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Abstract. We extend the multi-label classification setting with con-
straints on labels. This leads to two new machine learning tasks: First,
the label constraints must be properly integrated into the classification
process to improve its performance and second, we can try to automat-
ically derive useful constraints from data. In this paper, we experiment
with two constraint-based correction approaches as post-processing step
within the ranking by pairwise comparison (RPC)-framework. In addi-
tion, association rule learning is considered for the task of label con-
straints learning. We report on the current status of our work, together
with evaluations on synthetic datasets and two real-world datasets.

1 Introduction

Multi-label classification is the problem of assigning a subset of all possible
labels to each instance. Based on a number of training instances for which this
association is known, the learning task is to infer a function that predicts a
suitable subset of relevant labels for a new instance. This tasks occurs frequently
in application areas like text categorization [13–15], multimedia classification [4,
17], or bioinformatics [9, 8]. An excellent survey of the field can be found in [18], a
variety of resources, including benchmark datasets, at http://mlkd.csd.auth.
gr/multilabel.html.

A straight-forward approach for addressing multi-label classification is to
model each class independently. In the binary relevance approach, one binary
classifier is trained for each possible label, in which all training examples for
which the label is relevant are used as positives examples and all other examples
as negative examples. However, in most real-world applications the predicted
labels are not independent, so that the presence of one label may be indicative
for other labels.

For this reason, several authors have extended the binary relevance approach
to allow for incorporating dependencies between labels. For example, Crammer
and Singer [7] have proposed a training scheme for a binary relevance classifier
that does not optimize the 0/1-loss of each individual label, but instead opti-
mizes a given ranking loss function over the entire one-against-all ensemble. Loza
Menćia and Fürnkranz [16] have shown that this approach is outperformed by



training a one-against-one ensemble, i.e., by having one classifier for each pair
of labels.

In many applications, there are explicit constraints that must hold between
the labels. For example, in the context of hierarchical classification, the presence
of one label in the hierarchy often also implies the presence of all its ancestors.
This situation can be modeled by a subset constraint, which specifies that when-
ever label λi is predicted as relevant, we must also predict λj . Similarly, one
can imagine exclusion constraints specifying that two labels λi and λj cannot be
relevant at the same time. A typical example of this case would be if the possible
set of labels contains labels of several orthogonal dimensions, each having a set
of mutually exclusive labels.

In this paper, we make two contributions: first, we will formally define the
problem of multi-label learning with constraints and demonstrate the potential
of this scenario on a simulated application with known constraints (Section 3).
Second, we will evaluate an automated approach for discovering possible con-
straints on several well-known multi-label datasets (Section 4). Interestingly, we
will see that in the automated approach, our results are mostly negative and
cannot live up to the demonstrated potential on the artificial datasets.

2 Pairwise Multi-Label Classification

We will start with a brief recapitulation of multi-label classification, of pairwise
classification techniques for tackling multi-label ranking and multi-label classifi-
cation problems, and of multi-label and ranking loss functions.

2.1 Multi-Label Classification

Let L = {λi | i = 1 . . .m} be a set of labels and X = {xk | k = 1 . . . n} be a set of
instances, which are typically represented as feature vectors. Each instance xk

is associated with a set of relevant labels L+
xk
⊆ L. The set of irrelevant labels is

denoted as L−xk
= L\L+

xk
. If it is clear from the context, that the same instance

xk is addressed, we will omit the index for convenience.
The task of multi-label classification is to find a function f : X → 2L,

which takes as input an instance x and returns a set of labels L̃+
x ⊆ L as

output. This function f should minimize the empirical risk for some loss function
l : 2L × 2L → R+

0 . ∑
x∈X

l(f(x), L+
x ) =

∑
x∈X

l(L̃+
x , L+

x )

2.2 Multi-Label Ranking by Pairwise Comparison

In this work, we tackle the multi-label classification task within the ranking
by pairwise comparison (RPC) framework [12], which addresses problems with
structured output spaces by decomposing the problem into pairwise binary clas-
sifiers, one for each pair of classes, and combining their predictions, typically by



a voting-based aggregation scheme. We assume the simplest scenario, in which
each of the pairwise subproblems {pi,j |1 ≤ i < j ≤ m} returns a simple binary
prediction pi,j : X → {0, 1}, which is interpreted as an unweighted vote for one
of its two classes. These votes can be interpreted as pairwise preferences, i.e., the
prediction pi,j = 1 may be interpreted as a preference statement λi � λj , which
means that label λi is preferred over λj . Conversely, the prediction pi,j = 0 is
interpreted as λj � λi.

At classification time, we will combine the predictions of the base classifiers
pi,j with simple unweighted voting. Let t = m(m−1)

2 be the number of pairwise
preferences respectively base classifiers for m labels, and let Sm be the space
of all permutations of L.1 Function a : {0, 1}t → Sm is the so called aggrega-
tion function, which combines all results of the decomposed subproblems to one
result. Given pi,j and a, function f has the following form:

f := g(a({pi,j})) (1)

where g(.) is a threshold function that separates the label ranking into relevant
and irrelevant labels.

Let v : L → N+
0 be the function which counts the votes of one label λi.

v(λi) :=
∑

i<j≤m

pi,j +
∑

1≤j<i

(1− pj,i) (2)

then voting aggregation is defined by:

a({pi,j}) = τ = (λ∗1, λ
∗
2, . . . , λ

∗
m) with v(λ∗i ) ≥ v(λ∗i+1), ∀i = 1 . . .m− 1 (3)

2.3 Calibrated Label Ranking

To convert the resulting ranking of labels into a multi-label prediction, we use
the calibrated label ranking approach [5, 10]. This technique avoids the need for
learning a threshold function g : Sm → L+ for separating relevant from irrelevant
labels, which is often performed as a post-processing phase after computing a
ranking of all possible classes. The key idea is to introduce an artificial calibration
label λ0, which represents the split-point between relevant and irrelevant labels.
Thus, it is assumed to be preferred over all irrelevant labels, but all relevant
labels are preferred over λ0. As it turns out, the resulting m additional binary
classifiers { pi,0 | i = 1 . . .m} are identical to the classifiers that are trained by
the binary relevance approach. Thus, each classifier pi,0 is trained in a one-
against-all fashion by using the whole dataset with {x | i ∈ L+

x } ⊆ X as positive
examples and {x | i ∈ L−x } ⊆ X as negative examples. At prediction time, we will
thus get a ranking over m + 1 labels (the m original labels plus the calibration
label). Then, the projection of voting aggregation of pairwise preferences with a
calibrated label to a multi-label output is quite straight-forward:

L̃+ = {λ | v(λ) > v(λ0)} ⊆ L

1 Note that we will synonymously use the terms permutation and ranking, so Sm is
also the space of all rankings consisting of L.



or
g((λ∗1, λ

∗
2, . . . , λ

∗
m)) := {λ∗i | i < τ(λ0)}

where τ : L → N+
0 is a function which returns for a given label λ its position

within the ranking τ .

2.4 Ranking and Multi-Label Loss Functions

In order to evaluate the predicted calibrated label-ranking we use different rank-
ing and multi-label losses. The losses are computed comparing the ranking with
the true set of relevant labels, each of them focusing on different aspects. For a
given instance x, a relevant label set L+, a negative label set L− = L\L+ and a
given predicted ranking τ the different loss functions are computed as follows:

RankingErr The normalized ranking error loss returns the normalized sum of
squared position differences for each label in the predicted and true ranking.
It is 0 for a ranking which is identical to the true ranking and 1 for a complete
reversed ranking. Let τ∗ be the true ranking.

lRankingErr =
∑
λ∈L

|τ∗(λ)− τ(λ)|2

This loss corresponds to the Spearman rank correlation between two rank-
ings.

ErrSetSize The error set size loss returns the number of pairs of labels which
are not correctly ordered.

E = {(λ, λ′) | τ(λ) > τ(λ′)} ⊆ L+ × L−

lErrSetSize = |E|

It corresponds to Kendall’s τ , which measures the correlation between two
rankings.

Margin The margin loss returns the number of positions between the worst
ranked relevant and the best ranked irrelevant label. This is directly related
to the number of wrongly ranked labels, i.e. the relevant labels that are
ordered below a irrelevant label, or vice versa. We denote this set by F .

F = {(λ ∈ L+ | τ(λ) > τ(λ′), λ′ ∈ L−} ∪ {(λ′ ∈ L− | τ(λ) > τ(λ′), λ′ ∈ L+}
lMargin = max(0,max{τ(λ) |λ ∈ L+} −min{τ(λ′) |λ′ /∈ L+})

AvgP Average precision is commonly used in information retrieval and com-
putes for each relevant label the percentage of relevant labels among all labels
that are ranked before it, and averages these percentages over all relevant
labels. In order to bring this loss in line with the others so that an optimal
ranking is 0, we revert the measure.

lAvgP = 1− 1
|L+|

∑
λ∈L+

|{λ∗ ∈ L+ | τ(λ∗) ≤ τ(λ)}|
τ(λ)



3 Multi-Label Classification with Label Constraints

In this section, we describe the definition of constraints, and define straight-
forward algorithms for correcting predictions that violate these constraints.

3.1 Definition of Label Constraints

In addition to the ordinary multi-label classification setting, we assume that we
are given a set of constraints C = {ci | i = 1 . . . p} on the labels L. In this paper,
we consider two types of constraints: subset and exclusion constraints.

Subset constraints λi . λj denote that if label λi is relevant for a given in-
stance x than λj has to be also relevant. Formally,

λi . λj := λi ∈ L+ → λj ∈ L+ (4)

Exclusion constraints λi ‖ λj denote that for all instances, labels λi and λj

exclude each other, i.e., the two labels cannot be relevant or irrelevant at
the same time. Formally,

λi ‖ λj := (λi ∈ L+ ↔ λj ∈ L−) ∨ (λi ∈ L− ↔ λj ∈ L+) (5)

We call subset or exclusion constraints pairwise if they have only one label
on each side of their rule, and denote the space of all pairwise constraints for a
given set of labels L as C2(L).

There are several other ways to define constraint types on labels for the multi-
label setting. For example, one could also consider the following four types of
constraints:

λi B λj := λi ∈ L+ → λj ∈ L+

λi I λj := λi ∈ L− → λj ∈ L−

λi B λj := λi ∈ L+ → λj ∈ L−

λi I λj := λi ∈ L− → λj ∈ L+

Combined with logical connectors, these four basic constraints can represent
a wide variety of constraints. For example, an exclusion constraint λi ‖ λj may
be viewed as a disjunction of the four constraints (λiBλj)∨ (λiIλj)∨ (λjBλi)∨
(λjIλi)

Such constraints are quite similar to instance-level constraints that have
been explored in semi-supervised or constraint-based clustering [19, 20, 2], only
that we define constraints between different labels (known groups of instances),
whereas the constraints for semi-supervised clustering are defined between in-
stances (e.g., this pair of instances must (not) belong to the same cluster).



3.2 Constraint-Based Correction of Predictions

Basically, label constraints can be integrated into the learning phase or testing
phase of multi-label classification. Within the RPC framework, pairwise subset
constraints like λi B λj could be easily modelled in the learning phase, i.e. by
substituting the pairwise preference p1,2 with a constant function, which returns
always 1. Therefore, this specific preference woulds always prefer λj and would
not have to be learned anymore. However, this approach does not guarantee that
the constraint is respected in the final prediction, because individual preferences
may be over-ridden in the aggregation phase. Thus, we focus on integrating label
constraints into the aggregation phase, where the predictions of the individual
classifiers are combined.

Hence, we interpret the given constraints as immutable hard constraints,
which must be respected by the final multi-label prediction. In addition, the
predicted pairwise preferences are interpreted as soft constraints, which should
be respected as well, but may be violated if necessary. These altering should be
minimal for some distance measure. We consider two possible measures. First,
the number of preference swappings that are needed to make the predicted pref-
erences conform to the final prediction, and second, the number of neighboring
label swappings in the predicted ranking. Our algorithm starts with an invalid
predicted ranking and searches for a valid ranking which can be constructed by
a minimal amount of preference or neighbor label swappings.

Algorithm 1: PrefSwap

Input: Constraints C, pairwise preferences P , invalid ranking τ0

Output: a set of valid rankings best with minimum number of preference
swappings

best = {} ;
candidates = {τ0};
evaluated = {};
repeat

newCandidates = {};
foreach c ∈ candidates do /* expand new rankings */

foreach p ∈ P do /* by iterating preferences */
τnew = c.swapPreference(p);
if τnew /∈ evaluated then /* enqueue only new rankings */

newCandidates = newCandidates ∪ {τnew};

foreach τ ∈ newCandidates do /* check constraints */

if τ is valid then
best = best ∪ {τ};

evaluated = evaluated ∪ candidates ∪ newCandidates;
candidates = newCandidates;

until best 6= {} or newCandidates = {} ;



Minimizing Preference Swappings (PS) The preference swappings mea-
sure is motivated by the assumption that an invalid ranking is caused by a few
incorrectly predicted pairwise preferences. Errors among the pairwise base clas-
sifiers are assumed to be independent. If we denote Sm(C) as all permutations
respectively rankings with m = |L| which satisfy C, and denote with P the set
of pairwise preferences, then our distance measure can be formulated as:

dPS = |P | − max
P1∈Sm

|P1 ∩ P | with a(P1) ∈ Sm(C)

Our implementation of finding a PS-minimal ranking is based on breadth-first
search, and is presented as pseudocode in algorithm 1. We start with an invalid
predicted ranking τ0. For every possible pairwise preference p ∈ {pi,j | 1 ≤ i <
j ≤ m}, the ranking τnew is generated, which yields by swapping followed by
voting-aggregation. Then, to avoid multiple checks of the same ranking, only
new rankings are appended to the newCandidates queue. After this expanding
step, the candidate rankings τn ∈ newCandidates are checked if any satisfy the
given constraints. If one ranking is determined as valid, the search process does
not stop but all remaining rankings in the queue will still be processed. We refer
to this scheme in the further text as PS. Note that the elements in newCandidates
represent rankings of the same level, the actual highest depth. So, all rankings
τ ∈ newCandidates, which satisfy the constraints, are equal in terms of swapped
preferences. If the PS-minimal ranking is not unique further selection criterions
are evaluated, which are described later.

Minimizing Neighbor-Label Swappings (NLS) Neighbor label swapping
is motivated by the fact that swapping one preference yields at most to a swap-
ping of two labels in the ranking, whose position difference is 1. We refer these
label pairs as neighboring or adjacent. However, many swappings of individual
preferences will not yield a change in the predicted ranking. So as an approx-
imation, one can use the needed swappings of neighbor or adjacent labels as
a minimizing criteria. In another view, minimizing NLS directly relates to one
valid ranking with minimal RankingErr to the predicted ranking. If we denote
τ0 as the predicted ranking and k : Sm ×m− 1 → Sm as the swapping function
k((λ1, . . . , λm), n) = (λ1, . . . , λn−1, λn+1, λn, . . . , λm) then the measure can be
formulated as:

dNLS = arg min
n∈N+

0

<yn > with k(. . . k(k(τ0, y1), y2) . . . , yn) ∈ Sm(C)

The algorithm to minimize Neighbor-Label Swappings (NLS) is a straight-
forward adaption of PrefSwap, which iterates through all neighboring labels
rather than through all pairwise preferences. Note that this scheme has a linear
(in the number of labels) branching factor and PrefSwap a quadratic one.

Comparing and Tie-Breaking Given dmin = minτi∈Sm dPS(τ0, τi) and sev-
eral valid rankings τj with dPS(τ0, τj) = dmin, we choose RankingErr as first



AB|CD

BA|CD A|BCD ABC|D AB|DC

Fig. 1. A simple example of constraint correction by neighbor label swapping. The pre-
dicted invalid ranking is (AB|CD) and the constraint set consists of only one element :
B B C. NLS expands the initial ranking and returns two valid rankings. Dashed nodes
represent invalid and solid nodes valid rankings.

criterion to further distinguish among them. This is consistent with the objec-
tive to minimize the changes of the initial invalid predicted ranking to satisfy
some given constraints. NLS-minimized rankings omit this step, since they are
by construction equal with respect to RankingErr.

There are cases in which this criterion is still equal for some rankings, see for
example Fig. 1. Suppose the predicted ranking2 is τ0 = (AB|CD) and a domain
expert has specified the constraint c1 = B B C. The ranking τ0 does not satisfy
c1. It can be trivially repaired by swapping the position of the calibration label |
with one of its neighbors B or C, yielding the τ1 = (A|BCD) and τ2 = (ABC|D).
Both are equal with respect to the NLS distance. Two other rankings, (BA|CD)
and (AB|DC), can also be found at the same search depth, but these are invalid.

In order to decide for one of the two valid rankings, we first compute the
RankingErr with respect to the originally predicted ranking τ0. If this is also
equal between the candidates (as in our example), we check whether the direct
neighbors of the predicting split point violate the initial pairwise preferences.
Let sp = τi(λ0) be the position of the splitpoint within a ranking τi, then we
compute:

|P ∩ {λ0 � τ−1
i (sp − 1), λ0 ≺ τ−1

i (sp + 1)}|

So in other words, we count the number of wrongly ordered neighbor label pairs
which are direct above or below the splitpoint. We select the one with the lowest
number. Then if there are still ambiguous rankings, we select the one which
minimizes the disordered number for all m−1 neighbor label pairs, not only the
direct neighbors of the splitpoint. As a last separation step, a random selection
is applied.

2 We will use the notation τ0 = (AB|CD), where the labels are ordered according
to decreasing level of relevance (A is most relevant, D is least relevant), and the
splitpoint between relevant and irrelevant labels is indicated with a ”|”.



Table 1. Experiments on synthetic data generated with constraints C1.

error RankingErr ErrSetSize AvgP # viol.
VA PS NLS VA PS NLS VA PS NLS

0.05 0.025 0.024 0.026 0.055 0.048 0.053 0.008 0.007 0.007 0.10

0.10 0.053 0.052 0.054 0.171 0.165 0.166 0.025 0.025 0.024 0.17

0.15 0.085 0.086 0.088 0.329 0.318 0.321 0.043 0.041 0.041 0.23

0.20 0.125 0.126 0.128 0.556 0.545 0.548 0.072 0.070 0.070 0.27

0.25 0.168 0.169 0.171 0.813 0.800 0.799 0.080 0.097 0.096 0.31

0.30 0.227 0.227 0.228 1.251 1.235 1.235 0.144 0.142 0.140 0.34

Table 2. Experiments on synthetic data generated with constraints C2.

error RankingErr ErrSetSize AvgP # viol.
VA PS NLS VA PS NLS VA PS NLS

0.05 0.023 0.022 0.022 0.045 0.043 0.041 0.008 0.007 0.007 0.06

0.10 0.052 0.050 0.049 0.170 0.160 0.153 0.028 0.027 0.026 0.13

0.15 0.085 0.082 0.082 0.368 0.342 0.340 0.055 0.053 0.052 0.19

0.20 0.123 0.119 0.118 0.609 0.584 0.576 0.083 0.081 0.080 0.24

0.25 0.169 0.163 0.163 0.936 0.894 0.891 0.118 0.114 0.114 0.29

0.30 0.223 0.217 0.215 1.312 1.279 1.265 0.159 0.157 0.155 0.34

3.3 Experimental Evaluation

In the following, we show the results of the PS and NLS algorithms on artificial
data.

Data Generation Given a set of labels L = {1 . . .m} and a set of pairwise label
constraints C ⊆ C2(L), n random permutations τ1, . . . , τn ∈ Sm are generated,
which satisfy C. Each of the permutation τ is decomposed into the unique set
P = {pi,j | 1 ≤ i < j ≤ m} of binary pairwise preferences. For example, if
τ = (λ1, λ3, λ2) then P = {λ1 � λ2, λ1 � λ3, λ3 � λ2} is the associated set
of binary pairwise preferences. The classification error of the binary pairwise
classifiers is modeled by swapping a ratio (error = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3)
of the pairwise preferences.

Evaluation In a first experiment, we used two arbitrarily chosen constraint sets
on 6 labels (C1 = {1 . 2, 3 . 4, 4 . 5, 6 . 5} and C2 = {1 ‖ 2, 2 ‖ 5, 3 . 6}), and
generated n = 5000 training instances for each.

Table 1 and 2 show the results of the comparison between regular voting ag-
gregation (VA), and the constraint-based corrections PS and NLS. For each loss
function the values in the leftmost column are generated by voting-aggregation
without any constraint-based post-correction. The second and third column show
constraint-correction values based on preference swapping and neighbor label



Table 3. Experiments on 100 random synthetic datasets. For each loss function the left
values are generated by ordinary voting-aggregation. The right values show constraint-
correction values based on neighbor-label swapping.

error RankingErr ErrSetSize Margin AvgP # viol.
VA NLS VA NLS VA NLS VA NLS

0.05 0.0062 0.0059 0.0602 0.0488 0.0601 0.0488 0.0074 0.0065 0.11

0.10 0.0134 0.0126 0.1868 0.1562 0.1862 0.1554 0.0223 0.0196 0.20

0.15 0.0218 0.0207 0.3910 0.3393 0.3868 0.3350 0.0449 0.0402 0.27

0.20 0.0322 0.0307 0.6743 0.6053 0.6602 0.5903 0.0750 0.0686 0.33

0.25 0.0441 0.0423 1.0256 0.9462 0.9894 0.9080 0.1098 0.1024 0.37

0.30 0.0579 0.0561 1.4603 1.3765 1.3813 1.2930 0.1519 0.1439 0.41

swapping. The bold numbers describe the best values for a particular loss and
error combination. Margin error values are omitted for lack of space. Their
relations among the different aggregations schemes are anyway mostly identical
to the ErrSetSize values, more precisely, the aggregation scheme with the best
Margin value for a particular error is identical to the best one for ErrSet-
Size. For both set of constraints C1 and C2, PS or NLS tend to outperform VA,
but the results are not entirely conclusive.

To obtain a more thorough evaluation, we used 100 datasets with random
rankings for 6 labels, each with 5000 instances. The number of constraints was
also randomly selected from 2 to 5. These constraints were first checked for con-
sistency and finally evaluated for six error values (ε = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3).
The average losses and ratios of violated instances are shown in Table 3. In this
evaluation, only NLS was used as correction scheme, since its evaluation takes
significantly less time and its performance seem to be competitive to PS. The
values clearly show the superior performance of NLS-minimizing constraint cor-
rection compared to simple voting-aggregation. For each error - loss function
combination NLS outperforms the baseline.

4 Discovering Label Constraints from Data

In many domains, sensible label constraints may be available from background
knowledge about the target domain. However, even in domains in which such
knowledge is not readily available, one may try to automatically discover the
knowledge from data. In this section, we evaluate the use of association rule
learning algorithms for this purpose.

4.1 Association Rules as Constraints

We define the problem of discovering label constraints in the data as an associa-
tion rule learning problem. We construct one item set for each training example
xi, which consists of the set of relevant labels L+

i . We then use a association rule



learner to discover rules of the form

λi1 . . . λib
→ λj

with b labels in the antecedent and one label in the consequent. Negation can be
handled by including negative labels of the form −λk with the semantic λk ∈ L−

into the itemsets. Thus, each example is associated with an itemset of length m,
one item for each label denoted either as λk or −λk.

Typical association rule learning algorithms tend to generate redundant rules.
These are justified in their original main application areas, i.e. market basket
analysis, since their main goal is to find (all) interesting rules or relations between
items rather than a compact set of rules. However, for our purpose, to use asso-
ciation rules as constraints, these redundant rules lead to unnecessary runtime
growth. In this work we understand redundancy in the sense of inductive rule
learning. We are thus interested in generating rules with minimal antecedent,
as opposed to, e.g., closed itemset mining which considers rules with maximal
antecedent [11].

A rule A → B consisting of body (antecedent) A and head (consequent) B
is redundant with respect to rule C → B if C is a subset of A. If a rule is more
specific than another, it is unnecessary to check, because the more general rule
will be checked in any case. So in our evaluations we speed up the constraint
correction process, by post-processing generated association rules with a mini-
mizing step, which removes all rules except the most general ones. In the above
example, if C ⊆ A, then the rule A → B will be removed.

4.2 Experiments on Real-World Data

We compare simple voting aggregation and the constraint correction algorithm
on two real-world multi-label datasets, namely yeast and siam.3 The dataset
yeast consists of 14 labels, 1500 training and 917 testing instances. It concerns
the functional multi-label classification of yeast genes. Dataset siam is a text-
categorization problem, where multiple labels are associated to one document.
It consists of 22 labels, 21519 training and 7077 testing data. We used the given
training / test splits for evaluation.

The association rules were generated by the APriori algorithm [1] in its
implementation by Borgelt [3]. As a base learner, we used the support-vector
machine implementation in LIBSVM [6] with a linear kernel in its default set-
tings. The algorithms were compared according to the same metrics as above,
except that we cannot give RankingErr values, since we did not have correct
rankings of the datasets to compute this loss function.

Table 4 shows the result of the evaluation on the yeast dataset. The values in
the first line represent performance values for aggregation of pairwise preferences
by voting, which is used as our baseline. The next lines, beginning with various

3 The datasets are available online at http://www.csie.ntu.edu.tw/∼cjlin/

libsvmtools/datasets/multilabel.html.



Table 4. Experiments on Real-World Data : yeast. The right-most column shows the
amount and the ratio of predicted rankings which the violated given constraint set.

Conf Supp ErrSetSize Margin AvgP # violated

VA 6.4602 4.3533 0.2426

100 60 6.4602 4.3533 0.2426 28 (0.03)
40 6.4558 4.3511 0.2425 102 (0.11)
20 6.4667 4.3544 0.2430 303 (0.33)

95 60 6.4591 4.3533 0.2426 39 (0.04)
40 6.4569 4.3490 0.2425 111 (0.12)
20 6.4667 4.3479 0.2429 341 (0.37)

90 60 6.4591 4.3533 0.2426 40 (0.04)
40 6.4547 4.3479 0.2426 174 (0.19)
20 - - - -

Table 5. Experiments on real-world data : siam. The right-most column shows the
amount and the ratio of predicted rankings which violated the given constraint set.

Conf Supp ErrSetSize Margin AvgP # violated

VA 1.7254 1.5947 0.1920

100 60-20 1.7254 1.5947 0.1920 2 (0.00)

95 90-70 1.7375 1.6062 0.1967 1157 (0.16)

90 95 1.7349 1.6044 0.1958 768 (0.11)
90 1.7409 1.6094 0.1978 1926 (0.27)
85 1.7396 1.6079 0.1969 2205 (0.31)

80-70 1.7455 1.6141 0.1985 2609 (0.37)

minimum confidence and support values, describe the result of NLS constraint
correction with different sets of constraints, which are generated by association
rule learning using stated parameters on the training data. The last column
describes the amount of violated instances, and therefore the number of instances
to which constraint correction was applied. In all other cases, the predicted
ranking was not changed. APriori with parameters c = 90 and s = 20 generated
inconsistent rules, so no corresponding values are shown.

As one can see, constraint correction with association rules as constraints
does not cause significant changes in the performance of multi-label classification.
Even in cases where a considerable amount of instances had to be post-processed,
for example c = 95 and s = 20, where 37% of the predicted rankings violated
some of the learned constraints, no real difference to the baseline can be observed.
The results for siam (Table 5) even show a consistent deterioration in prediction
performance, i.e., for all applications of constraint correction the evaluated losses
are worse or equal than the baseline.

Some performance values for siam in Table 5 are identical for different support
values with the same confidence, i.e. c = 100, s = 50 and c = 100, s = 30. This
is caused by the fact, that identical association rules were generated for these



Table 6. Constraint Generation: yeast

Conf Supp # rules # min

100 60 65 8
40 735 11
20 11321 46

95 60 245 21
40 2067 33
20 27042 99

90 60 305 31
40 2398 44
20 31708 127

Table 7. Constraint Generation: siam

Conf Supp # rules # min

100 60 8 1
50 2957 3
40 35041 3
30 168882 3
20 466284 6

95 90 2296 143
80 52204 191
70 324442 198

90 95 109 70
90 2416 182
85 15905 239
80 61652 273
75 178920 281
70 415861 288

parameters. More information regarding the used association rules as constraints
can be seen in Tables 6 and 7, which show the number of generated constraints
for the varying confidence and support values. In addition, the rightmost column
shows the number of rules, which survived our crude redundancy filter, and were
(as previously described) actually used in the constraint testing process.

5 Discussion

We introduced constraints into the multi-label classification setting, and studied
two machine learning tasks in this context:

1. Integration of additional knowledge in form of label constraints into the
multi-label classification setting

2. Automatically learning of label constraints

Regarding the first point, we experimented with two approaches which tackle
the constraint integration problem by transforming it into a search problem -
searching for a valid ranking with minimal distance from the ordinary predic-
tions. The number of preference swappings (PS) and the number of neighbor-
label swappings (NLS) seem to be intuitive and reasonable choices as distance
functions within the RPC framework. Although empirical evaluations of PS and
NLS on artificial datasets showed a improvement for multi-label classification, it
failed for two commonly used real-world datasets, where we used automatically
discovered constraints.

In our view, several points could be the reason for the negative results. At
first, one could criticize that we had given the correct constraints for the artificial
datasets, which was not the case for the real-world datasets. One is that the
introduced setting with given true constraints may be too idealistic. Indeed,



for our two evaluated real-world datasets, we have no evidence, even for rules
with c = 100 that these rules hold for all instances from the true distribution,
since the rules were generated on training data, which might differ from the
true distribution. Small tests with association rules generated with parameters
c = 100, s = 1 on training and testdata of yeast showed also no improvement.

Another point is that the artificial data was explicitly modelled by voting
deaggregation - given transitive (binary) pairwise preferences, the correct cal-
ibrated label-ranking is uniquely defined and vice-versa (if we exclude ties).
Pairwise preferences in general do not have to be transitive.

Besides the failure on real-world data, we are aware that the shown algorithms
are currently not applicable to practical problems. We perform an essentially
exhaustive breadth-first search through all possible rankings, and also use a
rather expensive pruning step for the association rule discovery. Without strong
assumptions, i.e. that a valid ranking is relatively fast reachable by PS or NLS for
an invalid ranking, the search process takes too long, since the number of possible
candidates grows exponentially for each iteration of the search algorithm. More
efficient algorithms are currently under investigation.

However, our main goal was to investigate whether this approach can, in
principle, yield improved results. Despite the negative results with automatically
discovered constraints, we nevertheless interpret our results as informative, and
plan a deeper investigation of this learning scenario.
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