
A Simple Extension of Non-negative Matrix

Factorization for Three Way Data

Tim Van de Cruys

Humanities Computing, University of Groningen
Oude Kijk in ’t Jatstraat 26, 9712 EK Groningen, The Netherlands

t.van.de.cruys@rug.nl,
WWW home page: http://www.let.rug.nl/decruys/

Abstract. Factorization algorithms are able to represent a large amount
of data in a succinct way. Most factorization algorithms deal with two-
way data, but often, one wants to analyze data that is interconnected
in more than two ways. A number of methods have been developed to
analyze three-way data, but those are generally not capable of handling
massive data sets. In this paper, an extension of non-negative matrix
factorization is presented that is able to deal with three-way data in an
efficient way. The algorithm calculates the pairwise co-occurrence data
for each mode separately – making it computationally efficient – while
retaining the three-way structure that is present in the data. The ap-
proach is applied to the problem of word sense discrimination, for which
the method reaches state-of-the-art performance.

1 Introduction

Factorization algorithms have since long been a popular research topic in the
machine learning community, mainly because of two reasons. First of all, a fac-
torization is able to express an abundance of (overlapping) features in terms of
a limited number of components, making it easier to handle the data computa-
tionally. Secondly, factorization algorithms are generally able to overcome data
sparseness and noise, yielding a representation of the data that goes beyond
the initial results. These two characteristics make them an attractive tool for
machine learning algorithms dealing with massive data sets. Consequently, they
have been used in various domains, ranging from image recognition over gene
expression analysis to information retrieval.

Most factorization algorithms deal with two-way data, taking a two-dimen-
sional array – a matrix – as their input. There are, however, many situations
in which one would like to analyze data that is represented in more than two
modes. In image recognition, for example, one might want to analyze images in
various lighting conditions; in information retrieval, one might want to model
users by queries by documents. A number of methods have been developed to
analyze three-way data sets, such as three way principal component anal-
ysis and more recently non-negative tensor factorization. These methods



deal with data represented as three-dimensional arrays, called tensors. A prob-
lem with these methods, however, is that the computations will become difficult
– if not impossible – with massive datasets. When gigabytes of data are taken
into account – as is often the case with text mining applications – the tensor will
grow too large, and computations will become infeasible, even with sparse imple-
mentations of the algorithms. In this paper, a method is described that is able
to efficiently deal with massive three-way data sets, by looking at the pairwise
co-occurrence information for each mode separately. Describing the method, we
will mainly focus on text mining applications, but we believe the method can
easily be applied in other domains where massive data sets make the application
of genuine three-way methods impossible.

2 Previous Work

2.1 Two-way Factorizations

As mentioned above, most factorization algorithms focus on two-way data. One
of the best known algorithms is principal component analysis (pca) [1].
pca involves an eigenvalue decomposition of a data covariance matrix. The orig-
inal data is transformed into a new coordinate system, in which the eigenvectors
with the heighest eigenvalues indicate the dimensions with the greatest vari-
ance. Keeping a limited number of dimensions, the transform yields the best
possible fit in a least square sense. singular value decomposition (svd) is
the generalization of the eigenvalue decomposition used in pca. [2]

In information retrieval, singular value decomposition has been applied in
latent semantic analysis (lsa [3, 4]). In lsa, a term-document matrix is
created, containing the frequency of each word in a specific document. This
matrix is then decomposed into three other matrices with svd. The most impor-
tant dimensions that come out of the svd allegedly represent ‘latent semantic
dimensions’, according to which nouns and documents can be represented more
efficiently.

lsa has been criticized for not being the most appropriate data reduction
method for certain applications such as text mining. The svd underlying the
method assumes normally-distributed data, whereas textual count data (such as
the term-document matrix) can be more appropriately modeled by other distri-
butional models such as Poisson [5, §15.4.3]. Successive methods such as proba-
bilistic latent semantic analysis (plsa) [6], try to remedy this shortcom-
ing by imposing a proper latent variable model, according to which the values
can be estimated. The method we adopt in our research – non-negative ma-
trix factorization – is similar to plsa, and adequately remedies this problem
as well.

2.2 Three-way Factorizations

To be able to cope with three-way data, several algorithms have been developed.
In statistics, three-way component analysis has been extensively investigated



(for an overview, see [7]). The two most popular methods are parallel factor
analysis (parafac) [8, 9] and three-mode principal component analysis
(3mpca) [10]. Singular value decomposition has been generalized for multi-way
data as higher order singular value decomposition (hosvd) [11], and
applied in various domains such as image recognition [12]. One last important
method dealing with multi-way data is the generalization of non-negative matrix
factorization, called non-negative tensor factorization [13].

A problem with these methods is that the computations will be become
difficult – if not impossible – as the data sets get larger.

3 Algorithm

3.1 Non-negative Matrix Factorization

Non-negative matrix factorization (nmf) [14] is a group of algorithms in which
a matrix V is factorized into two other matrices, W and H.

Vn×m ≈Wn×rHr×m (1)

Typically r is much smaller than n,m so that both instances and features
are expressed in terms of a few components.

Non-negative matrix factorization enforces the constraint that all three ma-
trices must be non-negative, so all elements must be greater than or equal to
zero. The factorization turns out to be particularly useful when one wants to
find additive properties.

Formally, the non-negative matrix factorization is carried out by minimizing
an objective function. Two kinds of objective function exist: one that minimizes
the Euclidean distance, and one that minimizes the Kullback-Leibler divergence.
In this framework, we will adopt the latter, as – from our experience – entropy-
based measures tend to work well for natural language. Thus, we want to find
the matrices W and H for which the Kullback-Leibler divergence between V and
WH (the multiplication of W and H) is the smallest.

Practically, the factorization is carried out through the iterative application of
update rules. Matrices W and H are randomly initialized, and the rules in 2 and 3
are iteratively applied – alternating between them. In each iteration, each vector
is adequately normalized, so that all dimension values sum to 1. Convergence of
the update rules to a local optimum is proven in [14].

Haµ ← Haµ

∑
i Wia

Viµ

(WH)iµ∑
k Wka

(2)

Wia ←Wia

∑
µ Haµ

Viµ

(WH)iµ∑
v Hav

(3)



3.2 Extending Non-negative Matrix Factorization

We now propose an extension of nmf that is able to cope with multi-way data
in a computationally efficient way. A factorization with three modes is taken as
example, but the method can easily be extended to more modes.

As we are interested in finding latent structure among three-way data, but
representing the data in a three-way array is computationally infeasible (as is
the case with massive data sets), we proceed from the pairwise co-occurrence
matrices for each of the modes. Thus, we construct three matrices. The first
matrix contains mode 1 cross-classified by mode 2, the second matrix contains
mode 2 cross-classified by mode 3, and the third matrix contains mode 1 cross-
classified by mode 3. Admittedly, aggregating over the three-way data means
that we throw away a lot of information, but this allows us to represent three-
way data in a concise manner, and – as will be shown – the latent three-way
structure will still be retrievable.

We now apply nmf to the three matrices, but we interleave the separate fac-
torizations: the results of the former iteration is used to initialize the subsequent
iteration of the next matrix. This implies that we need to initialize only one
matrix at random; the others are initialized by calculations of the previous step.
The process is represented graphically in figure 1.

Fig. 1. A graphical representation of the extended nmf

In the example in figure 1, matrix H is initialized at random, and the update
of matrix W is calculated. The result of update W is then used to initialize
matrix V , and the update of matrix G is calculated. This matrix is used again
to initialize matrix U , and the update of matrix F is calculated. This matrix can
be used to initialize matrix H, and the process is repeated until convergence.



The set-up of the algorithm leaves some room for variation, depending on
which matrix we initialize at random, and which matrices we calculate by using
the update rules. These variations do not seem to influence the algorithm vitally.

4 Application: Word Sense Discrimination

4.1 Introduction

Many words used in natural language are ambiguous: they have various senses.
Traditional algorithms dealing with semantic similarity cannot cope with this
ambiguity.1 By using the extended nmf algorithm presented in 3.2, both ‘bag
of words’ data and syntactic data can be classified according to topical dimen-
sions. The use of three way data allows one to determine which dimension(s) are
responsible for a certain sense of a word, and adapt the corresponding feature
vector accordingly, ‘subtracting’ one sense to discover another one. The intu-
ition in this is that the syntactic features of the syntax-based approach can be
disambiguated by the topical dimensions found by the bag of words approach.

4.2 Basic nmf

nmf can be straightforwardly applied to create semantic word models. In the
example underneath, nmf is applied to a frequency matrix, containing bag of
words co-occurrence data. The additive property of nmf ensures that semantic
dimensions emerge, according to which the various words can be classified. Two
sample dimensions are shown in example (1). For each dimension, the words with
the largest value on that dimension are given. Dimension (a) can be qualified as
a ‘transport’ dimension, and dimension (b) as a ‘cooking’ dimension.

(1) a. bus ‘bus’, taxi ‘taxi’, trein ‘train’, halte ‘stop’, reiziger ‘traveler’, per-

ron ‘platform’, tram ‘tram’, station ‘station’, chauffeur ‘driver’, pas-

sagier ‘passenger’
b. bouillon ‘broth’, slagroom ‘cream’, ui ‘onion’, eierdooier ‘egg yolk’,

laurierblad ‘bay leaf’, zout ‘salt’, deciliter ‘decilitre’, boter ‘butter’,
bleekselderij ‘celery’, saus ‘sauce’

4.3 Extended nmf

Since we are interested in the classification of nouns according to both ‘bag-
of-words’ context and syntactic context, we first construct three matrices that
capture the co-occurrence frequency information for each mode. The first ma-
trix contains co-occurrence frequencies of nouns cross-classified by dependency

1 By traditional algorithms, we mean algorithms that calculate the semantic similarity
of words according to their distributional similarity – the context in which they
appear. Vectors are created for each word, and the similarity is calculated in vector
space. For a detailed description, see [15].



relations, the second matrix contains co-occurrence frequencies of nouns cross-
classified by words that appear in the noun’s context window, and the third ma-
trix contains co-occurrence frequencies of dependency relations cross-classified
by co-occurring context words.2

In (2), an example is given of the kind of semantic dimensions found. This
dimension may be coined the ‘transport’ dimension, as is shown by the top 10
nouns (a), context words (b) and syntactic relations (c).

(2) a. auto ‘car’, wagen ‘car’, tram ‘tram’, motor ‘motorbike’, bus ‘bus’,
metro ‘subway’, automobilist ‘driver’, trein ‘trein’, stuur ‘steering
wheel’, chauffeur ‘driver’

b. auto ‘car’, trein ‘train’, motor ‘motorbike’, bus ‘bus’, rij ‘drive’, chauf-

feur ‘driver’, fiets ‘bike’, reiziger ‘reiziger’, passagier ‘passenger’, ver-

voer ‘transport’
c. viertrapsadj ‘four pedal’, verplaats metobj ‘move with’, toeteradj ‘honk’,

tank in houdobj [parsing error], tanksubj ‘refuel’, tankobj ‘refuel’, rij -
voorbijsubj ‘pass by’, rij voorbijadj ‘pass by’, rij afsubj ‘drive off’,
peperduuradj ‘very expensive’

4.4 Sense Subtraction

Next, we want to use the factorization that has been created in the former step
for word sense discrimination. The intuition is that we ‘switch off’ one dimension
of an ambiguous word, to reveal possible other senses of the word. From matrix
H, we know the importance of each syntactic relation given a dimension. With
this knowledge, we can ‘subtract’ the syntactic relations that are responsible for
a certain dimension from the original noun vector:

−→v new = −→v orig(
−→
1 −
−→
h dim) (4)

Equation 4 multiplies each feature (syntactic relation) of the original noun
vector (−→v orig) with a scaling factor, according to the load of the feature on the

subtracted dimension (
−→
h dim – the vector of matrix H containing the dimension

we want to subtract).
−→
1 is a vector of ones, the size of

−→
h dim.

In what follows, we will talk about semantic dimensions as, e.g., the ‘music’
dimension or the ‘city’ dimension. In the vast majority of the cases, the dimen-
sions are indeed as clear-cut as the transport dimension shown above, so that
the dimensions can be rightfully labeled this way.

Two examples are given of how the semantic dimensions that have been
found can be used for word sense discrimination. We will consider two ambiguous
nouns: pop, which can mean ‘pop music’ as well as ‘doll’, and Barcelona, which
can designate either the Spanish city or the Spanish football club.

2 Dependency relations of the noun apple might be ‘object of eat ’ and ‘adjective red ’.
Context words appearing in apple’s context window might be words like tree and
basket.



First, we look up the top dimensions for each noun. Next, we successively
subtract the dimensions dealing with a particular sense of the noun, as described
in 4.4. This gives us three vectors for each noun: the original vector, and two
vectors with one of the dimensions eliminated. For each of these vectors, the top
ten similar nouns are given, in order to compare the changes brought about.

(3) a. pop, rock, jazz, meubilair ‘furniture’, popmuziek ‘pop music’, heks ‘witch’,
speelgoed ‘toy’, kast ‘cupboard’, servies ‘[tea] service’, vraagteken ‘question
mark’

b. pop, meubilair ‘furniture’, speelgoed ‘toy’, kast ‘cupboard’, servies ‘[tea]
service’, heks ‘witch’, vraagteken ‘question mark’ sieraad ‘jewel’, sculptuur

‘sculpture’, schoen ‘shoe’
c. pop, rock, jazz, popmuziek ‘pop music’, heks ‘witch’, danseres ‘dancer’,

servies ‘[tea] service’, kopje ‘cup’, house ‘house music’, aap ‘monkey’

Example (3) shows the top similar words for the three vectors of pop. In
(a), the most similar words to the original vector are shown. In (b), the top
dimension (the ‘music dimension’) has been subtracted from (a), and in (c), the
second highest dimension (a ‘domestic items’ dimension) has been subtracted
from (a).

The differences between the three vectors are clear: in vector (a), both senses
are mixed together, with ‘pop music’ and ‘doll’ items interleaved. In (b), no more
music items are present. Only items related to the doll sense are among the top
similar words. In (c), the music sense emerges much more clearly, with rock, jazz

and popmuziek being the most similar, and a new music term (house) showing
up among the top ten.

Admittedly, in vector (c), not all items related to the ‘doll’ sense are filtered
out. We believe this is due to the fact that this sense cannot be adequately
filtered out by one dimension (in this case, a dimension of ‘domestic items’
alone), whereas it is much easier to filter out the ‘music’ sense with only one
‘music’ dimension. We will try to remedy this in our clustering framework, in
which it is possible to subtract multiple dimensions related to one sense.

A second example, the ambiguous proper name Barcelona, is given in (4).

(4) a. Barcelona, Arsenal, Inter, Juventus, Vitesse, Milaan ‘Milan’, Madrid, Par-

ijs ‘Paris’, Wenen ‘Vienna’, München ‘Munich’
b. Barcelona, Milaan ‘Milan’, München ‘Munich’, Wenen ‘Vienna’, Madrid,

Parijs ‘Paris’, Bonn, Praag ‘Prague’, Berlijn ‘Berlin’, Londen ‘London’
c. Barcelona, Arsenal, Inter, Juventus, Vitesse, Parma, Anderlecht, PSV,

Feyenoord, Ajax

In (a), the two senses of Barcelona are clearly mixed up, showing cities as
well as football clubs among the most similar nouns. In (b), where the ‘football
dimension’ has been subtracted, only cities show up. In (c), where the ‘city
dimension’ has been subtracted, only football clubs remain.



4.5 A Clustering Framework

The last step is to determine which dimension(s) are responsible for a certain
sense of the word. In order to do so, we embed our method in a clustering
approach. First, a specific word is assigned to its predominant sense (i.e. the
most similar cluster). Next, the dominant semantic dimension(s) for this cluster
are subtracted from the word vector (equation 4), and the resulting vector is
fed to the clustering algorithm again, to see if other word senses emerge. The
dominant semantic dimension(s) can be identified by ‘folding in’ the cluster
centroid into our factorization (so we get a vector −→w of dimension size r), and
applying a threshold to the result (in our experiments a threshold of δ = .05 —
so dimensions responsible for > 5% of the centroid are subtracted).

We used a standard k-means algorithm to create the initial cluster centroids.
The initial vectors to be clustered are adapted with pointwise mutual information
[16].

In (5), an example of our clustering algorithm with initial k-means clusters is
given. The example shows three different clusters to which the noun werk ‘work’
is assigned. In (a), werk refers to a work of art. In (b), it refers to a written work.
In (c), the ‘labour’ sense of werk emerges.

(5) a. werk ‘work’ beeld ‘image’ foto ‘photo’ schilderij ‘painting’ tekening ‘draw-
ing’ doek ‘canvas’ installatie ‘installation’ afbeelding ‘picture’ sculptuur

‘sculpture’ prent ‘picture’ illustratie ‘illustration’ handschrift ‘manuscript’
grafiek ‘print’ aquarel ‘aquarelle’ maquette ‘scale-model’ collage ‘collage’
ets ‘etching’

b. werk ‘work’ boek ‘book’ titel ‘title’ roman ‘novel’ boekje ‘booklet’ debuut

‘debut’ biografie ‘biography’ bundel ‘collection’ toneelstuk ‘play’ bestseller

‘bestseller’ kinderboek ‘child book’ autobiografie ‘autobiography’ novelle

‘short story’
c. werk ‘work’ voorziening ‘service’ arbeid ‘labour’ opvoeding ‘education’ kin-

deropvang ‘child care’ scholing ‘education’ huisvesting ‘housing’ faciliteit

‘facility’ accommodatie ‘acommodation’ arbeidsomstandigheid ‘working con-
dition’

4.6 Evaluation

Methodology The clustering results are evaluated according to Dutch Eu-
roWordNet [17]. Precision and recall are calculated by comparing the results to
EuroWordNet synsets. The precision is the number of clusters found that cor-
respond to an actual sense of the word. Recall is the number of word senses
in EuroWordNet that are found by the algorithm. Our method is compared to
Pantel and Lin’s [18].

Both precision and recall are based on wordnet similarity. A number of simi-
larity measures have been developed to calculate semantic similarity in a hierar-
chical wordnet. Among these measures, the most important are Wu & Palmer’s
[19], Resnik’s [20] and Lin’s [21]. In this evaluation, Wu & Palmer’s [19] measure
will be adopted.



To calculate precision, we apply the same methodology as Pantel and Lin
[18].3 Let S(w) be the set of EuroWordNet senses. simW (s, u), the similarity
between a synset s and a word u is then defined as the maximum similarity
between s and a sense of u:

simW (s, u) = max
tǫS(u)

sim(s, t) (5)

Let ck be the top k-members of a cluster c, where these are the k most similar
members to the centroid of c. simC(c, s), the similarity between s and c, is then
defined as the average similarity between s and the top-k members of c:

simC(s, c) =

∑

uǫck

simW (s, u)

k
(6)

An assigment of a word w to a cluster c can now be classified as correct if

max
sǫS(w)

simC(s, c) > θ (7)

and the EuroWordNet sense of w that corresponds to c is

arg max
sǫS(w)

simC(s, c) (8)

When multiple clusters correspond to the same EuroWordNet sense, only one
of them is counted as correct.

Precision of a word w is the percentage of correct clusters to which it is
assigned. Recall of a word w is the percentage of senses from EuroWordnet that
have a corresponding cluster.4 Precision and recall of a clustering algorithm is
the average precision and recall of all test words.

Experimental Design We have applied the interleaved nmf presented in sec-
tion 3.2 to Dutch, using the Twente Nieuws Corpus [22], containing > 500M
words of Dutch newspaper text. The corpus is consistently divided into para-
graphs, which have been used as the context window for the bag of words mode.
The corpus has been parsed by the Dutch dependency parser Alpino [23], and
dependency triples have been extracted. Next, the three matrices needed for our
method have been constructed: one containing nouns by dependency relations
(5K × 80K), one containing nouns by context words (5K × 2K) and one contain-
ing dependency relations by context words (80K × 2K). We did 200 iterations of

3 Note, however, that our similarity measure is different. Where Pantel and Lin use
Lin’s [21] measure, we use Wu and Palmer’s [19] measure.

4 Our notion of recall is slightly different from the one used by Pantel and Lin, as they
use ‘the number of senses in which w was used in the corpus’ as gold standard. This
information, as they acknowledge, is difficult to get at, so we prefer to use the sense
information in EuroWordNet.



the algorithm, factorizing the matrices into 50 dimensions. The nmf algorithm
has been implemented in Matlab.

For the evaluation, we use all the words that appear in our original clustering
input as well as in EuroWordNet. This yields a test set of 3683 words.

Results Table 1 shows precision and recall figures for three different algorithms,
according to various similarity thresholds θ (equation 7). kmeansnmf describes
the results of our algorithm with k-means clusters, as described in section 4.5.
For comparison, we have also included the results of the original cbc algorithm
(cbcorig) as described by Pantel and Lin [18] – considered the state-of-the-art
algorithm for word sense discrimination – and the results of a standard k-means
clustering (kmeansorig, k = 600), in which each word is only assigned to its
predominant sense.

threshold θ

.40 (%) .50 (%) .60 (%) .70 (%)

kmeansnmf prec. 78.97 69.18 55.16 39.01
rec. 63.90 55.95 44.77 31.72

cbcorig prec. 44.94 38.13 29.74 21.61
rec. 69.61 60.00 48.00 35.87

kmeansorig prec. 86.13 74.99 58.97 41.54
rec. 60.23 52.45 41.80 29.88

Table 1. Precision and recall for three different algorithms according to various simi-
larity thresholds

The results show the same tendency across all similarity thresholds: kmeansnmf

has a high precision, but lower recall compared to cbcorig. Still the recall is
higher compared to standard k-means, which indicates that the algorithm is
able to find multiple senses of nouns, with high precision.

Obviously, kmeansorig scores best with regard to precision, but worse with
regard to recall. cbcorig finds most senses (highest recall), but precision is con-
siderably worse.

The fact that recall is already quite high with standard k-means clustering
indicates that the evaluation is skewed towards nouns with only one sense, pos-
sibly due to a lack of coverage in EuroWordNet. In future work, we specifically
want to evaluate the discrimination of ambiguous words. Also, we want to make
use of the new Cornetto Database5, a successor of EuroWordNet for Dutch which
is currently under development.

Still, the evaluation shows that our method provides a genuine way of finding
multiple senses of words, while retaining high precision. The three way data

5 http://www.let.vu.nl/onderzoek/projectsites/cornetto/index.html



factorization allows the algorithm to put its finger on the particular sense of a
centroid, and adapt the feature vector of a possibly ambiguous noun accordingly.

In order to compare the performance of the different algorithms, the F-
measure has been calculated, which combines precision and recall. Table 2 shows
two variants of the F-measure for similarity threshold θ = .50. F1 is the standard
F-measure, giving equal weight to recall and precision. F2 weighs recall twice as
much as precision (reflecting the importance of finding the multiple senses of a
word).

F1 (%) F2 (%)

kmeansnmf 61.86 58.17
cbcorig 46.63 53.82
kmeansorig 61.73 55.80

Table 2. F-measures for three different algorithms (similarity threshold θ = .50)

When precision and recall are weighed equally (F1) kmeansnmf and kmeansorig

score about the same, both outperforming cbcorig by ± 15 %. But when we em-
phasize the induction of multiple word senses (F2 - recall is twice as important
as precision), kmeansnmf clearly outperforms both other algorithms.

5 Conclusion

In this paper, an extension of nmf has been presented that is able to deal with
three-way data in an efficient way. Whereas full-fledged three-way factorization
algorithms run into computational problems for massive data sets, our algorithm
– calculating the pairwise co-occurrence data for each mode separately – is com-
putationally efficient, while retaining the three-way structure that is present in
the data.

The approach has been applied to the problem of word sense discrimination,
and the results indicate that the algorithm is able to capture the latent three-
way structure present in the data; the combination of bag of words data and
syntactic data allows one to determine which dimension(s) are responsible for a
certain sense of a word, and adapt the corresponding feature vector accordingly,
‘subtracting’ one sense to discover another one. When embedded in a cluster-
ing framework, the method provides a fully automatic way to discriminate the
various senses of words. The evaluation against EuroWordNet shows that the
algorithm is genuinely able to disambiguate the features of a given word, and
accordingly its word senses.



References

1. Pearson, K.: On lines and planes of closest fit to systems of points in space.
Philosophical Magazine 2(6) (1901) 559–572

2. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: 5. In: Singular Value Decomposition
and Principal Component Analysis. Kluwel, Norwell, MA (Mar 2003) 91–109

3. Landauer, T., Dumais, S.: A solution to Plato’s problem: The Latent Semantic
Analysis theory of the acquisition, induction, and representation of knowledge.
Psychology Review 104 (1997) 211–240

4. Landauer, T., Foltz, P., Laham, D.: An Introduction to Latent Semantic Analysis.
Discourse Processes 25 (1998) 295–284

5. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, Massachussets (2000)

6. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of Uncertainty in
Artificial Intelligence, UAI’99, Stockholm (1999)

7. Kiers, H., van Mechelen, I.: Three-way component analysis: Principles and illus-
trative application. Psychological Methods (6) (2001) 84–110

8. Harshman, R.: Foundations of the parafac procedure: models and conditions for an
”explanatory” multi-mode factor analysis. In: UCLA Working Papers in Phonetics.
Volume 16., Los Angeles, University of California (1970) 1–84

9. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional
scaling via an n-way generalization of ”eckart-young” decomposition. Psychome-
trika (35) (1970) 283–319

10. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika
(31) (1966) 279–311

11. De Lathauwer, L., Moor, B.D., Vandewalle, J.: A multilinear singular value de-
composition. SIAM Journal on Matrix Analysis and Applications 21(4) (2000)
1253–1278

12. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Ten-
sorfaces. In: ECCV. (2002) 447–460

13. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to
statistics and computer vision. In: ICML ’05: Proceedings of the 22nd international
conference on Machine learning, New York, NY, USA, ACM (2005) 792–799

14. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
NIPS. (2000) 556–562

15. Van de Cruys, T.: Semantic clustering in dutch. In Sima’an, K., et al., eds.: Pro-
ceedings of the Sixteenth Computational Linguistics in the Netherlands (CLIN),
University of Amsterdam 17–32

16. Church, K.W., Hanks, P.: Word association norms, mutual information & lexicog-
raphy. Computational Linguistics 16(1) (1990) 22–29

17. Vossen, P., et al.: Eurowordnet, building a multilingual database with wordnets
for several european languages website.

18. Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
New York, NY, USA, ACM Special Interest Group on Knowledge Discovery in
Data, ACM Press (2002) 613–619

19. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd. Annual Meeting
of the Association for Computational Linguistics, New Mexico State University, Las
Cruces, New Mexico (1994) 133–138



20. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI. (1995) 448–453

21. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of
coling/acl 98, Montreal, Canada (1998)

22. Ordelman, R.: Twente Nieuws Corpus (TwNC) (August 2002) Parlevink Language
Technology Group. University of Twente.

23. van Noord, G.: At Last Parsing Is Now Operational. In Mertens, P., Fairon,
C., Dister, A., Watrin, P., eds.: TALN06. Verbum Ex Machina. Actes de la 13e
conference sur le traitement automatique des langues naturelles, Leuven (2006)
20–42


