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Abstract. To interpret unstructured text information on the intranet
or internet an interpretation of words and phrases in terms of an ontol-
ogy is extremely helpful. However many ontologies, e.g. WordNet, are too
fine-grained and even human annotators often have disagreements about
the precise word sense. Therefore we propose to use coarse-grained su-
persenses of WordNet which allow to disambiguate most word senses
but nevertheless can be assigned with higher reliability. We employ a
sequential method for this task, conditional random fields, which allows
to take into account the interaction of neighboring words. We use new
features as inputs, especially topic models taking into account thematic
information in an unsupervised way. With respects to previous results
an increase of about 3% in F-value is achieved.

1 Introduction

Most of the information accessible on the internet and intranets is stored as text
in different formats. However, although the amount of data available to us is
constantly increasing, our ability to absorb this information remains constant.
A major obstacle of processing text by computers is its inherent ambiguity: words
can have more than one distinct meaning. For example, the 121 most frequent
English nouns, which account for about 20% of the words in real text, have on
average 7.8 meanings each [AE06]. In spite of this ambiguity humans are nearly
unconsciously able to determine the correct word sense.

To interpret and process free text by computer systems the meaning of a
word in a sentence has to be determined. Word sense disambiguation (WSD)
is the process of identifying, which sense of a word is used in a given context.
Usually word senses are taken from a given sense inventory, e.g. WordNet [Fel98].
Then WSD is essentially a task of classification: word senses are the classes, the
context, i.e. the target word itself and the words in the vicinity of the target
word, provides the evidence, and each occurrence of a word is assigned to one
or more of its possible classes based on evidence.

One of the major obstacles to high-performance WSD is the fine granularity of
available sense inventories. WordNet, for instance, covers more than 100,000 dif-
ferent meanings (synsets). State-of-the-art systems have an accuracy of around
65% in the Senseval-3 all-words task, or 60% [PLDP07] in the SemEval-2007
task. This corresponds to low inter-annotator agreement, e.g. 72.5% agreement



Table 1. 26 Noun Supersenses in WordNet

Supersense Nouns denoting . . . Supersense Nouns denoting . . .

act acts or actions object natural objects (not man-
made)

animal animals quantity quantities and units of mea-
sure

artifact man-made objects phenomenon natural phenomena

attribute attributes of people and ob-
jects

plant plants

body body parts possession possession and transfer of
possession

cognition cognitive processes and con-
tents

process natural processes

communica-
tion

communicative processes and
contents

person people

event natural events relation relations between people or
things or ideas

feeling feelings and emotions shape two and three dimensional
shapes

food foods and drinks state stable states of affairs

group groupings of people or ob-
jects

substance substances

location spatial position time time and temporal relations

motive goals Tops abstract terms for unique be-
ginners

in the preparation of the English all-words test set at Senseval-3 [NLH07]. Note
that inter-annotator agreement is often considered an upper bound for the per-
formance of WSD systems.

Making WSD an enabling technique for end-to-end applications clearly de-
pends on the ability to deal with reasonable sense distinctions. It is argued that
it is not necessary to determine all the different senses for every word, but it
is sufficient to distinguish the different meanings of a word. Therefore recently
a number of researchers investigated word sense disambiguation with a coarse
grained sense inventory [CJ03,CA06]. It turned out that in this case it is possible
to arrive at inter-annotator agreements of more than 90% [NLH07].

In this paper we follow the approach of [CA06] in using WordNet supersenses
for nouns and verbs. As the meaning of a word is mainly determined by the se-
quence of words in the vicinity we apply conditional random fields as sequence
modelling technique. It is able to take into account an enormous number of fea-
tures and propagate evidence between words. In addition we use topic modelling
as a new feature which can collect evidence about the meaning of a word in an
unsupervised way. The resulting level of accuracy is higher than for previous
approaches.



Table 2. 15 Verb Supersenses in WordNet

Supersense Verbs denoting . . . Supersense Verbs denoting . . .

body grooming, dressing and bod-
ily care

emotion feeling

change size, temperature change, in-
tensifying

motion walking, flying, swimming

cognition thinking, judging, analyzing,
doubting

perception seeing, hearing, feeling

communica-
tion

telling, asking, ordering,
singing

possession buying, selling, owning

competition fighting, athletic activities social political and social activities
and events

consumption eating and drinking stative being, having, spatial rela-
tions

contact touching, hitting, tying, dig-
ging

weather raining, snowing, thawing,
thundering

creation sewing, baking, painting,
performing

Supersense tagging has many potential applications. It has been shown [CHJ03]
that supersense information can support supervised WSD, by providing a partial
disambiguation step. Together with other sources of information such as part-of-
speech tags, domain-specific extracted named entities, chunks or shallow parses
the information generated by supersense tagging may be useful in tasks such
as question answering and semantic information extraction and retrieval, where
large amounts of text need to be processed.

In the second section we describe the supersense inventory of WordNet in an
example. The next section describes learning approaches to supersense tagging
used up to now. Subsequently we sketch conditional random fields and their
application to supersense tagging. The fifth section lists the features we use in
our model, especially the scores of an unsupervised topic model. The next section
describes the corpora used for our experiments and the results. The final section
gives a summary of the paper.

2 WordNet Senses and Supersenses

WordNet [Fel98] is a semantic lexicon for the English language. It groups English
words into sets of synonyms called synsets, provides short definitions, and con-
tains various semantic relations between synonym sets. It includes 11,306 verbs
mapped to 13,508 word senses, called synsets, and 114,648 common and proper
nouns mapped to 79,689 synsets.

Each noun or verb synset is associated with one of 41 broad semantic cate-
gories called supersenses [CJ03]. There are 26 supersenses for nouns described in
table 1 and 15 for verbs shown in table 2. In the WordNet graphical user interface
the supersenses can be seen by checking the option ”Lexical File Information”.



Table 3. Synsets of Noun “blow”

Synset Definition and Example Supersense

blow a powerful stroke with the fist or a weapon;
”a blow on the head”

noun.act

blow, bump an impact (as from a collision); ”the bump
threw him off the bicycle”

noun.event

reverse, reversal, set-
back, blow, black eye

an unfortunate happening that hinders or
impedes; something that is thwarting or
frustrating

noun.event

shock, blow an unpleasant or disappointing surprise;
”it came as a shock to learn that he was
injured”

noun.event

gust, blast, blow a strong current of air; ”the tree was bent
almost double by the gust”

noun.phenomenon

coke, blow, nose
candy, snow, C

street names for cocaine noun.artifact

blow, puff forceful exhalation through the nose or
mouth; ”he gave his nose a loud blow”

noun.act

This coarse-grained supersense inventory has a number of attractive features
for the purpose of annotating natural language meanings. First, the small size of
the set makes it possible to build a single model which has positive consequences
on robustness. Second, classes, although fairly general, are easily recognizable
and not too abstract or vague. More importantly, similar word senses tend to be
merged together.

As an example, table 3 summarizes all senses of the noun “blow”. The rows in
the table are ordered according to the frequency of the corresponding synset. The
7 synsets of “blow” are mapped to 4 supersenses: act, event, phenomenon, and
artifact. The second, third and forth sense are quite similar and are merged in the
“event” supersense removing small sense distinctions which are hard to discrimi-
nate. The remaining four senses of “blow” are discriminated by their supersenses.
Hence in this case the most important sense distinctions made by WordNet are
kept at the supersense level. Therefore the assignment of supersenses at least
partially discriminates between different synsets. Note that the most common
subsense of “blow” has a different supersense then the other synsets; however,
this is not always the case. There are 22 synsets of the verb blow in table 4.
Many of these synsets are quite hard to distinguish. As, however, 9 of the 10
different supersenses for verbs are covered, even the small number of supersenses
discriminate between many different aspects of ”blow”.

WordNet also includes a limited number of named entities, e.g. “Planck”,
“Max Planck” and “Max Karl Ernst Ludwig Planck” define a synset with su-
persense noun.person. These terms can be detected by named entity recognition
approaches. Hence for the usual named entity recognition categories person,
group, location, time, and artifacts (e.g. products) we might distinguish between
proper nouns and common nouns.



Table 4. Synsets of Verb “blow”

Synset Definition Supersense

blow exhale hard verb.body

blow be blowing or storming verb.weather

blow free of obstruction by blowing air through verb.body

float, drift, be adrift,
blow

be in motion due to some air or water cur-
rent

verb.motion

blow make a sound as if blown verb.perception

blow shape by blowing verb.change

botch, bodge, bum-
ble, fumble, ...

make a mess of, destroy or ruin verb.social

waste, blow, squan-
der

spend thoughtlessly; throw away verb.possession

blow spend lavishly or wastefully on verb.possession

blow sound by having air expelled through a
tube

verb.perception

blow play or sound a wind instrument verb.perception

fellate, blow, go down
on

provide sexual gratification through oral
stimulation

verb.perception

blow cause air to go in, on, or through verb.motion

blow cause to move by means of an air current verb.motion

blow spout moist air from the blowhole verb.motion

shove off, shove
along, blow

leave; informal or rude verb.motion

blow lay eggs verb.contact

blow cause to be revealed and jeopardized verb.communication

boast, tout, swash,
shoot a line, brag,...

show off verb.communication

blow allow to regain its breath verb.communication

blow out, burn out,
blow

melt, break, or become otherwise unusable verb.change

blow burst suddenly verb.change

There are two ways to find the supersense of a synset. The simple way, which
is also followed in this paper, is to use the unique lexicographical category as-
signed to the synset by the WordNet annotators. The alternative way is to exploit
the hypernym relationship. In this way we may find all synsets corresponding to
supersenses which are related to the target synset by a hypernym path. Occa-
sionally there exist several supersenses related to a single target synset in this
way. The exploitation of these multiple labels will be left to future work.

The learning task of supersense tagging is the assignment of the correct su-
persense to the target word. The annotation model is trained using a corpus
of sentences annotated with the correct supersense. A prominent corpus anno-
tated with WordNet senses is SemCor described below. Usually the annotation
is done simultaneously for all nouns and verbs in the corpus. It is clear that the



supersenses of neighboring words have a strong relation to the supersense of the
target word. This should be taken into account by the annotation method.

3 Learning Approaches for Supersense Tagging

While fine grained word disambiguation has to cope with thousands of categories
the coarse grained word sense disambiguation task only relatively few classes
have to be taken into account. This leads to the utilization of specific machine
learning methods. A first approach is based on classification methods, which for a
target word x get a description of the neighborhood N(x) as input and estimate
the corresponding supersense y as output class.

y = f(N(x)) (1)

This usually implies that each word is labelled individually without taking into
account interactions. The bag-of-word representations of input features used for
document classification is insufficient in this case, as the relative distance of a
word or feature to the target word x is important. Therefore it is necessary to
encode the words and derived features as well as their relative position to the
target word x. The neighborhood N(x) usually includes local collocations, parts-
of-speech tags, and surrounding words. Examples of classifiers are multiclass
averaged perceptrons [CJ03], the naive Bayes classifier [CLT07], and the support
vector machine [CNZ07], where the last two papers describe positive results at
the SemEval07 competition.

A second approach to coarse-grained supersense tagging relies on sequential
models, which are common in NER, POS tagging, shallow parsing, etc.. Although
it seems reasonable to assume that occurrences of word senses in a sentence can
be correlated, hence that structured learning methods could be successful, there
has not been much work on sequential WSD. Probably the first to apply a Hidden
Markov Model tagger to semantic disambiguation were [SSGC97]. To make the
method more tractable, they also used a supersense tagset and estimated the
model on SemCor. By cross-validation they show a marked improvement over
the first sense baseline.

A more elaborate sequential model is used by [CA06]. They tackle the prob-
lem of assigning WordNet supersenses to nouns and verbs and use a discrimi-
natively trained Hidden Markov Model, which was proposed by [Col02]. These
models have several advantages over generative models, such as not requiring
questionable independence assumptions, optimizing the conditional likelihood
directly and employing richer feature representations. Overall their supersense
tagger achieves F-scores between 70.5 and 77.2%.

[DM06] target fine grained WSD for the WordNet synsets using a Conditional
Random Field (CRF). This model allows to take into account a variety of non-
independent input features. They adapt the CRF to the large number of labels to
be predicted by taking into account the hypernym/hyponym relation and report
a marked reduction in training time with only a limited loss in accuracy.



4 Conditional Random Fields

In this paper we show that by using new features we can improve the performance
of sequential models. We consider a task which is characterized by sequences
x = (x1, . . . , xT ) of inputs. In language modelling an input xt usually contains
different features of the t-th words of a document x. To each word xt corresponds
a state yt which has values in a set of labels Y = {γ1, . . . , γm}, e.g. supersenses.
It is the task to predict the state sequence y = (y1, . . . , yT ).

Conditional Random fields (CRFs) [LMP01,SM07] are conditional probabil-
ity distributions that factorize according to an undirected model.

p(y|x) =
1

Z(x)

∏
c∈C

φc(yc,x)

Here yc = (yt)t∈Ic
is a subvector of states y = (y1, . . . , yT ) with indices t ∈

Ic ⊆ {1, . . . , T}. The φc(yc,x) are real-valued functions of these variables and
Z(x) =

∑
y∈YT

∏
c∈C φc(yc,x) is a normalizing factor for the sequence x.

Many applications use a linear-chain CRF, in which the sequential order of
inputs is taken into account and used for a first-order Markov assumption on
the dependence structure. In this case the subvectors are pairs yc = (yt, yt−1)
and yield the feature functions fk(yt, yt−1,x) with an associated parameter λk.
We assume that the corresponding feature functions do not depend on the value
of t, which allows weight sharing between all these components. On the other
hand they may take into account the complete input vector x. In the simplest
case feature functions take the value 1 for a subset of the values yt, yt−1,x
and 0 otherwise. Note that there may be different feature functions for the
same variables yt, yt−1,x. This also covers the special case of functions gk(yt,x)
containing only one state and can easily be extended to higher order Markov
chains.

If r(x) is a component only depending on x we may write the joint distribu-
tion as

p(y,x) = exp

(∑
t

K∑
k=1

λkfk(yt, yt−1,x)

)
r(x) (2)

Then the conditional distribution is

p(y|x) =
p(y,x)∑

y∈YT p(y,x)
=

1
Z(x)

exp

(
T∑

t=1

K∑
k=1

λkfk(yt, yt−1,x)

)
(3)

where Z(x) =
∑

y∈YT exp
(∑

t

∑K
k=1 λkfk(yt, yt−1,x)

)
is an input-specific nor-

malization function.
Now assume we have N observations (x(n),y(n)). As a regularizer we intro-

duce a penalty for large λ-values, e.g. a Gaussian prior exp(−
∑K

k=1 λ2
k/2σ2).

Then the conditional log-likelihood L(λ) =
∑N

n=1 log p(y(n)|x(n), λ) for the vec-
tor λ of all parameters is



L(θ) =
N∑

n=1

T∑
t=1

K∑
k=1

λkfk(y(n)
t , y

(n)
t−1,x

(n))

−
N∑

n=1

log
∑

y∈YT

exp

(∑
t

K∑
k=1

λkfk(y(n)
t , y

(n)
t−1,x

(n))

)
−

K∑
k=1

λ2
k

2σ2

The derivative of the log-likelihood may be evaluated and used by conjugate
gradient maximizers to find the optimal parameters.

5 Features Used for Supersense Tagging

In principle the whole input sequence x = (x1, . . . , xt, . . . , xT ) and all derived
features may be used in the feature functions fk(yt, yt−1, x). We used only fea-
tures of words in the neighborhood of the target word, where a neighborhood
covers the preceding 2 words the word itself and the subsequent two words:

1. Word: The target word xt itself.
2. Lemma: The lemma for the previous word xt−1.
3. Prefix: Three-character prefix of the target word xt.
4. Suffix: Three-character suffix of the target word xt.
5. Potential Supersenses with lags: pot(xt−2), pot(xt−1), pot(xt), pot(xt+1), pot(xt+2)

where pot(w) is a function mapping the word w to all potential supersenses
taking into account the polysemy of w. For the noun blow, for instance, we
would have 5 potential supersenses according to table 3.

6. Part-of-Speech tags as used for the Brown corpus (82 different tags) with
lags: pos(xt−2), pos(xt−1), pos(xt), pos(xt+1), pos(xt+2) where pos(x) is the
POS-tag associated with the word x.

7. Coarse part-of-speech tags containing only the first character of the tags
with lags: POS(xt−2), POS(xt−1), POS(xt), POS(xt+1), POS(xt+2).

8. Word Shape : Features based on the capitalization and other shape charac-
teristics of a word w. Especially we use icap(xt−1), icap(xt), icap(xt+1) where
icap(x) is the function which indicates if the initial letter of x is capitalized.
In addition we employ the features mcap(xt−1),mcap(xt),mcap(xt+1) where
mcap(x) indicates whatever the word x contains mixed capitalization or not.
The last shape features are acap(xt−1), acap(xt), acap(xt+1) where acap(x)
is 1 if w is completely capitalized.

9. Topic-Model: We use a Latent Dirichlet Allocation (LDA) topic model with
50 different topics. The algorithm assigns to each word the probability that
the word belongs to the topic. We define three threshold values 0.1, 0.8,
and 0.98. If for word xt the probability of topic i is above 0.1 then feature
topi,0.1(xt) is set to 1. Correspondingly topi,0.8(xt) and topi,0.98(xt) are set
to 1 if the probability of topic i is above 0.8 or 0.98 respectively. Therefore
we get 150 possible features for each word xt.



Table 5. Results for Noun Supersenses

Frequency

Supersense potential true Precision Recall F1 stdErr F1

act 23493 7962 0.756 0.760 0.758 0.0070
animal 3449 1028 0.868 0.847 0.857 0.0083
artifact 25288 8894 0.827 0.843 0.835 0.0026

attribute 15835 4719 0.709 0.719 0.714 0.0038
body 12369 2555 0.872 0.890 0.881 0.0068

cognition 22302 7018 0.737 0.740 0.738 0.0030
communication 27817 6952 0.788 0.779 0.784 0.0017

event 7360 1806 0.636 0.618 0.627 0.0129
feeling 2418 831 0.727 0.712 0.719 0.0089

food 2769 600 0.897 0.824 0.859 0.0120
group 13919 4854 0.809 0.817 0.813 0.0061

location 10311 3558 0.800 0.813 0.806 0.0072
motive 728 133 0.674 0.617 0.640 0.0274
object 5671 1484 0.765 0.723 0.743 0.0114
person 17015 8172 0.946 0.943 0.944 0.0023

phenomenon 4256 1190 0.750 0.740 0.745 0.0126
plant 1572 447 0.891 0.852 0.870 0.0159

possession 4961 1483 0.791 0.780 0.785 0.0106
process 2299 501 0.744 0.693 0.717 0.0131

quantity 6653 1906 0.862 0.844 0.853 0.0079
relation 3069 913 0.701 0.719 0.709 0.0123

shape 2246 333 0.645 0.536 0.583 0.0339
state 13968 3380 0.705 0.686 0.695 0.0060

substance 5407 2079 0.846 0.855 0.850 0.0045
time 7200 4158 0.901 0.910 0.906 0.0034
Tops 12127 9785 0.977 0.979 0.978 0.0007

The number of features has to be restricted to avoid overfitting. In future versions
we will use statistical feature selection.

The LDA model was developed by [BNJ03] as a generative probabilistic
model for text data. It is an extension of the latent semantic indexing model.
Each topic defines a distribution over the words in a collection and each docu-
ment is defined as a mixture of topics. Based on the context LDA groups words
often occurring together into soft clusters. As it takes into account the context
of words it is able to distinguish between different meanings of a word. We use
an efficient version employing mean field approximation for fast estimation.



Table 6. Results for Verb Supersenses

Frequency

Supersense potential true Precision Recall F1 stdErr F1

body 8377 822 0.686 0.629 0.656 0.0076
change 15230 4086 0.693 0.687 0.690 0.0109

cognition 14963 4253 0.769 0.762 0.765 0.0041
communication 18907 6336 0.811 0.804 0.808 0.0060

competition 6164 549 0.591 0.516 0.550 0.0281
consumption 5838 825 0.793 0.767 0.779 0.0106

contact 13492 2693 0.685 0.683 0.684 0.0073
creation 10344 1689 0.578 0.529 0.552 0.0124
emotion 3960 1038 0.769 0.766 0.767 0.0138
motion 12413 3777 0.730 0.763 0.746 0.0029

perception 9653 2597 0.725 0.728 0.726 0.0075
possession 19553 3031 0.653 0.701 0.676 0.0041

social 24664 3535 0.669 0.656 0.662 0.0095
stative 25148 12181 0.897 0.904 0.901 0.0027

weather 428 57 0.733 0.343 0.435 0.0867

Table 7. Results

Method Precision Recall F1 stdErr

CRF 0.803 0.802 0.802 0.002
Ciramita(CA06) 0.766 0.777 0.771 0.004

Baseline(First-Sense) 0.639 0.692 0.664

6 Experiments

6.1 Corpora

In the SemEval Coarse Grained task [NLH07] specific supersenses are con-
structed for annotation using the Oxford Dictionary of English. To be compatible
with the results of [CA06] we instead used the original WordNet supersenses as
targets and SemCor as training corpus. The SemCor dataset [MLTB93] consists
of documents taken from the Brown Corpus. It is freely available1 and contains
352 documents which were manually annotated. SemCor can be broken down
into two subsets. The first subset SemcorN contains the 186 documents where
all open class words (nouns, adjectives, verbs and adverbs) are annotated with
Part-of-Speech (POS), lemma and the correct WordNet synset. In the second
subset SemcorV of 166 documents only the verbs are annotated. We only used
the first subset SemcorN for our experiments.
1 http://www.cs.unt.edu/ rada/downloads.html



6.2 Evaluation

As stated at the outset a supersense is assigned to each noun and verb. Multiword
phrases such as person names were treated as one word in this experiment.
Therefore we just evaluated if the correct supersense was assigned to a noun or
verb and used the usual evaluation measures of precision, recall and F1.

Although most words have several supersenses there is usually one sense
which is correct in most cases. A quite successful strategy is to assign the most
frequent supersense to a word. As a comparison we also provide the most frequent
sense to show the improvement over this simple strategy.

6.3 Results

Our experiments where conducted on a cluster of 10 machines each equipped
with two 2.8GHz Intel Dualcore processors. We parallelized the original CRF-
implementation of Mallet [McC02] to make full use of the 40 CPUs available in
our cluster. One training run took an average of 300 iterations and a runtime of
roughly 10 hours. The parallelization reduced the training time by about 90%.

In table 5 the results for noun supersenses are shown based on five-fold cross-
validation. The third column shows how often the supersense occurs in the collec-
tion. The second column shows how often the supersense is a potential supersense
of the word and indicates the ambiguity of the term. The F1-value is between
0.58 and 0.98 with a frequency-weighted average of 0.82. Table 6 contains the
results for verb supersenses. Here the F1-value is somewhat lower with values
between 0.43 and 0.90 with a frequency-weighted average of 0.765. Due to high
ambiguity supersenses of verbs are much more difficult to determine.

In table 7 the frequency-weighted averages are shown. Here our CRF solu-
tion yields an F1-value of 0.802 with standard error of 0.002. This approximate
standard error is determined from the standard deviation of the 5 crossvalida-
tion results. Note that there are no systematic differences between precision and
recall. Compared to the value achieved by [CA06] we get an increase of 0.031,
which corresponds to a 13% error reduction. If we consider the most frequent
sense baseline we have a marked increase of F1 of about 0.14.

7 Summary

We used conditional random fields to model the sequential context of words
and their relation to supersenses. In addition we included new features into the
model. Compared to previous results we were able reduce the F1-value by 3.1%
corresponding to a reduction of error for 13%. As the annotation time for a new
document is quite low the approach may be used to annotate large collections of
documents in spite of the high training time. Future research aims at including
larger corpora into the training process to reduce the error even further.
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