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Abstract. Local pattern discovery, pattern set formation and global
modeling may be viewed as three consecutive steps in a global modeling
process. As each of these three steps have gained an increased attention
in recent years, a great variety of techniques for each step have been
proposed, but so far there has been no systematic comparison of the
possible choices. In this paper, we survey and evaluate several options
for selecting a subset of class association rules and for combining their
predictions into a global rule model. Our results confirm that the com-
monly used Weighted Voting technique is, indeed, a good choice. We can
also see that pattern set selection does not seem to have a large impact
upon the performance of the rule ensemble.

1 Introduction

Classification association rule mining is the integration of the two key rule learn-
ing tasks: classification rule mining and association rule mining. Classification
rule mining extracts a small set of classification rules from the database and uses
them to build an accurate classifier. Most of the times the rules are generated one
by one in a separate and conquer style exploiting the interaction with previous
rules (Fürnkranz, 1999). On the other hand, in association rule mining all rules
in the databases that satisfy some minimum interestingness constraints (typi-
cally minimum support and confidence) are generated exhaustively and without
regard of their interaction with other rules. Additionally both methods differ
in the rules they discover. Classification rules have a predetermined target the
so called class, while association rules lack a predetermined target. The inte-
gration of these two mining techniques has been proposed by (Liu et al., 1998)
and is done by concentrating on a specific subset of associations, namely class
association rules (abbreviated CAR), which can be used for classification.

Classification association rule mining may be considered as the prototypical
example for the recently proposed LeGo data mining framework for combining
local patterns into a global model (Crémilleux et al., 2007). This model essen-
tially consists of three phases: The local pattern discovery generates all class asso-
ciation rules satisfying predefined constraints (e.g. a minimum support, closeness
etc.). The second phase, the pattern set formation, aims at selecting an optimal
subset of the previously generated association rules, according to one or more



Fig. 1. The LeGo framework (Crémilleux et al., 2007)

arbitrary selectable heuristics that estimate the usefulness of the subset for fu-
ture predictions. In most cases this task is accomplished by wrapper or filter
approaches. Note that in the first step only association rules are evaluated inde-
pendently of each other, while in the second step entire subsets are evaluated. In
both phases unsupervised or supervised evaluation measures can be employed.

Local pattern discovery has gained an increased attention (Morik et al., 2005)
in recent years, resulting in a great variety of techniques for the generation of
frequent local patterns, or frequent class association rules (Agrawal and Srikant,
1994; Han et al., 2004). Each of these implementations yield essentially the same
result, influenced by the defined external constraints (e.g. closeness (Zaki and
Hsiao, 2002)). With this in mind we concentrate on the latter two steps, the
pattern set discovery and the global modeling. The main goal of this paper is
an empirical comparison of different techniques for these steps, which we will
briefly recapitulate in the following sections. We will examine how respectively
two representative of these perform in liaison with each other and compare these
results with the performance of each technique if combined with a respective
“neutral” technique for the other step (e.g., selecting all class association rules,
or using all selected patterns for the prediction).

The paper is organized as follows: Section 2 and Section 3 give a short in-
troduction into class association rule mining, global pattern discovery and the
methods we apply. Section 4 describes the experimental setup and Section 5
presents the results. Our conclusions from these experiments are summarized in
Section 6.

2 Class Association Rule Mining

Before we outline the principles of classification association rule mining, some
notions have to be introduced. Using terms of both classification and association
rule mining, we explain classification and association rule mining separately and
show how these both techniques are fused for class association rule mining and
which modifications have to be made.

In classification rule mining, a data set D is a relation which is defined by
a finite set of m distinct attributes A1, . . . , Am and a set of class labels C,



and consists of n instances. Each attribute Ai belongs to a certain category
(for our purposes only nominal and numeric ones are feasible) and therefore
has either a finite (a category) or infinite (a real number) set of possible val-
ues aj

i ∈ Ai. Instances d ∈ D are described by a set of attribute values (for
each attribute) and in our case a single label (d = (aj1

1 , aj2
2 , . . . , ajm

m , c)). Note
that in some cases multiple labels can be allowed. The body (or premise) of a
classification rule consists, similar to instances, of values for a set of mutually
exclusive attributes, which form a condition that has to be met by the exam-
ple. The head (or conclusion) of the rule is a single class value, which will be
predicted for an example that satisfies the conditions of the body of the rule.
Thus, a rule is an implication of a conjunction of conditions that imply a class
value (d = (Ak = ajk

1 ∧ Al = aj2
2 · · · → c)). A rule covers an example if the

example meets the premise of the rule which is then called a covering rule. How
classification rules are generated (e.g., separate-and-conquer-rule learning) and
how the covering rules are used together for future predictions (e.g., decision
lists) depends on the employed rule learning algorithm.

In association rule mining a data set is a set of transactions. Each transaction
t ∈ T contains a finite set of items t ⊆ I, where I is the set of all items and
|t| ≥ 1, and has a unique transaction identifier tid ∈ T , where T is the set of
all tids. A set X ⊆ I is called an itemset and a set Y ⊆ T is called tidset. If
an itemset contains exactly k items it is called k-itemset. For an itemset X, its
corresponding tidset is denoted as t(X), the set of all tids that contain X as
a subset. Analogous for a tidset Y , we denote its corresponding itemsets i(Y ),
the set items common to all the tids in Y . Note that for an itemset X holds
t(X) = ∩x∈Xt(x), and for a transaction set Y holds i(Y ) = ∩x∈Xt(x). The
combination of an itemset X and its tidset is called IT-Pair and is denoted
by X × t(X). An itemset X is closed if i(t(X)) = X holds. In other words an
itemset is closed if no item can be added to it without reducing the number of
transactions.

An association rule X → Y consists of two itemsets X and Y. X forms the
body of the rule and Y is the head of the rule. An association rule r has a support
s(r) = s in D, if s percent of the cases in D contain the head X and body Y.
A rule X → y holds in D with confidence c(r) = c if c percent of the cases that
contain the head X also contain the head Y. Covering is here defined analogous
to classification rule learning. If the support of an association rule exceeds a
minimum support threshold the association rule is called frequent. Analogous
for a minimum confidence threshold an association rule is called confident. If
the disjunction X

⋃
Y of the body and head of an association rule is closed the

association rule is also called closed. Note that the set of all closed frequent
itemsets can be used for the generation of all frequent itemsets and therefore of
all frequent association rules.

Class association rule mining combines classification and association rule
mining. A class association rule (abbreviated CAR) r is an association rule of
the form X → y, where X ⊆ I is an itemset, and y ∈ Y a class label. A class
association rule r has a support s(r) = s in D, if s percent of the cases in D



contain X and are labeled with class y. A rule X → y holds in D with confidence
c(r) = c if c percent of the cases that contain X are labeled with class y.

Classification association rule mining basically consists of three steps. The
first step employs an association rule mining algorithm that generates frequent
itemsets. At best the algorithm generates only frequent itemsets which can be
used to generate class association rule. If this is not the case an additional
filtering of inappropriate rules has to be applied before one can proceed to the
next step. Obviously classification data sets are not always viable for association
rule mining but can be transformed into a association data set. For example,
numeric attributes can be discretized (e.g., (Fayyad and Irani, 1993)) in advance.

The second step selects the class association rules which exceed a determined
threshold for one or more given heuristic values. These heuristics can be divided
into two groups. The first group considers only the properties of the rule alone
without regard of other rules (e.g. confidence). The second group evaluates the
usefulness of the rule in interaction with other rules (e.g., cross entropy). In
some cases the selected rules are sorted descending according to one or more
heuristics. Note that the heuristics for the selection and sorting can differ.

In the last step the selected rules have to be applied for the classification of
examples whose class is unknown. There are many different approaches on how
this is done. One solution is the decision list. Here all rules are sorted as above
mentioned and only the prediction of the first covering is used. Other approaches
like the combination of the predictions of all covering rules will be described in
the next section.

3 Survey of Different Options for Class Association Rule
Discovery

The LeGo model for global modeling via local pattern discovery consists of
three phases: the local pattern discovery, pattern set discovery and global mod-
eling. These task are described separately in the following subsections considering
closed frequent itemsets for the generation of class association rules explaining
some representatives and the respective technique briefly. For further informa-
tion about these steps and their attendant examples we refer to (Crémilleux
et al., 2007)

3.1 Local Pattern Discovery

In this work, we concentrate on association rule mining (Goethals, 2005) which
is both the most basic and popular representative of local pattern discovery. Re-
stricting us to frequent itemset clearly leads to a biased result which misses some
aspects of the distribution of items and some co-occurrences among the associa-
tions (e.g., infrequent, but meaningful rules), but for the purpose of comparison
this will not have severe consequences.

Itemsets can be considered as local patterns because items describe only the
instances of the database which are covered by the respective individual pat-
tern. Typically frequent itemset discovery algorithms generate the pattern in a



exhaustive, top-down and level-wise search. Most of the times the set of dis-
covered itemsets is returned in a compressed, but complete and reconstructable
representation by using elaborate data structures (Han et al., 2004) or by ex-
ploiting specific characteristics (Zaki and Hsiao, 2002).

For our experiments we chose the local pattern discovery algorithm CHARM
(Zaki and Hsiao, 2002) which is an effective algorithm for the enumeration of
closed frequent itemsets. Not going into detail, CHARM employs several inno-
vative ideas which include using a novel tree-like search space capable of the
simultaneous exploration of the itemset and the transaction space, utilizing a
hybrid search that skips many levels in the tree structure and a hash-based
closeness checking. For further details we refer to (Zaki and Hsiao, 2002) which
provides a survey of this specific type of global pattern discovery.

Note that the first phase of class association rule discovery may also be
considered as subgroup discovery (Wrobel, 1997; Klösgen, 2002).

3.2 Pattern Set Discovery

The local pattern discovery phase generates patterns which are chosen on the ba-
sis of their individual properties and performance. In practice, the resulting sets
of local patterns are large and show potentially high levels of redundancy among
the patterns. These two properties can be derogatory to various applications.
A manual inspection of local patterns is only feasible for a small, manageable
amount of patterns. Additionally high redundancy can hinder the performance of
many, often redundant, features. Aiming to alleviate these issues the pattern set
discovery tries to reduce the redundancy by selecting only a subset of patterns
from the initial large pattern set.

Several approaches have been proposed to reduce the number of local pat-
terns without regard of their future use. Recent examples include constraint-
based pattern set mining (De Raedt and Zimmermann, 2007) and pattern teams
(Knobbe and Ho, 2006a;b). Both approaches assume that the syntactic structure
of the individual patterns is irrelevant at this stage, and that patterns can be
fully characterized by a binary feature that determines for each example whether
it is covered by the pattern or not. For further details on these or alternate ap-
proaches we refer to the just mentioned papers and to (Zaki and Hsiao, 2002)

For this work we will consider four representatives of pattern set discovery.
The first and most simple one is not obviously a pattern set discovery, as it se-
lects simply all previously generated patterns for the global modeling. Therefore
this ”all selector” can be considered as the neutral counterpart to the global
modeling techniques. The second one is a confidence filter which selects all items
or class association rules whose confidence exceeds a given minimum confidence
threshold.

The other two pattern set discovery heuristics, joint entropy and exclusive
coverage, are taken from (Knobbe and Ho, 2006b) considering the implementa-
tion suggestion in (Knobbe and Ho, 2006a). For both heuristics we employed a
greedy wrapper selecting sequentially the patterns which yield the highest re-



ward for the given heuristic until a predetermined size for the pattern set has
been achieved. Note that both heuristics are unsupervised.

Joint entropy has been proposed for maximally informative k-itemsets (abbr.
miki) (Knobbe and Ho, 2006a) but can also be applied to the pattern set discov-
ery task. Essentially all patterns are treated as binary features so that the joint
entropy for each pattern set is equal to the joint entropy of its features. The
entropy measures the uniformity of the distribution of instances over different
contingencies (by what patterns a instance is covered).

Exclusive coverage tries to reduce the amount of overlap between patterns.
So pattern sets are favored if many instances are covered only by a single pat-
tern. Essentially exclusive coverage counts the coverage that is exclusive for each
pattern.

3.3 Global Modeling

There are many choices for global modeling algorithms that are based on pattern
sets or sets of class association rules. Essentially, any induction algorithm can
be used at this point. However, our primary focus are rule learning methods, so
we confine ourselves to methods that consider the entire pattern set as a rule
theory, and try to combine the predictions of the individual rules.

In particular, we consider two groups of techniques: The first group are voting
methods which use the predictions of all rules that cover an example as votes
for the final prediction. The vote of a single rule can be weighted based on its
heuristic value or on the ranking of all rules according to their heuristic value.
The second group are probabilistic methods which use estimated probabilities
as the final prediction. In both cases, we estimate the value of a rule with the
commonly used Laplace-corrected precision which will be discussed later.

Voting Methods Common ground of all voting methods is, as the name sug-
gests, the interpretation of individual predictions as votes for the corresponding
class. Different voting methods differ in the weights they assign to a vote of a
rule. So, essentially, the classification works as follows:

arg maxci∈C

∑
r∈Rci

weight(r),

where Rci is the set of Rules covering the example and predicting class ci (e.g.
A1 = aj

1 ∧ A2 = ak
2 · · · → ci). The weight of the rule weight(r) depends on the

chosen voting method.
The first representative Best Rule (abbrev. BR) considers only the best rule

which covers the example to predicted. At first sight BR does not seem to
be a voting method but it is possible to choose voting weights that simulate its
behavior (by ordering the rules according to their quality and using exponentially
decaying weights). Essentially, this method corresponds to using a decision list
in which the rules are sorted according to their weight.



The next representatives are Unweighted and Weighted Voting (abbrev. V
and WV accordingly). These methods have in common that they use the weights
of all covering rules. V assigns a weight of one to all covering rules, essentially
this can be considered as the counting of covering rules separately for each class.
WV uses the Laplace value (which will described at the end of this section) of
each rule as its weight, so basically the laplacian weights are counted for each
class.

weightV (r) = 1 weightWV (r) = Laplace(r)

The last two methods Linear Weighted Voting (LV) and Inverse Weighted
Voting (IV) (Mutter, 2004) differ from V and WV as they do not use the Laplace
value Laplace(r) but the ranking for the weighting of a rule r. So each rule r
obtains a rank rank(r) according to the Laplace sorting. The ranks are repre-
sented by integers beginning with one for the best rule and ending with total
number of rules for the worst (rankmax).

weightLV = 1− rank(r)
rankmax + 1

weightIV =
1

rank(r)

Bayesian Decoding The Bayesian Decoding (abbrev. BD) is a probabilistic
approach to estimate the class of an example on the basis of the rules by which
it is covered. Contrary to the previous voting method a rule influences directly
the outcome not only for the class it predicts but also for all classes of the data
set.

The goal of this method is the estimation of the probability of a class ci under
the observation of the conjunction of the rules R = R1∧R2∧ · · ·∧Rs that cover
the example, namely Pr(ci|R),and the prediction of the most probable class.

arg maxci∈C Pr(ci|R)

This probability can be translated in a determinable form by applying the
Bayes theorem. This leads to the following formula:

Pr(ci|R) =
Pr(R|ci)
Pr(R)

As the denominator Pr(R1 ∧R2 ∧ · · · ∧Rs) does not affect the relative order of
the estimated probabilities it can be ignored. If we additionally assume that the
observation of one of the Rules Rj is (class-conditionally) independent of the
occurrence of the other we can make the following näıve assumption:

Pr(R|ci) = Pr(R1 ∧R2 ∧ · · · ∧Rs|ci) =
s∏

k=1

Pr(Rk|ci)

Finally the classification works as follows:

arg maxci∈C Pr(ci) ·
s∏

k=1

Pr(Rk|ci)



It remains to be explained how these probabilities can be estimated. Pr(ci) can
be estimated simply by counting the training examples belonging to class ci and
dividing this number by the total number of training examples. Pr(Rk|ci) can
be estimated quite similarly, and simultaneously for all classes ci ∈ C. First,
we determine the number of training examples that are covered by the rule Rk

separately for each class and divide these numbers by their sum. It is possible
that some rules do not cover examples of some classes, leading to a probability
of zero for these classes as a single zero probability will yield to a product of
zero. To avoid this problem, we apply the Laplace correction to the estimated
probabilities:

Laplace(r) =
pi + 1∑
pi + |C|

where pi is the number of covered examples that are of class ci. Essentially, this
means that the counting of covered examples for each class does not start at 0,
but starts at 1. So the number of examples that are covered by the rule Rk is
increased by one for each class, increasing the total sum by |C|, the total number
of classes.

4 Experimental Setup

In the local pattern discovery phase, we used CHARM for the discovery of closed
frequent itemsets. As all different closed frequent itemset discovery methods yield
the same result and do only differ in their performance, we chose the state-of-
the-art algorithm CHARM (Zaki and Hsiao, 2002) which features both a good
time and space performance.

CHARM was adapted to multi-class rule induction as follows: Each itemset
holds the absolute support (as a list of all examples containing the itemset) for
each class of the data set. CHARM was altered to manage this kind of itemsets
in the same way as handling the unsupervised itemsets it was designed for. With
this modifications we could apply CHARM to the data of each class (referred
as a segment) operating on the data of the respective class normally but also
updating the supports for all other classes. Afterwards, we combined the results
of each segment into a single set of closed class association rules, merging (if
necessary) rules which are closed for different classes. For each segment the
minimum support was adjusted to 3% of its size. Additionally we required that
the respective itemset must contain at least 2 instances. Note that the first phase
has only to be computed once, the results one obtains can be stored for later
use.

For the second phase, we implemented the pattern set discovery algorithms
we described briefly above, selecting either all patterns, only those whose con-
fidence meets some confidence threshold, or wrapping a pattern set with joint
entropy or exclusive coverage. As the minimum confidence should depend on the
number of the classes each data set contains and should preferably be significant
but not too restrictive, we set the minimum confidence to the reciprocal value



Table 1. Data sets

Attributes Patterns (Mean)
Data set Instances Nominal Numeric Classes Default Total Confident
Balance-scale 625 0 4 3 46.08 118.3 65.1
Breast-cancer 286 10 0 2 70.28 2726.7 1793.1
Diabetes 768 0 8 2 65.1 563.6 392.7
Glass 214 0 9 7 35.51 208 187.3
Heart-c 303 7 6 5 54.46 12543.8 11981.9
Heart-h 294 7 6 5 63.95 2002.7 1802.8
Heart-statlog 270 0 14 2 55.56 3507.9 2485.3
Iris 150 0 4 3 33.33 31.1 27.6
Labor 57 8 8 2 64.91 370.8 347.4
Zoo 101 16 1 7 40.59 213.9 213.9

of the number of classes. Thus, for most of the data set we obtained different
minimum thresholds. For the wrapper approaches we decided to use rather small
pattern sets consisting of 25 patterns. As in the first phase the results of phase
2 can be stored for future use.

We implemented the global modeling techniques (BR,V ,WV ,IV ,LV ,BD)
described in the previous section for the third phase. Analogous to the second
phase the unweighted voting can be considered as the neutral method for the
third phase as it uses the unweighted and unbiased information of each class
association rule.

In all phases, we used the following rule properties for tie breaking (in de-
scending order of relevance): the heuristic value (Laplace), the number of cor-
rectly predicted examples, the number of examples of the predicted class, and
the size of the rule. If these criteria did not discriminate between two rules, we
chose one of them at random.

For the evaluation of the resulting classifiers we employed a stratified ten-fold
cross validation using the mean value and standard deviation of the accuracies
obtained for comparison.

For our experiments we used data sets of the UCI repository ((Asuncion and
Newman, 2007)). These data sets were chosen for a great variety of the number
of instances and classes, and of different ratios between numerical and nomi-
nal attributes. For our experiments numerical attributes have been discretized
((Fayyad and Irani, 1993)) separately for each cross validation fold using only
the information contained in its training data. Missing (numerical and nominal)
attribute values were ignored. The statistical properties of the used data sets are
displayed in Table 1 which contains the number of classes, instances, attributes
(separate for numerical and nominal attributes) and the percentage of instances
belonging to the most represented class. Additionally, it includes the mean of the
number of all patterns and respectively of the confident patterns we obtained in
our experiments.

5 Results

In this section, we present the results of our experimental study, organized by
different pattern set selection techniques. For the evaluation of the results we



Table 2. All Patterns: Accuracy

BR V WV LV IV BD
Data set Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev
Balance-s. 70.88 7.33 73.30 6.41 75.51 6.06 8.95 3.34 8.00 1.49 60.49 6.21
Breast-c. 70.32 9.40 70.30 6.76 74.14 6.91 29.69 6.88 29.35 6.69 70.31 6.88
Diabetes 74.35 7.28 75.13 7.09 74.35 5.88 42.31 9.36 29.82 7.98 73.44 5.20
Glass 55.24 10.85 52.84 9.74 58.59 12.00 39.44 15.21 16.54 12.81 58.42 14.24
Heart-c 83.15 7.41 78.85 5.34 83.82 6.38 53.47 8.96 17.48 8.57 74.56 6.36
Heart-h 63.59 30.12 66.1 26.23 69.08 29.10 30.18 22.28 22.33 20.37 78.70 21.54
Heart-s. 80.37 7.42 81.11 7.50 83.70 6.10 40.37 7.50 16.30 5.58 74.44 5.64
Iris 86.67 17.21 82.67 21.82 91.33 10.91 81.33 21.03 53.33 31.47 58.00 46.83
Labor 75.67 24.14 67.00 31.83 67.00 31.83 67.00 30.85 29.33 17.76 81.33 19.95
Zoo 92.00 11.35 93.00 10.59 92.00 11.35 90.00 10.54 87.00 14.94 90.00 10.54

Mean 75.22 13.25 74.03 13.33 76.95 12.65 48.27 13.60 30.95 12.77 71.97 14.34

6 5 4 3 2 1

IV

LV

BD

WV

BR

V

CD

Fig. 2. All patterns: CD chart

used the Friedman test with a post-hoc Nemenyi test if necessary as proposed
in (Demsar, 2006). The significance level was set to 95% for both tests.

The four different pattern set selection techniques employed were treated
as separate test cases. As the Friedman test showed that the employed global
modeling techniques are not equivalent for all test cases, we applied a Nemenyi
test to each case. The results of these tests are each depicted in a separate CD
chart.

5.1 Selecting All Patterns

First we will have a look at the results that we obtained by applying the above-
mentioned aggregation techniques to all generated patterns (see Table 2 and
Figure 2).

Regarding the chart we can identify three groups of methods whose members
do not differ significantly. The best group consists of the methods WV, BR, V,
and BD. The remaining the methods IV and LV belong to the worst group. The
third group overlaps with both groups, but contains only one member of the
worst group. So we disregard the third group and consider only the best and
worst group for our comparisons.

The first observation we make is that the methods BR, V, WV, and BD are
not significantly different, although the method WV outperforms the other in
most cases. Additionally, all four methods significantly outperform the methods
IV and LV which are not significantly different.



Table 3. Confident Patterns: Accuracy

BR V WV LV IV BD
Data set Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev
Balance-s. 70.88 7.33 71.70 7.93 73.28 7.26 68.49 8.74 50.62 23.50 70.57 70.31
Breast-c. 69.96 8.80 74.50 7.92 74.50 7.92 74.86 7.66 74.86 7.17 70.57 9.00
Diabetes 74.35 7.28 71.09 6.30 72.13 5.91 68.22 6.46 67.58 6.93 73.31 5.09
Glass 55.24 10.85 52.40 9.29 58.59 11.13 44.98 13.73 34.63 11.67 63.79 16.98
Heart-c 83.15 7.41 83.16 5.32 83.82 6.38 73.25 6.25 22.43 5.76 74.23 6.52
Heart-h 63.59 30.12 68.40 29.01 69.43 28.80 50.57 23.85 22.32 17.68 61.78 47.10
Heart-s. 80.37 7.42 82.22 6.25 82.96 6.34 81.11 6.86 72.59 9.27 75.19 4.64
Iris 86.67 17.21 86.00 15.53 91.33 10.91 86.67 13.70 70.00 29.19 55.33 41.70
Labor 75.67 24.14 68.67 33.19 68.67 33.19 67.00 29.83 68.67 31.28 84.33 14.74
Zoo 92.00 11.35 93.00 10.59 92.00 11.35 90.00 10.54 87.00 14.94 90.00 10.54

Mean 75.19 13.19 75.11 13.13 76.67 12.92 70.52 12.76 57.07 15.74 71.91 22.66

6 5 4 3 2 1

IV

LV

BD

WV

BR

V

CD

Fig. 3. Confident patterns: CD chart

So we come to the conclusion that the group of methods BR, V, WV, and BD
perform best, whereby the method WV is the best choice. The other methods
are in descending order of performance LV and IV.

5.2 Selecting only Confident Patterns

Next we will evaluate the results that we obtained employing only the confident
patterns (see Table 3 and Figure 3). This time, we can identify two groups
of methods. The first group consisting of BR, V, and WV is the best group
and is significantly better than the second group compromising the method IV.
We cannot tell to which one of these groups the methods BD and LV belong.
Nevertheless the method WV is the best representative of the better group and
so the best choice for this scenario.

So the conclusions of these experiments are very similar to the previous
ones. The group of the methods BR, V, and WV has the best performance. As
before the best representative is the method WV. The (descending) order of
performance remains unchanged: BD, LV and IV.

If we compare the results using all patterns and confident patterns respec-
tively one can see that these depend strongly on the employed global modeling
methods. There is a marginal decrease in performance for BR, WV and BD
if we use only confident patterns and a marginal improvement respectively for
the method V. The method IV and LV benefit from confident patterns by an
improvement of 22,3% and 26,1% in the mean.



Table 4. Joint Entropy: Accuracy

BR V WV LV IV BD
Data Set Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev

Balance-Scale 43.49 15.47 54.37 22.96 44.44 16.27 18.48 16.18 9.61 5.34 49.13 12.02
Breast-Cancer 68.58 7.47 68.20 8.60 67.51 8.68 47.80 12.54 47.41 12.91 68.58 7.47
Diabetes 67.83 6.58 64.59 8.15 68.23 6.17 42.46 8.97 39.21 7.58 66.66 6.99
Glass 50.54 16.38 44.00 14.35 49.13 14.59 33.81 14.82 19.37 15.22 49.55 12.71
Heart-C 63.92 14.36 61.00 12.30 64.25 14.89 38.96 12.78 36.66 14.09 60.32 11.41
Heart-H 72.17 30.67 58.97 37.88 74.62 25.46 28.49 28.80 29.92 31.12 79.72 20.96
Heart-Statlog 73.70 9.15 68.89 10.06 75.56 9.11 38.15 23.75 35.93 18.73 69.63 11.15
Iris 90.00 12.67 80.67 25.81 92.00 9.32 80.67 22.32 56.67 33.00 60.00 40.86
Labor 75.33 34.75 70.33 32.56 73.67 73.67 68.67 31.28 70.33 31.60 80.33 33.39
Zoo 48.27 23.77 48.27 23.77 48.27 23.77 48.27 23.77 48.27 23.77 48.27 23.77

Mean 65.38 17.13 61.93 19.64 65.77 20.19 44.58 19.52 39.34 19.34 63.22 18.07

6 5 4 3 2 1

IV

LV
BD

WV

BR

V

CD

Fig. 4. Joint Entropy: CD chart

5.3 Selection by Joint Entropy

Next we will investigate the results obtained by using joint entropy for pattern
set discovery (see Table 4 and Figure 4). Like in the previous experiments the
methods BR, V, and WV do not differ significantly, WV dominates this group
slightly. This time BD is definitely comparable to these methods. The meth-
ods IV and LV have equal performances. They are significantly worse than the
methods BR and BD but they are comparable to V and in the case of LV to BD.

Using joint entropy decreases the accuracy of all methods by about 10% to
15%, but in the light of the small number of patterns chosen the results are not
as bad as it might seem as it shows that the quantity is less important than the
quality of patterns.

5.4 Selection by Exclusive Coverage

Our last experiment considered the exclusive coverage for global modeling (see
Table 5 and Figure 5). As in the experiment using joint entropy the methods
BR, V, WV, and BD are comparable, though this time BR and BD dominate the
group. In the mean BR has the higher accuracy, but BD has the higher number
of wins. Additionally all methods are significantly better than the methods LV
and IV. The only exceptions are V and WV which are comparable to LV.



Table 5. Exclusive Coverage: Accuracy

BR V WV LV IV BD
Data Set Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev

Balance-Scale 62.23 13.19 65.29 13.95 59.99 13.73 21.25 15.71 8.48 2.63 63.06 9.24
Breast-Cancer 72.08 9.96 69.98 7.82 70.70 12.66 28.97 6.71 27.92 7.13 70.70 12.66
Diabetes 71.35 5.33 71.22 5.42 71.22 5.42 36.33 8.38 36.20 8.18 71.35 5.33
Glass 35.11 16.04 31.49 15.68 31.52 16.20 16.49 9.71 13.68 13.68 32.45 16.04
Heart-C 58.06 8.33 58.06 8.33 58.06 8.33 45.57 7.26 45.57 7.26 58.06 8.33
Heart-H 53.45 50.14 50.78 39.48 50.78 39.48 40.00 40.19 39.66 40.55 60.46 37.56
Heart-Statlog 60.74 5.30 60.74 5.30 60.74 5.30 47.78 8.27 47.04 6.06 60.74 5.30
Iris 82.00 17.51 78.00 18.61 85.33 17.16 75.33 20.38 50.68 29.68 52.00 42.49
Labor 64.00 28.62 60.33 26.64 64.00 28.62 60.33 26.64 58.00 30.64 64.00 28.62
Zoo 78.27 10.13 79.27 10.79 79.27 10.79 77.27 9.30 76.27 9.51 81.27 12.63

Mean 63.73 16.46 62.52 15.20 63.16 15.77 44.93 15.26 40.35 15.53 61.41 17.82
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Fig. 5. Exclusive Coverage: CD chart

6 Conclusions

In this paper, we separated class association rule mining into three different steps:
local pattern discovery, pattern set discovery and global modeling. As there are
several exchangeable methods for each of these steps, we briefly surveyed some
of the more popular techniques, and experimentally compared these different
options.

For our experiments we extended the closed frequent itemset mining algo-
rithm mining CHARM and adapted it for application to class association rule
mining for multi-class problems. Hereby we obtained sets of closed association
rules which were additionally filtered by a class-wise minimum confidence thresh-
old or wrapped using joint entropy or exclusive coverage. These rules were then
filtered using confidence or joint entropy. The resulting pattern sets were then
combined with voting methods and a Bayesian approach.

In our experiments the methods Best Rule, Voting, Weighted Voting, and
Bayesian Decoding were outperforming all other methods. Weighted Voting was
in most of the cases slightly better than the others, and we consider it the best
choice. Interestingly, these methods did not profit of the filtering of confident
patterns or of the wrapping using joint entropy. Only the Bayes Decoding and
the remaining methods Inverse Voting, and Linear Voting saw some improvement
through these constraints.
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