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9’ Contents of the tutorial

1. Motivation of web mining
2. The mining process
— data anonymization and data modeling
3. The basic methods
— usage mining, link mining, algorithmic tools, finding
communities
4. Detailed examples

— Size of the web, near-duplicate detection, spam
detection based on content and links
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9’ Disclaimer
N

« Topics reflect the presenters' subjective choices
« Cannot be complete and cover all topics

« Your feedback will be highly appreciated
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9_’ Intended audience

« Beginning research students who want to work in the
area of Web mining

« Researchers who want would like to work in Web mining
and want to obtain a view of the problems, issues, and
solutions
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9_’ Introduction and motivation
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9’ Internet and the Web Today

« Between 1 and 2.5 billion people connected
— 5 billion estimated for 2015

1.8 billion mobile phones today
— 500 million expected to have mobile broadband in 2010

* Internet traffic has increased 20 times in the last 5 years
« Today there are more than 170 million Web servers

« The Web is in practice unbounded
— Dynamic pages are unbounded

— Static pages over 20 billion?
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9’ Different Views on Data
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9_’ The Web

« Largest public repository of data (more than 20 billion
static pages?)

« Today, there are more than 170 million Web servers
(Mar 08) and more than 540 million hosts (Jan 08)

» Well connected graph with out-link and in-link power
law distributions

L X~ Self-similar &
02 [3 Self-organizing

Log
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9’ Different facets of the Web
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9’ Objectives of Web mining

« Study the Web as an object

» User-driven Web design
* Improving Web applications

 Social mining
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9_’ The Big challenge for search

Meet the diverse user needs
given
their poorly made queries
and
the size and heterogeneity of the Web corpus
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9.’ Motivation for Web Mining

® The Dream of the Semantic Web
m Hypothesis: Explicit Semantic Information
m Obstacle: Us
® User Actions: Implicit Semantic Information
m |t's free!
m Large volume!
m It's unbiased!
m Can we capture it?

m Hypothesis: Queries are the best source

An introduction to Web Mining, ECML/PKDD 2008, Antwerp

12



9’ The wisdom of crowds

« James Surowiecki, a New Yorker columnist, published
this book in 2004

 Bottom line:

“large groups of people are smarter than an elite
few, no matter how brilliant—they are better at
solving problems, fostering innovation, coming
to wise decisions, even predicting the future”’.
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Tags / jaguar / clusters jaguar

(Or, try an advanced search.)

SEARCH

car, cars, auto, etype, automaohile, classic,

vintage, autoshow, red, show

- See more in this cluster...

Zoo, animal, cat, animals, bigcat, seatile,
woodlandparkzoo, sleep, edinburgh, caged

~p See more in this cluster...

guitar, fender

~=p See more in this cluster...

aircraft raf

~p See more in this cluster...

These are the most recent photos tagged with jaguar. See more. ..




9_’ The power of social media

* Flickr — community phenomenon

 Millions of users share and tag each others’
photographs (why???)

 The wisdom of the crowds can be used to search
— Ranking features to Yahoo! Answers

« The principle is not new — anchor text used in
“standard” search

- What about generating pseudo-semantic resources?

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ The wisdom of crowds

Crucial for Search Ranking
Text: Web Writers & Editors
—not only for the Web!
Links: Web Publishers
Tags: Web Taggers
Queries: All Web Users!
— Queries and actions (or no action!)

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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@_’ Yahoo! answers
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Search:
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“ahoo! My Yahoo! Mail Make %! your home page Search:l

YAHOO! ANSWERS

Web Search

Welcome, chato
[Sign ©ut, My Account]

Answers Home - Forurm - Blag - Help

answetr. discover.

ask.

Search for questions:

Search Advanced

My Profile

Home = Cansumer Electronics = Land Phones = Resaolved Question

Resolved Question Show me another »

What's the best way to get
telemarketers off my back?

I have caller id and usually don't answer. how can i get them
to stop calling (1 hear the donotcall registry doesn't work) and
if i do pick up the phone aside from immediately hanging up
what can | say to deter additional calls?

1 year ago

[ Report 1

Best Answer - Chosen by Asker

Fegister at the online do not call registry. Cell phones,
business and home phones can be registered... You will still
get some calls for about 30 days. Just tell anyone who calls
in that time period that you are registered with the do not call
registry and to please remove you from their calling list. If
they give you any hassle advise them that you will file a
report.

| had to do this too and every solicitor | spoke to was
immediately ready to get off the phone and apologized
quickly. Keep a log next to your phone for the first 30 days
and file it with wour nhone hill after that (¥ou will then have a

Hello ChaTo
Total Points 340
Level 2

Categories

= All Categories

+ Consumer Electronics
* Camcorders

+« Cameras

+ CellPhones & Plans

+ Games & Gear
+ Home Theater

# Land Phones

* Music & Music Players
+ PDAs & Handhelds

+ TW0D & DVRs

+ T¥s

+ Other- Electronics

SPONSOR RESULTS
Free Grants to Pay Bills
Learn How You Can Apply for
Grants to pay Bills. Get a Free Kit.
www thousanddollarprofits.com



9’ Internet UGC (User Generated Content)
]

Multiple Choice
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Source National Internet Development Agency Report in June, 2006 (South Korea)
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9! Simple acts create value and opportunity
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9_’ Community dynamics

/\
1 creators

10 synthesizers

100 consumers

/-\ Next generation products will blur distinctions between

Creators, Synthesizers, and Consumers
Example: Launchcast
Every act of consumption is an implicit act of production
that requires no incremental effort...
Listening itself implicitly creates a radio station...
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9’ Community Geography:

LJ bloggers in US

.<1K
.<5K

.< 10K
< 25K

< 50K
~ 100K
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9_’ LJ bloggers world-wide

< 1K
< 2K

Bl 5K

~ 25K
- 50K
~ 75K
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Age

%o

' Who are they?

Representative interests

Tto 3

0.5

treats, catnips, daddy, momimy, purring, mice,
playing, napping, scratching, milk

1310 15

3.5

wehdesianing, Jeremy Sumpter, Chris Wilson, Emma
VWatson, T. V., Tom Felton, FUSE, Adam Carson,
GUyz, Fac Sun, mall, going onling

1610 18

202

198167 8} class of 200{4 5}, dream street, drama
club, band trips, 16, Brave Mew Girl, drum major,

talkin on the phone, highschool, JROTC

1910 21

328

198{3 5}, class of 2003, dorm life, frat parties, college
ife, my tattoo, pre-med

221024

18.7

198{1,21, Dumbledore’s army, Midor sours, Long
Island iced tea, Liguid Television, bar hopping, disco
house, Sam Adams, fraternity, He-Man, She-Ra

2010 27

5.4

19749, Catherine Whesl, dive bars, grad schoaol,
preacher, Garth Ennis, good beer, public radio

26 to 30

44

Hal Hartley, geocaching, Camarilla, Amtaard, Tivo,
Concrete Elonde, motherhood, S0, TROM

31to 33

24

my kids, parenting, my daughter, my wife, Bloom
County, DoctorWho, gegcaching, the prisoner, good

eats, herbalism

34 10 36

1.5

Cross Stitch, Thelema, Tivo, parenting, cubs, role-
playing games, bicycling, shamanism, Burning han

37 tods

16

SCA Babylon 5, pagan, gardening, Star Trek,
Hogwarts, Macintosh, Kate Bush, Zen, tarot

46 to 57

0.5

history, poetry, jazz, writing, reading, hiking

science fiction, wine, walking, travel, cooking, politics,
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9’ Web Mining

« Content: text & multimedia mining
 Structure: link analysis, graph mining
» Usage: log analysis, query mining

* Relate all of the above

—Web characterization

—Particular applications

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ A Few Examples

Web characterization of spain

Link analysis

Web dynamics

User modeling

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ Structure Macro Dynamics

8.53% 1.53%

0.94%

2.18%

3.16%

55.3%

[Baeza-Yates and Poblete, 2006]
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9_’ Mirror of the Society

100.000.000

10.000. 000

1.000.000

100,000

g

10.000 F

1 000}

Exportaciones [miles USD]

100

tk

100 1.000
Dominios Distintos Enlazados

IRIKLLL

IRLIRLLLL



9_’ Exports/Imports vs. Domain
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J User modeling
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9’ Data anonymization and
* data modeling
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9_’ Data anonymization

« The AOL query-log release
« American Online (AOL) query log released in August 2006
» Objective was to contribute to IR research
« Query log rough statistics
— 20 million queries
— 650 K users
— from over 3 months

« Social security numbers, credit card numbers, driver license
numbers, etc.

« Possible to uniquely identify many users by combining information
from queries and yellow pages

« Big media scandal, big damage to AOL and the privacy of its users
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9_’ A typical query log

 Entries of the format:

<cookie, query, rank, clickURL, timeStamp, IP, country,...>
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9_’ Anonymizing query logs

[Adar 2007]
Argue that anonymization is potentially possible

Two main techniques:
— Eliminate infrequent queries
— Splitting personalities

Additionally:

— Eliminate identifying information (SSN, credit card
numbers, etc.)

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Anonymizing query logs

Eliminate infrequent queries:

Keep only queries generated by a large number of users

Computationally possible using counters

How to do it on-the-fly?

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ Online elimination of infrequent
" queries

« Background: How to split a secret among n people so
that every coalition of k persons can access the secret?

« Answer: Let the secret be the coefficients of a (k-1)-
degree polynomial f(x) =a, X" +...+ax+a,

- For the /-th person, select a number x, and give to the
person the pair (x, f(x,))

* Any Kk persons can cooperate and recover the
polynomial, while no k-7 persons can recover it
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9’ Online elimination of infrequent
" queries

Straightforward application in eliminating infrequent
qgueries

A query g is decoded as a (k-1)-degree polynomial fq
* For a person u;who makes the query g, print (u, f.(u))

 |If kor more people type the query g, it is possible to
decrypt ¢!
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9_’ Split personalities

« Split the queries of the same user into sessions

« E.g., queries about food recipes, sport results, buying
books, music, etc.

« Assign each of those sessions to a different virtual user

* Released query log can be still useful for many
applications

« More difficult to identify users by combining queries

« Finding similar queries and finding query sessions is
quite hard problem

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ Anonymizing query logs:
" negative resuls

« [Kumar et al., 2007]

* Anonymization via token-based hashing:

« The query is split into terms and each term is hashed to a
token

« (Co-occurrence analysis and frequency analysis can be used
to reveal the query terms

« Assume access to an unencrypted query log

* Query term statistics remain constant across different query
logs

* Provide practical graph-matching algorithms and analysis of
real query logs
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9’ Anonymizing query logs:
" negative resuls

» [Jones et al., 2007]

« Simple classifiers can be used on the query log to
identify gender, age, and location of the user issuing the
qgueries

« Map a sequence of queries into a set of candidate users
that is 300-600 times smaller than random chance would
allow

« |dentify person attacks: identify information for an
acquaintance from speculated queries

« Releasing query logs has severe privacy risks
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9_’ Data statistics and data modeling

Graph structures

Degree distribution

« Community structure

Diameter and other properties

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ Degree distribution

« Consider a graph G=(V,E)
« C, the number of vertices u with degree d(u) = k
C.=cka with a>0
log(C,)=log(c) - a log(k)
* So, plotting log(C,) versus log(k) gives a straight line
with slope -a
« Heavy-tail distribution: there is a non-negligible fraction
of nodes that has very high degree (hubs)
« Scale-free: no characteristic scale, average is not
iInformative
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9_’ Degree distribution

6o6dddé .

X)

Pr(degree

~ "‘ i | Degree

{ 1 -'5:
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9_’ Degree distribution

In-degree distributions of web graphs within national domains

Greece Spain
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9_’ Degree distribution

...and more “straight” lines...

frequency
frequency

degree

iIn-degrees of UK hostgraph out-degrees of UK hostgraph
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9_’ Community structure

Intuitively a subset of vertices that are more connected
to each other than to other vertices in the graph
A proposed measure is clustering coefficient

3 X number of triangles in the network

Cy =

number of connected triples of vertices

Captures “transitivity of clustering”
If uis connected to vand vis connected to w, it is also
likely that uis connected to w

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Community structure

Alternative definition.
Local clustering coefficient:

number of triangles connected to vertex |

Ci =

number of triples centered at vertex |

Global clustering coefficient:

C,=1/nSum,C,
« Community structure is captured by large values of
clustering coefficient
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9_’ Small diameter

« Diameter of many real graphs is small (e.g., D = 6 is famous)
« Proposed measures:

— Hop-plots: plot of /N, (u)/, the number of neighbors of u at distance
at most h, as a function of h

— [M. Faloutsos, 1999] conjectured that it grows exponentially and
considered hop exponent

— Effective diameter: upper bound of the shortest path of 90% of the
pairs of vertices

— Average diameter: average of the shortest paths over all pairs of
vertices

— Characteristic path length: median of the shortest paths over all
pairs of vertices
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9_’ Other properties

* Degree correlations

 Distribution of sizes of connected components

* Resilience

« Eigenvalues

« Distribution of motifs

e ... all very different than predicted for random graphs

* Properties of evolving graphs [Leskovec et al., 05]
— Densification power law
— Diameter is shrinking

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Power-law distributions

» “A brief history of generative models for power laws
and log-normal distributions” [Mitzenmacher, 04]

* A random variable X has power-law distribution, if

PriX>x]= cx@forc>0anda >0

A random variable X has Pareto distribution, if

PriX>x] = (x/k)2 fork >0, a > 0, and X > k

On a log-log plot straight line with slope -a
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9_’ A process that generates power-law

 Preferential attachment
« The main idea is that “the rich get richer”

— First studied by [Yule, 1925] to suggest a model of why
the number of species in genera follows a power-law

— Generalized by [Simon, 1955]
« applications in distribution of word frequencies,
population of cities, income, etc.

— Revisited in the 90s as a basis for Web-graph models
Barabasi and Albert, 1999, Broder et al., 2000,
Kleinberg et al., 1999]
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9! Preferential attachement

* The basic theme:
— Start with a single vertex, with a link to itself

— At each time step a new vertex u appears with out-
degree 71 and gets connected to an existing vertex v

— With probability p < 7, vertex vis chosen uniformly at
random

— With probability 7—p, vertex v is chosen with probability
proportional to its degree

— Process leads to power law for the in-degree
distribution, with exponent (2-p)/(1-p)

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Log-normal distribution

« Random variable X has log-normal distribution, if Y=log(X)
has normal distribution

+ Always finite mean and variance

« But also appears as a straight line on a log-log plot (for
small values of x)

« Multiplicative processes tend to give log-normal
distributions:

— The product of two log-normally distributed independent
random variables follows a log-normal distribution

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Power law or log-normal?

e Distribution of income
- Start with some income X,

« At time t, with probability 1/3 double the income, with
probability 2/3 cut income at half

« Then income distribution is log-normal (multiplicative
process)

 But... assume a “reflective barrier”:
— At X, maintain same income with probability 2/3

* ... apower law!
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9_’ Usage mining

« Query log analysis

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Clustering Queries

.Define relations among queries
« Common words: sparse set
« Common clicked URLs: better
« Natural clusters
.Define distance function among queries

« Content of clicked URLs
[Baeza-Yates, Hurtado & Mendoza, 2004]

« Summary of query answers [Sahami, 2006]

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ Goals

« Can we cluster queries well?

« Can we assign user goals to clusters?

@ _ Web pages
*‘%%C )
Search
engine
An introduction to Wek '

&

"‘"@

o,
dﬁ%

63



9’ Clustering queries

«Cluster text of clicked pages

o Infer query clusters using a vector model

N~ Pop(g,u) X TE(t;,u)
alil = Z max; T£(t, u)
URLu
«Pseudo-taxonomies for queries
- Real language (slang?) of the Web

« Can be used for classification purposes
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9’ Clusters Examples

Q |Cluster Rank|ISim [ESim| Queries in Cluster | Descriptive keywords
q1 252 0,447(0,007 car sales, cars (49,4%),
cars Iquique, used (14,2%),
cars used, stock (3,8%),
diesel, pickup truck (3,7%),
new cars, jeep (1,6%)
2 497 0,313]0,009 stamp, print (11, 4%),
serigraph inputs, ink (7,3%),
ink reload, stamping (3, 8%),
cartridge inkjet (3,6%)
q3 84 0,697|0,015 office rental, office (11, 6%),
rentals in Santiago, building (7,5%),
real state, real state (5,9%),
apartment rental |real state agents (4,2%)

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9_’ Using the Clusters

.Improved ranking  Baeza-Yates, Hurtado & Mendoza

o _ Journal of ASIST 2007
\Word classification

« Synonyms & related terms are in the same cluster

« Homonyms (polysemy) are in different clusters
-Query recommendation (ranking queries!)
« Real queries, not query expansion

Rank(gq) = v X Sup(q, ¢ini) + (1 — 7v) X Clos(q)
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9’ Query Recommendation

An

Query Popularity |Support|Closedness| Rank
rentals apartments vina del mar|2 0.133 0,403 0,268
OWTNEers

rentals apartments vina del mar 10 0.2 0,259 0,229
viel properties 4 0.1 0.315 0,207
rental house vina del mar 2 0,166 0.121 0.143
house leasing rancagua 5 0,166 0,0385 0,102
quintero 2 0.166  |0.024 0.095
rentals apartments cheap vina del|3 0.033 0,153 0,093
mar

subsidize renovation urban 5 0.133 0,001 0,067
houses being sold in pucon 10 0 0,114 0,057
apartments selling pucon villarrica |2 0,066 0,015 0,040
portal sell properties 3 0,033 0,023 0,028
sell house 2 0.033  |0.017 0.025
sell lots pirque 2 0.033 0,0014 0,017
canete hotels 1 0 0.011 0.005
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Q9! Simple Related Terms

Query dominance based on clicked pages

naval l:ntt]e of iquique 3 biography arturo prat
3
3 government of jose Jm@

Comnteay

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9’ Taxonomies
[

Infer topics from

queries that imply

English

Spanish

(1
(2
(3
(4

R T e .

(6)
(7)
(8)
(9)
(10)

business:finances:banks

society:law: norm:codes
business:building-industry:builders
business:environment:engineering
business:sales:gifts:flowers
society:history
leisure:sports:motorcycling
business:informatics:support
leisure:gastronomy:drinks: wine
business:foreign trade:customs duty

negocios:finanzas:bancos

sociedad: derecho:normas:codigos
negocios:construceion: constructoras
negocios:medio-ambientesingenteria
negqocios:compras:reqalos: flores
sociedad:historia

tiempo libre:deportes:motociclismo
neqocios:informdtica:soporte

trermpo libre:gastronomia:bebidas:vinos

nLegoc LOSICOTRETCI0 eLterior:Zonas f']"ﬂ. TLas

Set  |Number of Docs.|Relevant|Precision|Recall

A 100 83 83% T1%

H 100 76 T6% 65%
HimA 48 43 93% 37%
H— A H2 33 63% 28%
A—H 52 40 TT % 34%

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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!

Results better than humans!

Quality of answers

100

al

40

Precision {%)

20

—e— Automatic

#s— Human

1 2 3 4 5 5 7 g g 10
Number of results
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@_’ Relating Queries (Baeza-Yates, 2007)

common session

q +—Q2 @ queries

gommon
lick
words [0 o
pages
common .
: links
clicks

a B

commohn terms
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9.’ Qualitative Analysis

Graph Strength Sparsity Noise
Word Medium High Polysemy
Session Medium High Is)elzls};siiocrfsl
Click High | Medium | i mee
Link Weak Medium | Link spam
Term Medium Low Term spam

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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Words, Sessions and Clicks

e e hakespeare sonnets

R biography shakespeare shortwilliam

hingraphy shakespeare

biography shakespeare william

. shakesspeare william Sha}_c_?_.s._peare

. shakespeare sonnets william
shakespear

“quntes shakespeare

shakespeare william

. glohe reconstruction shakespeare theatre uza

. glohe shakespeare theatre

. calcite



’ Words, Sessions and Clicks

}. india map of

Q africa map of physical

. eastern eurape map of

.ﬁndia maovies yahoo

yvahooindia
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urope map
africa

2005 india miss

e —
austria map of S

o
%eumpe
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. france map
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9’ Formal definition

* There is an edge between two queries g and q'If:

—There is at least one URL clicked by both
« Edges can be weighted (for filtering)

—We used the cosine similarity in a vector space
defined by URL clicks

q-q > i<p (i) - 4'(7)

Wie) = == = —
)= a7 VEiepali)® \/Z@D q'(i)"
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9’ URL based Vector Space

« Consider the query “complex networks”

« Suppose for that query the clicks are:
— www.ams.org/featurecolumn/archive/networks1.htmi (3 ClICKS)

— en.wikipedia.org/wiki/Complex_network (1 eficK)

0J]0 1010 1/4 3/4 O[O0 0]O

“Complex networks”
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9’ Building the Graph

The graph can be built efficiently:
— Consider the tuples (query, clicked url)
— Sort by the second component

— Each block with the same URL u gives the edges
iInduced by u

— Complexity: O(max {M*|E|, n log n}) where M is the
maximum number of URLs between two queries, and n

Is the number of nodes

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ Anatomy of a Click Graph

« We built graphs using logs with up to 50 millions queries

— For all the graphs we studied our findings are
qualitatively the same (scale-free network?)

» Here we present the results for the following graph
—20M query occurrences
—2.8M distinct queries (nodes)
—5M distinct URLs
—361M edges

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ Query Frequency
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’ Click Distribution

An introduction
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I Query Frequency vs. Clicks

An introduction

Frequency

vs Click - 58H queries log piece
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9_’ Clicked URL Distribution

An introductii

# of URLS
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’ Node Degree Distribution

An introduction
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9_’ Connected Components

An introduction

Hunber of conponents

Connected Conponents
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9’ Implicit Folksonomy?

. “spanaish fo
churros recipe s

.‘thc‘n recipe
== spani Eciienish rice

W chicken marsala
chicken cacciatore recip
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. ] < o e i
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mathgames . \ ¥ [ \ bbc news ulk
\' ‘h‘ = ;.‘l-‘
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7 wikipedia — ] r
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9_’ Set Relations and Graph Mining

- |dentical sets: equivalence

. Subsets: Baeza-Yates & Tiberi

— directed edges ACM KDD 2007

- Non empty intersections (with threshold)

— degree of relation

» Dual graph: URLs related by queries
—High degree: multi-topical URLs
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9’ Evaluation: ODP Similarity

* A simple measure of similarity among queries using ODP
categories
— Define the similarity between two categories as the
length of the longest shared path over the length of the
longest path

—Letc 1,..,c kandc' 1,.., ¢’ kbe the top k categories
for two queries. Define the similarity (@k) between the

two queries as max{sim(c_i,c' j) [ ij=1,..,K}

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ ODP Similarity

» Suppose you submit the queries “Spain” and “Barcelona’ to
ODP.

* The first category matches you get are:
— Regional/ Europe/ Spain

— Regional/ Europe/ Spain/ Autonomous Communities/

Catalonia/ Barcelona

« Similarity @1 is 1/2 because the longest shared path is
“Regional/ Europe/ Spain” and the length of the longest is 6

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ Experimental Evaluation

« Evaluated a 1000 thousand edges sample for
each kind of relation

+ also evaluated a sample of random pairs of not

adjacent queries (baseline)

« studied the similarity as a function of k (the

number of categories used)

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



’ Experimental Evaluation

0ODF Similarity - Edges of Type I, II, III

I

Randon —

Type I ——
Type IT —
| Type IIT ——

ODF Similarity
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9’ Open Issues

* Implicit social network
— Any fundamental similarities?

* How to evaluate with partial knowledge?
— Data volume amplifies the problem

« User aggregation vs. personalization

— Optimize common tasks
— Move away from privacy issues

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9! Link analysis

* Infer properties of Web entities based on their
connectivity / link structure of graph structures they
belong to

* Such properties can be importance of nodes or
similarity between nodes

« Mostly focused on Web pages, but ideas apply to many
domains: social networks, query logs, etc.

* Prestige, centrality, co-citation, PageRank, HITS

An introduction to Web Mining, ECML/PKDD 2008, Antwerp
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9.’ Social sciences and bibliometry

“...we are involved in an 'infinite regress’: [an actor's
status] is a function of the status of those who
choose him; and their [status] is a function of those
who choose them, and so ad infinitum”

[Seeley, 1949]
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9_’ Prestige

Consider a graph G=(V,E)
E[lu,v]=1 ifthereis alink from uto v

E[u,v] = 0 otherwise

p a prestige vector: p[u] the prestige score of node u
p'=E"p
because
plu] = Sum, E[v,u] p[u] = Sum E'[u,v] p[u]
 After each iteration normalize by setting //p// = 1
 p converges to the principal eigenvector of E’

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Centrality

« Importance notion based on centrality

« Used by epidimiology, social-network analysis, etc.:
removing a central node disconnects the graph to a big
extend

* d(u,v) the shortest-path distance between uand v
* r(u) =max ,d(u,v) radius of node u
- arg min , r(u) center of the graph

 Various other notions of centrality in the literature
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9_’ Co-citation

« Measure of similarity between nodes

 If nodes vand w are both linked by node u, then they
are co-cited

 If E is the adjacency matrix of the graph, the number of
nodes that co-cite both vand w is
plu] = Sum  Efu,v] E[u,w] =Sum , E'[v,u] E[u,w] =
(E"E)[v,wW]

Thus similarity is captured in the entries of matrix ETE

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ PageRank

[Brin and Page, 1998]
Algorithm suggested for ranking results in web search

An authority score is assigned to each Web page

Authority scores independent of the query

Authority scores corresponds to the stationary distribution of
a random walk on the graph:

— With probability a follow a link in the graph

— With probability 1-a go to a node chosen uniformly at
random (teleportation)

Random walk also known as random surfer model

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ PageRank

« Let E be the adjacency matrix of the graph, and L the
row-stochastic version of E

« Each row of E is normalized so that it sums to 1
 Authority score defined by
Piy=L" Py
« problematic if the graph is not strongly connected, So:
pi=aL’p,+(1-a)i/nl
« where | is the matrix with all entries equal to 1
 and ain[0,1], common value a = 0.85
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9’ PageRank variants and
" enchancements

Personalized PageRank

— Teleportation to a set of pages defining the
preferences of a particular user

Topic-sensitive PageRank [Haveliwala 02]
— Teleportation to a set of pages defining a particular
topic
TrustRank [Gyongyi 04]
— Teleportation to “trustworthy” pages

Many papers on analyzing PageRank and numerical
methods for efficient computation

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9’ HITS

 [Kleinberg 1998]
« Exploit the intuition that there are:

— pages that contain high-quality information
(authorities)

— pages with good navigational properties (hubs)

Good hubs point to good authorities and good authorities
are pointed by good hubs

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ HITS algorithm

Given a query g

Use a standard wen IR system to find a set of pages R
relevant to g (root sel)

Expand to the set of pages connected to R (expanded
sef) and form the graph G=(V,E)

a authority vector: afu] the authority score of node u

h hub vector: hfu] the hub score of node u
a=E"h
h=Ea

a converges to the principal eigenvector of E'E
 h converges to the principal eigenvector of EE"
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9’ HITS

HITS is related to SVD on the graph matrix E
non-principal eigenvectors provide different topics

« HITS sensitive to local-topology

« PageRank is more stable — due to trandom jump step
« Researchers attempted to make HITS more stable

— SALSA stochastic algorithm for link analysis
[Lempel and Moran, 01]:

— A random surfer model in which the surfer follows
alternatively random inlinks and outlinks

—[Ng et al. 01] introduce a random jump step in the
HITS model
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9_’ Discussion

 HITS introduces the notion of hub, which does not exist
in PageRank

« HITS is query sensitive

« PageRank does not depend on the query; thus the
authority scores can be pre-computed

* Nepotism, two-host nepotism, and clique attacks
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9_’ Algorithmic tools

« Keep an eye on efficiency
« Web graphs are huge and any computation on them
should be very efficient

« Data stream algorithms for
— Computing the clustering coefficient
— Counting the number of triangles
— Estimating the diameter of a graph

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Clustering coefficient

3 X number of triangles in the network

C =

number of connected triples of vertices

« How to compute it?
« How to compute the number of triangles in a graph?
« Assume that the graph is very large, stored on disk
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9_’ Counting triangles

» Brute-force algorithm is checking every triple of vertices
+ Obtain an approximation by sampling triples

« Let T be the set of all triples, and

- T.the set of triples that have /edges, i=0, 1, 2, 3

« By Chernoff bound, to get an eps-approximation, with
probability 1-delta, the number of samples should be

Uk
| T3 &

But |T| can be large compared to |T |

N > Of log )
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9_’ Counting triangles

« SampleTriangle Algorithm [Buriol et al., 2006]

* Incidence stream model — all edges incident on the same
edge are consecutive on the disk

* Three pass algorithm:

« Pass 1: Count the number of paths of length 2

« Pass 2: Choose one path (a,u,b) uniformly at random
* Pass 3: If (a,b)in E return 1 o/w return O

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Counting triangles

* The previous idea can be also applied to:

— Count triangles when edges are stored in arbitrary

order
— Obtain one-pass algorithm

— Count other minors
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9_’ Diameter

How to compute the diameter of a graph?

Matrix multiplication in O(n%37¢ ) time, but O(n?) space

BFS from a vertex takes O(n + m) time,

but need to do it from every vertex, so O(mn)

Resort to approximations again

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Approximating the diameter

[Palmer et al., 2002], see also [Cohen, 1997]

Define:

Individual neighborhood function

N(u, h)=/{v/d(u, v)=sh}|

Neighborhood function

N(h)=[{(u, v)[d(u, v) < h} [=Sum  N(u, h)

With N(h) can obtain diameter, effective diameter, etc.

An introduction to Web Mining, ECML/PKDD 2008, Antwerp



9_’ Approximating the diameter

« Define: M(u, h) ={v/d(u, v )< h}, e.q., M(u, 0) = {u}
 Algorithm based on the idea that
x in M(u, h)if (u, v) in Eand x in M(v, h—1)

ANF [Palmer et al., 2002]
M(u, 0) = {u}forall uin V
for each distance h do
M(u, h) = M(u, h—1)forall uin V
for each edge (u, v)do
M(u, h) = M(u, h) union M(v, h—1)

« Keep M(u, h) in memory, make a passes over the edges
« How to maintain M(u, h)?
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9_’ Approximating the diameter

How to maintain M(u, h) that it counts distinct vertices?
The problem of counting distinct elements in data streams

ANF uses the sketching algorithm of
— [Flajolet and Martin, 1985] with O(log n) space

— (but other counting algorithms can be used [Bar-Yossef et
al., 2002])

What if the M(u, h) sketches do not fit in memory?
Split M(u, h) sketches into in-memory blocks,

— load one block at the time,

— and process edges from that block
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9_’ Finding communities

A set of related Web pages

A group of scientists collaborating with each other
A set of blog posts discussing a specific topic

A set of related queries

« Can be used for improving relevance of search,
recommendations, propagating an idea, advertising a
product, etc.

« Usually formulated as a graph clustering problem
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9_’ Graph clustering

Graph G=(V, E)
Edge (u, v) denotes similarity between u and v

—weighted edges can be used to denote degree of
similarity

We want to partition the vertices in clusters so that:
— vertices within clusters are well connected, and
— vertices across clusters are sparsely connected

Most graph partitioning problems are NP hard
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Graph clustering
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9_’ Measuring connectivity

* Minimum cut: The minimum number of edges whose
removal disconnects the graph

c(S)=ming ., [{(u,v)inEs.t. uinSandvin V-S}
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9_’ Graph expansion

* Normalize the cut by the size of the smallest component
Define cut ratio

: c(3)
o) SRS V=S
* And graph expansion
c(3)

) =mn S IV — 5]}

Other similar normalized criteria have been proposed

Related to the eigenvalues of the adjacency matrix of the
graph, thus with the expansion properties of the graph
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9_’ Spectral analysis

« Let A be the adjacency matrix of the graph G
» Define the Laplacian matrix of A as
L=D-A,
 D=dag(d, ..., d,) adagonal matrix
* d the degree of vertex i
d; iFad=j
L = -1 if(,))eE,i#j
0 if (i,)) € E,i#J

» L is symmetric positive semidefinite
« The smallest eigenvalue of L is lambda, = 0, with
» corresponding eigenvector w, = (1, 1, ..., 1)’
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9_’ Spectral analysis

» For the second smallest eigenvector lambda, of L

Z(f.j)eE(Xf' o Xj)2

M= min x'Lx= min 5
x"w;=0 ¥ 3= Z;’ X
[[x[|=1

» Corresponding eigenvector w,, is called Fielder vector

 The ordering according to the values of w,, will group similar
(connected) vertices together

* Physical interpretation: The stable state of springs placed on
the edges of the graph, when graph is forced to 1 dimension
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9_’ Spectral partition

 Partition the nodes according to the ordering induced by the
Fielder vector

« Some partitioning rules:

* Bisection: use the median value in w,

« Cut ratio: find the partition that minimizes

« Sign: Separate positive and negative values

« Gap: Separate according to the largest gap in the values of
Wy

« Spectral partition works very well in practice
« However, not scalable
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9_’ Top down algorithms

« [Newman and Girvan, 2004]
* A set of algorithms based on removing edges from the
graph, one at a time

« The graph gets progressively disconnected, creating a
hierarchy of communities
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9_’ Top down algorithms

Select edge to remove based on “betweenenss”

 Three definitions

« Shortest-path betweeness: Number of shortest paths that
the edge belongs to

« Random-walk betweeness: Expected number of paths for a
random walk from u to v

« Current-flow betweeness: Resistance derived from
considering the graph as an electric circuit
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9_’ Generic top-down algorithm

Top down

Compute betweeness value of all edges

[Recompute betweeness vlaue of all remaining edges]
Remove the edge with the highest betweeness
Repeat until no edges left
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9_’ Modularity measure

How to pick the right clustering from the whole hierarchy?
Modularity measure [Newman and Girvan, 2004]
Compared with a “random clustering”

Direct optimization of modularity measure by
« Agglomerative [Newman and Girvan, 2004]
« Spectral [White and Smyth, 2005]
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9_’ Scaling up

« How to find communities on a large graph, say, the Web?

 Web communities are characterized by dense directed
bipartite graphs [Kumar et al., 1999]

* |dea similar to hubs and authorities

« Example: Pages of sport cars (Lotus, Ferrari, Lamborghini)
and enthusiastic fans

 Bipartite cores: Complete bipartite cligues contained in a
community

« Support from random graph theory: If G= (U, V, E) is a
dense bipartite graph, then w.h.p. there is a K,.,j, for some |
and j
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Detecting communities by trawling

« Many pruning phases

« Heuristic pruning (quality consideration)
 Fans should point to at least 6 different hosts

fans  Centers should be pointed by at most 50 fans
« Degree-based pruning
* For a fan to participate in a K,’j, it should have out-degree at
least j
» For a center to participate in a K, , it should have in-degree
at least /
centers * Prune iteratively fans and centers

« Can be done efficiently by sorting edges:
 Sort edges by src to prune fans
 Sort edges by dst to prune centers
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9_’ Detecting communities by trawling

Inclusion-exclusion pruning
« Either a core is output or a vertex is pruned

« Computation is organized so that pruning is done with successive
passes on the data

*A-priori pruning
 Cores satisfy monotonicity
« If (X,Y)is a K,.J then every (X', Y) with X' 5" Xis a K,.,J
 A-priori algorithm: start with (1,)), (2,)), ...

« Most computationally demanding phase, but the graph is
already heavily pruned
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9_’ Conclusions (communities)

Finding communities

What is the right objective?

Designing scalable algorithms is challenging
How to evaluate the results?

Studying dynamics and evolution of communities
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