 98)

Warmr ~ Apriori – Association rule learning (Dehaspe 98)

Progol ~~ AQ – Rule learning (Muggleton NGC 95)

Graph miners ...
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A case : FOIL
Learning from entailment -- the setting

Given 

mutagenic(225), ...

Find 

background 

examples

rules

B ∪ H ⊧ e 

B ∪ H ⊧ e 
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Searching for a rule

:- true

Coverage = 0.65 

Coverage = 0.7 

Coverage = 0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.6

Coverage = 0.75

:- atom(X,A,n),bond(A,B)

:- atom(X,A,n),charge(A,0.82)

Greedy separate-and-conquer for rule set
Greedy general-to-specific search for single rule  
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Searching for a rule

:- true

Coverage = 0.65 

Coverage = 0.7 

Coverage = 0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.6

Coverage = 0.75

:- atom(X,A,n),bond(A,B)

:- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

Greedy separate-and-conquer for rule set
Greedy general-to-specific search for single rule  
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FOIL

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

:- true

Coverage = 0.7 

Coverage = 0.6 

Coverage = 0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.8

Coverage = 0.6

:- atom(X,A,c),bond(A,B)

:- atom(X,A,c),charge(A,0.82)

79



FOIL

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

:- true

Coverage = 0.7 

Coverage = 0.6 

Coverage = 0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.8

Coverage = 0.6

:- atom(X,A,c),bond(A,B)

:- atom(X,A,c),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)
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mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

mutagenic(X) :- atom(X,A,c),charge(A,0.45)
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FOIL

Key ideas / contributions 

• determine the representation of examples and hypotheses

• select the right type of coverage and generality 
(subsumption)

• keep existing algorithm (CN2) but replace operators

• keep search strategy

• fast implementation.
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Tilde
Logical Decision Trees (Blockeel & De Raedt AIJ 98)

83



A logical decision tree
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The RECIPE
Relevant for ALL levels of the hierarchy

Still being applied across data mining,

• mining from graphs, trees, and sequences

Works in both directions 

• upgrading and downgrading !!!

Mining from graphs or trees as downgraded Relational Learning

Many of the same problems / solutions apply to graphs as to 
relational representations 
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From Upgrading to 
Downgrading

Work at the right level of representation

• trade-off between  expressivity & efficiency

The old challenge: upgrade learning techniques for simpler 
representations to richer ones.

The new challenge:  downgrade more expressive ones to simpler 
ones for efficiency and scalability; e.g. graph miners.

Note: systems using rich representations form a baseline, and can 
be used to test out ideas.

Relevant also for ALL machine learning and data mining tasks 
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Learning Tasks

Logical and relational representations can (and have been) used for all 
learning tasks and techniques

• rule-learning & decision trees

• frequent and local pattern mining 

• distance-based learning (clustering & instance-based learning)

• probabilistic modeling (cf. statistical relational learning)

• reinforcement learning 

• kernel and support vector methods
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Typical Machine Learning 
Problem• Given

•a set of examples E 

•a background theory B 

•a logic language Le to represent examples 

•a logic language Lh to represent hypotheses

•a covers relation on Le x Lh

•a loss function

• Find 

•A hypothesis h in Lh that minimizes the loss function w.r.t. the  
examples E taking B into account
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Three possible 
SETTINGS

Learning from entailment  (FOIL)

• covers(H,e) iff H |= e

Learning from interpretations

• covers(H,e) iff e is a model for H

Learning from proofs or traces.

• covers(H,e) iff e is proof given H

The setting can matter a lot
A Knowledge Representation Issue
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Learning from interpretations 

• Examples as “relational state descriptions”

• {triangle(t1), circle(c1), inside(c1,t1)}  

• {triangle(t3), triangle(t4), inside(t3,t4), circle(c5)} 

• Hypotheses consist of properties / constraints

• triangle(T) :- circle(C), inside(T,C)

• IF there is a circle C inside an object T THEN T is a triangle

• false :- circle(C1), circle(C2), inside(C1,C2)

• NO circle is inside another circle ...
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Learning from interpretations 

Examples

• Positive: { human(luc), human(lieve), male(luc), female(lieve)} 

Hypothesis (positives only)

(maximally specific that covers example)

• human(X) :- female(X)

• human(X) :- male(X)

• false :- male(X), female(X)

• male(X); female(X) :- human(X)

OFTEN used for finding INTEGRITY CONSTRAINTS / FREQ. PATTERN MINING
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Learning from Proofs
Examples

Hypothesis

Used in Treebank Grammar Learning & Program Synthesis
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Use of different Settings

Learning from interpretations
– Typically used for description 

– E.g., inducing integrity constraints

Learning from entailment
– The most popular setting

– Typically used for prediction
– E.g., predicting activity of compounds

Learning from traces/proofs
– Typically used for hard problems, when 

    other settings seem to fail or fail to scale up
– E.g., program synthesis from examples,  

   grammar induction, multiple predicate learning

-

+

In
fo

rm
at

io
n Different settings 

provide different levels 
of information about 

target program 
(cf. De Raedt, AIJ 97)
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LOGIC, RELATIONS and 
PROBABILITY

Joint work with Kristian Kersting et al.
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Statistical Relational 
Learning 

Logic and relations alone are often insufficient

• but can be combined with probabilistic 
reasoning and models 

• use logic as a toolbox 
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Some SRL formalisms

LPAD: Bruynooghe

Vennekens,Verbaeten
Markov Logic: Domingos,

Richardson
CLP(BN): Cussens,Page, 

Qazi,Santos Costa

Present

PRMs: Friedman,Getoor,Koller,
Pfeffer,Segal,Taskar

´03

SLPs: Cussens,Muggleton 

´90 ´95  96

First KBMC approaches:

Breese, 

Bacchus,
Charniak, 

Glesner,
Goldman, 

Koller,
Poole, Wellmann

´00

BLPs: Kersting, De Raedt

RMMs: Anderson,Domingos,
Weld

LOHMMs: De Raedt, Kersting,
Raiko

Future

Prob. CLP: Eisele, Riezler

´02

PRISM: Kameya, Sato

´94

PLP: Haddawy, Ngo

´97´93

Prob. Horn 
Abduction: Poole

´99

1BC(2): Flach,
Lachiche

Logical Bayesian Networks:
 Blockeel,Bruynooghe,

Fierens,Ramon, 
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PLL: What Changes ?

Clauses annotated with probability labels

• E.g. in Sato’s Prism, Eisele and Muggleton’s SLPs, Kersting and De Raedt’s 
BLPs, …

Prob. covers relation covers(e,H U B) = P(e | H,B)

• Probability distribution P over the different values e can take; so far only 
(true,false)

Knowledge representation issue

•Define probability distribution on examples / individuals

•What are these examples / individuals ? [cf. SETTINGS]
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Two key approaches

• Logical Probability Models [MLNs, PRMs, BLPs, ...]

• Knowledge Based Model Construction, use (clausal) logic as a template

• generate graphical model on which to perform probabilistic inference and 
learning

• Probabilistic Logical Models [ICL, PRISM, ProbLog, SLPs, ...]

• Annotate logic with probabilities

• perform inference and learning in logic 

• illustrate the idea of upgrading
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Probabilistic generative SRL 
Problem

Given

• a set of examples E

• a background theory B 

• a language Le to represent examples

• a language Lh to represent hypotheses

• a probabilistic covers P relation on Le x Lh

Find 

• hypothesis h* maximizing some score based on the probabilistic covers 
relation;   often some kind of maximum likelihood
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PLL: Three Issues

• Defining Lh and P

•Clauses + Probability Labels

• Learning Methods

•Parameter Estimation 

• Learning probability labels for fixed clauses

•Structure learning

• Learning both components
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PLL: Three Settings

• Probabilistic learning from interpretations

•Bayesian logic programs, Koller’s PRMs, Domingos’ MLNs, 
Vennekens’ LPADs                               

• Probabilistic learning from entailment

•Eisele and Muggleton’s Stochastic Logic Programs, Sato’s 
Prism, Poole’s ICL, De Raedt et al.’s ProbLog

• Probabilistic learning from proofs

•Learning the structure of SLPs; a tree-bank grammar based 
approach, Anderson et al.’s RMMs, Kersting et al. 
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Learning from 
interpretations 

• Possible Worlds -- Knowledge Based Model 
Construction 

• Bayesian logic programs (Kersting & De Raedt) 

• Markov Logic (Richardson & Domingos)

• Probabilistic Relational Models (Getoor, Koller, et 
al.)

• Relational Bayesian Nets (Jaeger), ...

102



Bayesian Networks

0.9 0.1
e

b

e
0.2 0.8

0.01 0.99
0.9 0.1

be
b
b

e

BE P(A | B,E)
Earthquake

JohnCalls

Alarm

MaryCalls

Burglary

P(E,B,A,J,M) = P(E).P(B).P(A|E). P(A|B).P(J|A).P(M|A)

earthquake.

burglary.

alarm :- earthquake, burglary.

marycalls :- alarm.

johncalls:- alarm.

INTERPRETATION
STATE/DESCRIPTION

{A, ¬E,¬B, J, M}

103



Probabilistic Relational Models (PRMs)

PersonBloodtype

M-chromosome
P-chromosome

Person

Bloodtype M-chromosome

P-chromosome

(Father)

Person

Bloodtype M-chromosome

P-chromosome

(Mother)

Table

[Getoor,Koller, Pfeffer]

[Getoor,Koller, Pfeffer]
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Probabilistic Relational Models (PRMs)

bt(Person,BT).

pc(Person,PC).

mc(Person,MC).

bt(Person,BT) :- pc(Person,PC), mc(Person,MC).  

pc(Person,PC) :- pc_father(Father,PCf), mc_father(Father,MCf). 

pc_father(Person,PCf) |  father(Father,Person),pc(Father,PC).
...

father(Father,Person).

PersonBloodtype

M-chromosome
P-chromosome

Person

Bloodtype M-chromosome

P-chromosome

(Father)

Person

Bloodtype M-chromosome

P-chromosome

(Mother)

View :

Dependencies (CPDs associated with):

mother(Mother,Person).
[Getoor,Koller, Pfeffer]

105



Probabilistic Relational Models (PRMs)
Bayesian Logic Programs (BLPs)

father(rex,fred).    mother(ann,fred). 
father(brian,doro).    mother(utta, doro). 
father(fred,henry).    mother(doro,henry). 

bt(Person,BT) | pc(Person,PC), mc(Person,MC).
pc(Person,PC) | pc_father(Person,PCf), mc_father(Person,MCf).
mc(Person,MC) | pc_mother(Person,PCm), pc_mother(Person,MCm).

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

RV State

pc_father(Person,PCf) |  father(Father,Person),pc(Father,PC).
...

Extension

Intension
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Knowledge Based Model 
Construction  

Extension + Intension =>Probabilistic Model

Advantages 

same intension used for multiple extensions

parameters are being shared / tied together 

unification is essential

•learning becomes feasible

• Typical use includes

•prob. inference P(Q | E), P(bt(mary) | bt(john) =o-)

•max. likelihood parameter estimation & structure learning
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Bayesian Logic Programs

% apriori nodes
nat(0). 

% aposteriori nodes
nat(s(X)) | nat(X).

nat(0) nat(s(0)) nat(s(s(0)) ...MC

% apriori nodes
state(0). 

% aposteriori nodes
state(s(Time)) | state(Time).
output(Time)   | state(Time)

state(0)

output(0)

state(s(0))

output(s(0))

...HMM

% apriori nodes
n1(0). 

% aposteriori nodes
n1(s(TimeSlice) | n2(TimeSlice).
n2(TimeSlice)   | n1(TimeSlice).
n3(TimeSlice)   | n1(TimeSlice), n2(TimeSlice).

n1(0)

n2(0)

n3(0)

n1(s(0))

n2(s(0))

n3(s(0))

...
DBN

pure
 P

ro
log

Prolog and Bayesian Nets as Special Case

108



Balios Tool
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Learning from Proofs
Probabilistic Context Free Grammars

1.0 : S -> NP, VP
1.0 : NP -> Art, Noun
0.6 : Art -> a
0.4 : Art -> the
0.1 : Noun -> turtle
0.1 : Noun -> turtles
…
0.5 : VP -> Verb
0.5 : VP -> Verb, NP
0.05 : Verb -> sleep
0.05 : Verb -> sleeps
….

The                turtle               sleeps

Art          Noun           Verb

NP                   VP

S

1

1 0.5

0.4 0.1 0.05

P(parse tree) = 1x1x.5x.1x.4x.05
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PCFGs
P (parse tree) =

∏
i pci

i
where pi is the probability of rule i
and ci the number of times
it is used in the parse tree

P (sentence) =
∑

p:parsetree P (p)

Observe that derivations always succeed, that is
S → T,Q and T → R,U
always yields
S → R,U, Q
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Probabilistic DCG 

1.0  S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num), Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(plur) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num), NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The          turtle               sleeps

Art(s)      Noun(s)           Verb(s)

NP(s)              VP(s)

S

1

1 0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05
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In SLP notation

1
1

1/2

P(s([the,turtles,sleep],[])=1/6

1

1/3

1/2
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Probabilistic DCG 

1.0  S -> NP(Num), VP(Num)
1.0 NP(Num) -> Art(Num), Noun(Num)
0.6 Art(sing) -> a
0.2 Art(sing) -> the
0.2 Art(plur) -> the
0.1 Noun(sing) -> turtle
0.1 Noun(plur) -> turtles
…
0.5 VP(Num) -> Verb(Num)
0.5 VP(Num) -> Verb(Num), NP(Num)
0.05 Verb(sing) -> sleep
0.05 Verb(plur) -> sleeps
….

The          turtle               sleeps

Art(s)      Noun(s)           Verb(s)

NP(s)              VP(s)

S

1

1 0.5

0.2 0.1 0.05

P(derivation tree) = 1x1x.5x.1x .2 x.05

What about “A turtles sleeps”  ?
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SLPs
Pd(derivation) =

∏
i pci

i
where pi is the probability of rule i
and ci the number of times
it is used in the parse tree

Observe that some derivations now fail due to unification, that is
np(Num)→ art(Num), noun(Num) and art(sing)→ a
noun(plural)→ turtles

Normalization necessary
Ps(proof) = Pd(proof)P

i Pd(proofi)
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Example Application
• Consider traversing a university website
• Pages are characterized by predicate

    department(cs,nebel)    denotes the page of cs 
                                       following the link to nebel

• Rules applied would be of the form  
 department(cs,nebel) :- 

 prof(nebel), in(cs), co(ai), lecturer(nebel,ai).
 pagetype1(t1,t2) :-
         type1(t1), type2(t2), type3(t3), pagetype2(t2,t3)

• SLP models probabilities over traces / proofs / web logs

department(cs,nebel), lecturer(nebel,ai007), 

course(ai007,burgard), …
This is actually a Logical Markov Model
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0.05

0.1

Lect.

Dept

Course

0.7

0.5

0.4

0.1

0.25

0.5

0.4

0.4 department(D,L) :-
prof(L), 
in(D),
co(C), 
lecturer(L,C).

0.1 prof(nebel).
0.05 prof(burgard).
…

Logical Markov Model

An interesting application exist using RMMs
[Anderson and Domingos, KDD 03]
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Probabilities on Proofs

Two views

• stochastic logic programs define a prob. distribution over 
atoms for a given predicate.

•  The sum of the probabilities = 1. 

• Sampling. Like in probabilistic grammars.

• distribution semantics define a prob. distribution over 
possible worlds/interpretations. Degree of belief. 
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presenilin 2
Gene

EntrezGene:81751

Notch receptor processing
BiologicalProcess
GO:GO:0007220

119



-participates_in
0.220

BiologicalProcess

Gene
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Network around 
Alzheimer Disease

gene

phenotype

probability of 
connection?

Two terminal network reliability problem  [NP-hard]
Work by Helsinki group Biomine project [Sevon, Toivonen et al. DILS 06]

Originally formulated as a probabilistic network
We: upgrade towards probabilistic logic (ProbLog)
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Distribution Semantics

• Due to Taisuke Sato

• provides a natural basis for many probabilistic 
logics

• PRISM (Sato & Kameya), PHA & ICL (Poole), 
ProbLog (De Raedt et al.), CP-logic 
(Vennekens, ...)

• Will represent a simplified and unifying view as 
in ProbLog [De Raedt et al.]
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Distribution Semantics
• probabilistic predicates   F

• define using p : q(t1,...,tn) 

• denotes that ground atoms q(t1,...,tn)θ are true with 
probability p

• assume all ground probabilistic atoms to be marginally 
independent

• logical ones DB

• define as usual using logic program   -- WE : PATH predicate

• a similar semantics has been reinvented many times ----
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Example in ProbLog

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

0.9 : y_edge(1,2).
0.8 : r_edge(2,3).
0.6 : g_edge(3,4).
...ProbLog theory T

logical part L

facts mutually independent

[De Raedt, Kimmig, Toivonen, IJCAI 07]
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Sampling Subprograms
②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

• Biased coins
• Independent

②

④

③

⑤⑥

①

A B C D E F G H
+ + + − − + − −

P = 0.9 · 0.8 · 0.6
·(1− 0.5) · (1− 0.7) · 0.7
·(1− 0.4) · (1− 0.2)

ABCF
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②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

Queries

①→④

P (q|T ) =
∑

S⊆L,S|=q

P (S|T )
...

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z)
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②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

Queries

①→④

P (q|T ) =
∑

S⊆L,S|=q

P (S|T )

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z)

Key Point 
of ProbLog and Logic

any relation can be defined 
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Query Probability
using proofs

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9
①→④
ABC
ABEH
ADGH
ADGEC

FGH
FGEC
FDBC
FDBEH

P (path(1, 4)|T )
= P (ABC + ABEH + . . . + FDBEH)

• proofs overlap
• disjoint sum
•NP-hard
• approximation algorithm 

[De Raedt et al, IJCAI 07]
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Query Probability
using Proofs

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

Prism (Sato) and ICL (Poole) avoid the 
disjoint problem by requiring that 

explanations do not overlap
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example
①→④

Most likely proof /
explanation

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

② ④③A CB①
0.9 0.60.8

ABC

Abduction
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Semantics ProbLog
Not really new, rediscovered many times

Intuitively, a probabilistic database 

Formally, a distribution semantics [Sato 95]

Other systems, such as Sato’s Prism and Poole’s ICL avoid the disjoint sum 
problem

• assume that explanations / proofs are mutually exclusive, that is, 

• P(A v B v C) = P(A) + P(B) + P(C)

Long term vision: develop an optimized probabilistic Prolog implementation 
in which other SRL formalisms can be compiled. (work together with Vitor 
Santos Costa and Bart Demoen, integration in YAP Prolog planned)
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An ILLUSTRATION in 
LINK MINING
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Some learning tasks

Following the upgrading idea 

1. explanation based learning

2. local pattern mining

3. theory compression

4. parameter learning
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 1. Explanation Based Learning
as presented by Gerald DeJong

Example:
no burned 
hands

Explanation: use stick

why?

Theory:
knowledge 

about 
world (fire, 
meat, ...)
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Network around 
Alzheimer Disease

gene

phenotype

most similar pairs ?
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example
①→④

Most Likely  Generalized 
Explanation

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

② ④③A CB①
0.9 0.60.8

? ? ? ?Kimmig et. al. Best Paper 
Award ECML 2007

path(x,y) :- edge(x,y)
path(x,y) :- edge(x,z), path(y,z)
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Generalize Explanation

② ④③A CB①

? ? ? ?
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Prolog Setting
path(1,4).

edge(1,2).

y_edge(1,2). edge(2,3).

r_edge(2,3). edge(3,4).

g_edge(3,4).

path(2,4).

path(3,4).

proof tree

concrete 
explanation

   path(P,S) ← 
      y_edge(P,Q),r_edge(Q,R),g_edge(R,S).
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Use of Generalized 
Explanation

? ? ?

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9
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③→①  0.72

⑥→②  0.63

③→⑥  0.40 

①→②  0.35

③→④  0.14

? ? ?

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

Use of Generalized 
Explanation

reasoning by similarity / analogy
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Experiments
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Experiments
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PEBL Contributions

• EBL in probabilistic context

• Multiple explanations: most likely one

• Reasoning by analogy: 
background knowledge + likelihood 
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2. Probabilistic Pattern Mining

③ ①
⑥ ②  

③ ⑥  

① ② 

③ ④  

no definition of path

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

What are the most likely explanations the 
examples have in common ?

criterion:  average probability is higher 
than threshold 
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? ? ?

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9

③ ①
⑥ ②  

③ ⑥  

① ② 

③ ④  

no definition of path

Probabilistic Pattern Mining
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3. Probabilistic Theory Compression/
Revision

• Given

• pos / neg interactions 

• Say (green, blue) / (red, blue)

• Find small network (k links) 
that maximizes prob positives 
and minimized prob negatives

De Raedt et al. MLJ 08
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• EBL in probabilistic context

• Multiple explanations: most likely one

• Multiple examples: common explanation

• Reasoning by analogy: 
background knowledge + likelihood 

Theory Compression
Finding most relevant subgraph w.r.t. positive and negative examples

Reduce to at most k edges (greedy approach, reusing BDDs
for scoring)

Example: Green and blue should be connected, red and blue
not (all edges have probability 0.5)

initially k = 15 k = 5

Probabilistic Theory Compression
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4. Parameter Estimation

③→①  0.72

⑥→②  0.63

③→⑥  0.40 

①→②  0.35

③→④  0.14

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
?

?
?

?

?

?
?

?

Gutmann et al. ECML 08

using least 
squares and 

gradient 
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Parameter Estimation

③→①  0.72

⑥→②  0.63

③→⑥  0.40 

①→②  0.35

③→④  0.14

Gutmann et al. ECML 08

using least 
squares and 

gradient 

②

④

③

⑤⑥

A
H

G

ED

F

C

B

①
0.6

0.2
0.7

0.4

0.8

0.5
0.7

0.9
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Experiments

• For all of the settings specified, we did set 
up experiments that show that meaningful 
links can be (re)-discovered 
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Conclusions
Logic and relational learning toolbox (take what you need)

• rules & background knowledge 

• generality & operators 

• upgrading & downgrading

• graphs & relational database & logic

• learning settings

• propositionalization & aggregation

• probabilistic logics
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Further Reading

Luc De Raedt

Logical and Relational Learning

Springer, 2008, 401 pages, in print.

(should be on display at the Springer booth)
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Thanks to

Collaborators on previous tutorials and specific 
aspects of this work, esp. 

• Kristian Kersting,  Angelika Kimmig, Hannu 
Toivonen
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