Learning Preferences with Co-Regularized
Least-Squares

Evgeni Tsivtsivadze®, Fabian Gieseke?, Tapio Pahikkala', Jorma Boberg!, and
Tapio Salakoski!

! Turku Centre for Computer Science (TUCS),
Department of Information Technology, University of Turku,
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
{firstname.lastname}@it.utu.fi
2 Faculty of Computer Science, Technische Universitit Dortmund,
Otto-Hahn-Str. 14, 44227 Dortmund, Germany
{firstname.lastname@cs.uni-dortmund.de}

Abstract. Situations when only a limited amount of labeled data and
a large amount of unlabeled data is available to the learning algorithm
are typical for many real-world problems. In this paper, we propose a
semi-supervised preference learning algorithm that is based on the multi-
view approach. Multi-view learning algorithms operate by constructing
a predictor for each view and by choosing such prediction hypotheses
that minimize the disagreement among all of the predictors on the unla-
beled data. Our algorithm, that we call Sparse Co-RankRLS, stems from
the single-view preference learning algorithm RankRLS. It minimizes
a least-squares approximation of the ranking error and is formulated
within the co-regularization framework. The experiments demonstrate a
significantly better performance of Sparse Co-RankRLS compared to the
standard RankRLS algorithm. Moreover, our semi-supervised preference
learning algorithm has a linear complexity in the number of unlabeled
data items, making it applicable to large datasets.

1 Introduction

Semi-supervised learning algorithms have gained more and more attention in
recent years as unlabeled data is typically much easier to obtain than labeled
one. Multi-view learning algorithms, such as co-training [2], split the attributes
into independent sets and an algorithm is learnt based on these different “views”.
The goal of the learning process consists in finding for every view a prediction
function (for the learning task) performing well on the labeled data of the des-
ignated view such that all prediction functions agree on the unlabeled data.
Closely related to this approach is the co-regularization framework described in
[19], where the same idea of agreement maximization between the predictors is
central. Briefly stated, algorithms based upon this approach search for hypothe-
ses from different Reproducing Kernel Hilbert Spaces [18], namely views, such
that the training error of each hypothesis on the labeled data is small and, at the

same time, the hypotheses give similar predictions for the unlabeled data. Within
this framework, the disagreement is taken into account via a co-regularization
term. Empirical results show that the co-regularization approach works well for
classification [19], regression [3], and clustering [4] tasks. Moreover, theoreti-
cal investigations demonstrate that the co-regularization approach reduces the
Rademacher complexity by an amount that depends on the “distance” between
the views [17, 20].

We consider a problem of learning a function capable of arranging data points
according to a given preference relation [8]. Training of existing kernel based
ranking algorithms such as RankSVM [10] may be infeasible when the size of
the training set is large. This is especially the case when nonlinear kernel func-
tions are used. Recently, a sparse preference learning algorithm, called Sparse
RankRLS, that can take advantage of a large amount of data in the training
process, has been proposed [22]. In this paper, we will formulate a co-regularized
version of RankRLS, called Sparse Co-RankRLS, and aim to improve the per-
formance of RankRLS by making it applicable to situations when only a small
amount of labeled data, but a large amount of unlabeled data is available.

We evaluate our algorithm on a parse ranking task [23] that is a common
problem in natural language processing. In this task, the aim is to rank a set
of parses associated with a single sentence, based on some goodness criteria. In
our experiments, we consider the case when both labeled and a large amount
of unlabeled data is available to the learning algorithm. We demonstrate that
Sparse Co-RankRLS is computationally efficient when trained on large datasets
and the obtained results are significantly better than the ones obtained with the
standard RankRLS algorithm.

2 Problem Setting

Let X be a set of instances and) be a set of labels. The learning scenario we
consider is label ranking [6, 8], i.e., we want to predict for any instance x € X
(e.g., a person) a preference relation P, C Y x Y among the set of labels),
where each label y €) can be thought of as an alternative (e.g. a politician in
an election). An element (y,y’) € P, means that the instance z prefers the label
y compared to 3/, also written as y =, y’. > We assume that the (true) preference
relation P, is transitive and asymmetric for each instance x € X'. As training
information, we are given a finite set {(z;,s;)};~, of m data points, where each
data point (z;,s;) = ((x4,¥:),5:) € (X x) x R consists of an instance-label
tuple z; = (z;,y;) € X x Y and its score s; € R. We say that two data points
((x,y),s) and ((¢',y'),s’) are relevant, iff © = 2’. Considering two relevant data
points ((z,y),s) and ((x,y’),s’), we say that instance = prefers label y to ¢/, if
s> . If s = ¢, the labels are called tied. Accordingly, we write y =, ¢’ if s > &
and y ~, vy if s = 5.

% As described in [8], one can distinguish between weak preference (=) and strict
preference (), where y = ¥ < (y =« ¥') A (¥’ %< y); furthermore, y ~. ' &
=2 y) A Y =2 y).

A label ranking function is a function f : X x) — R mapping each instance-
label tuple (z,y) to a real value representing the (predicted) relevance of the label
y with respect to the instance x. This induces for any instance x € X a transitive
preference relation Py, C Y x Y with (y,vy') € Pro < f(z,y) > f(z,y). Ties
can be broken arbitrarily. Informally, the goal of our ranking task is to find a
label ranking function f : X x Y — R such that the ranking Ps, C Y x Y
induced by the function for any instance z € X is a good “prediction” for the
true (unknown) preference relation P, C) x).

To be able to incorporate the relevance information, we define a preference
graph which is an undirected graph G = (V, E) whose vertices are the m instance-
label tuples appearing in the training set, i.e., V.= {z1,..., 2s }. Furthermore,
there exist an edge (z;,2;) € E, iff z; and z; are relevant. Let W € R™*™
denote the adjacency matrix of G, ie., [W], ; = 1if (2;,2;) € E and [W], , =0

otherwise. To avoid loops, we set [W],, = 0 for ¢ = 1,...,m, although an
instance-label tuple is relevant to itself. Furthermore, let Z = (21,...,2,)¢ €
(X x Y)™ be the vector of instance-label training tuples and S = (s1,...,8m) €

R™ the corresponding vector of scores. Given these definitions, our training set
is the triple T'= (Z, S, W).

Let us define R® = {f : Z — R} with Z = X x Y and let H C R? be the
hypothesis space of possible ranking functions. To measure how well a hypothesis
f € H is able to predict the preference relations P, for all instances z € X, we
consider the following cost function that captures the amount of incorrectly
predicted pairs of relevant training data points:

d(f, T) =) (1)

N

Z W1, 5 ‘ sign (s; — s;) —sign(f(z:) — f(z5))

where sign(-) denotes the signum function. It is well-known that the use of cost
functions like (1) leads to intractable optimization problems. Therefore, we con-
sider the following least squares approximation, which in fact regresses the dif-
ferences s; — s; with f(z;) — f(z;) of relevant training data points z; and z;:

AT =5 30 W (s 59) = U = S(1)) ©)

Note that the above cost function c also takes the extent of discrepancy between
the predicted preference (f(z;) — f(z;)) and the training preference (s; — s;) of
pairs of relevant training data points into account.

3 Regularized Least Squares Ranking

The co-regularized ranking algorithm presented in this paper stems from the
results developed in [11] and [22]. For completeness, we briefly review these
results in this section.

We aim to construct an algorithm that selects a hypothesis f from H which
minimizes (2) and which is, at the same time, not too “complex”, i.e., which
does not overfit at training phase and is therefore able to generalize to unseen
data. We consider the framework of regularized kernel methods [18], in which
'H is a so-called Reproducing Kernel Hilbert Space (RKHS) defined by a positive
definite kernel function.

3.1 Regularization Framework

Let k: Z x Z — R be a positive definite kernel defined on the set Z. Then we
define H as

H={rer?| ()= ;ﬂjk(-,zj),ﬁj ERz EZ||fln<oof, (3

where || || denotes the norm in H. Using the RKHS H as our hypothesis space,
we consider the optimization problem

A(T) = argmin J(f), (4)
feEH

where J(f) = c(f,T) + A|| f||3, and where A\ € RT is a regularization parameter
controlling the tradeoff between the cost on the training set and the complexity
of the hypothesis. By the generalized representer theorem [18], the minimizer of
(4) has the form

[¢)= Zaik('vzi) (5)

with appropriate coefficients a; € R. Hence, we can focus on functions f € H
having the above form. Defining the kernel matrix K € R™*™ with entries
of the form [K]; ; = k(z;,2;) and f(Z) = (f(z1),..., f(zm))" € R™, we can
write f(Z) = KA and ||f||}, = A'KA, where A = (a1,...,an)" € R™ is a
corresponding coefficient vector.*

3.2 RankRLS

Let £ = D — W be the Laplacian matrix [5] of G, where D denotes the diagonal
matrix with elements of the form [D], ; = >>", [W], . Using a slightly different
notation, it is shown in [11] that the cost function (2§ can be rewritten as

of,T) = (S — KA)'L(S — KA). (6)

4 Unless stated otherwise, we assume that a kernel matrix K is positive definite, i.e.,

B'KB>0forall B e R™ B # 0. This can be ensured, for example, by performing
a small diagonal shift.

Considering this representation of the cost function ¢, we get the following opti-
mization problem called RankRLS in [11]:

A(T) = argmin J(A), (7)

AeRm™

where J(A) = (S — KA)'L(S — KA)+ AA'K A. Using the fact that £ is positive
semidefinite [14] and assuming that K is positive definite, it is easy to see that
the Hessian matrix H(J) = 2K'LK + 2)AK of J is positive definite. Thus, J
is strictly convex and the global minimum of J can be obtained by setting the
first derivative -4 J(A) = —2K*L(S — KA) + 2A\K A to zero and by solving the
resulting system of equations with respect to A. As shown in [11], the optimal
solution for (7) is

A= (KLK +) K) 'KLS = (LK + \I)"'LS, (8)

where I denotes the identity matrix. The computational complexity of the matrix
inversion in (8) is O(m?).

Fact 1 ([11]) For fixed A € R*, the solution of the RankRLS optimization
problem (7) can be found in O(m3) time.

3.3 Sparse RankRLS

Similarly to [13] and [21], an approximation algorithm aiming at reducing the
cubic running time of the RankRLS approach is developed in [22]: The cost
function c¢ is evaluated over all points, but only a subset of the coefficients
ai,...,an, is allowed to be non-zero, thus an approximation of the optimization
problem is considered. Let R = {i1,...,i.} C {1,...,m} be a subset of indices.
Then, we only allow the coefficients a;,,...,a;. to be non-zero in (5), i.e., we
search for minimizers fe ‘H having the form

Z ai k(- zi;). (9)

By defining K € R™*" to be the submatrix of K € R™*™ that only contains the
columns indexed by R and by defining K eR>r to be the submatrix of K only
containing the rows indexed by R, we can express F(2)=(F(z1)s- .., [(zm)) €
R™ as f(Z) = KA and ||f]|2, = A'KA, where A = (a;,,...,a;)" € R". Given
these notations, the approximation presented in [22], called Sparse RankRLS,
can be formulated as

A(T) = argmin J(A), (10)
AeRrr

where J() (S — KA)L(S — KA) + MA'K A. Setting the derivative of J to
zero and solving the resulting system of equations with respect to A leads to
A= (K'LK + \K)'K'LS. (11)

The overall training complexity of the Sparse RankRLS algorithm is O(mr?),
see [22] for more details.

Fact 2 ([22]) For fixed A € R", the solution of the Sparse RankRLS optimiza-
tion problem (10) can be found in O(mr?) time.

Hence, selecting r to be much smaller than m results in a significant acceleration
of the training procedure. Clearly, the selection of the index set R may have an
influence on results obtained by the above approximation approach. Different
methods for selecting R are discussed, for example, in [16]. There, it is found
that simply selecting the elements of R randomly performs no worse than more
sophisticated methods. Hereafter, we refer to the data points contained in R as
basis vectors.

3.4 Constructing Kernels with Subsets of Regressors

Considering the Sparse RankRLS algorithm, the label predictions for the training
data points can be obtained by KA. Using the Woodbury matrix identity [9]
and (11) and by defining K = 1K K~1K*, we can reformulate this expression
as follows:

KA=K(K'LK +) K)"'K'LS
- k(%frl - %frlkt(icm?flkt + I)*liﬁf(f(*l)f(tﬁs

— (K- K(LK +1)"'LK)LS

= (K(I - (LK +1)"'LK)LS

= (K(LK +)" YLK + 1) — (LK + 1) 'LK)LS
= K(LK +1)"Y(LK +1— LK)LS

= K(LK +1)7'LS.

Note that because £ and K are positive semidefinite, their product LK con-
tains only nonnegative eigenvalues [1]. Hence, LK + I is invertible. Further,
the last term can be rewritten as K (LK + I)"'L£S = K(LK + AI)"'LS, where
K = KKKt € R™*™_ These derivations show that the Sparse RankRLS algo-
rithm operating with a kernel function k is essentially equivalent to the standard
RankRLS algorithm operating with a modified kernel k. In the following section
we will use this fact for constructing different Hilbert spaces by taking different
sets of basis vectors.

4 Co-Regularized Least Squares Ranking

Both the RankRLS and the Sparse RankRLS algorithm, can only use labeled
data points during the training phase. In this section, we present the algorithm
that is applicable to situations when only a small amount of labeled, but a large
amount of unlabeled data is available.

4.1 Co-Regularization Framework

The co-regularization approach is based on the idea of constructing M hypothe-
ses from M different Hilbert spaces such that the error of each function on the
labeled data is small and, at the same time, the functions give similar predictions
for the unlabeled data.

As shown in Section 3.4, the solution of the Sparse RankRLS algorithm
equals to the one obtained by the standard RankRLS algorithm with a mod-
ified kernel function. Hence, taking different subsets of the input set leads to
different Reproducing Kernel Hilbert Spaces. These RKHSs can also stem from
different data point descriptions (i.e., different features) and/or different ker-
nel functions. In the following, we will consider M different RKHSs H;, ...,
Has and corresponding kernel functions ki,...,kpy with &k, : 2 x Z2 — R.
Considering our ranking task, we have a training set T = (Z,S,W) origi-
nating from a set {(z;,s;)};~, of data points with scoring information, where
Z = (z1,...,2m)t € 2™, S = (s1,...,8m)" € R™, and where W is the ma-
trix incorporating the relevance information. Moreover, we have a training set
T = (Z,W) from a set {zpyi}., of data points without scoring information,
7 = (Zmt1s -5 2Zman)t € Z™, and an appropriate adjacency matrix W. To avoid
misunderstandings with the definition of the label ranking task, we will use the
terms “scored” instead of “labeled” and “unscored” instead of “unlabeled”.

In the ranking task, we search for the functions f = (f1,..., far) € H1 X ...X
H pr minimizing

M M M _
JE) =3 elfo D)+ A foll3, +v S0 V(fo fu T, (12
v=1 v=1 v,u=1

where \, v € R™ are regularization parameters and where V is the loss function
measuring the disagreement between the prediction functions of the views on
the unscored data:

[/ﬁ//]i,j ((fv(zm—i-i) - fv(zm-‘rj)) - (fu(zm-i-z) - fu(zm-i-j)))z-

N | =
7=

V(fv,fuaf) =

1

2y

Applying the representer theorem [18] in this context shows that the minimizers
faeH, of (12) for v =1,..., M have the form

m n
£20) =300k (oz) + 3D alh b zme) (13)
i=1 i=1
with adequate coefficients a{"”, .. ., aﬁ,’;Ln eR.

4.2 Sparse Co-RankRLS

Using matrix notations we can reformulate (12) as

M M
J(A) =) (S = LyAy) LL(S — LyAy) + A ALK, A, (14)
v=1 v=1
M
+v > (UpAy = UyAy) Ly(UyAy — UyAu),
v,u=1

where 4, = (a{”,...,al"\)t € R™™ and A = (A%,..., AL,)t € RM(mtn),
The matrix L, € R™*(™+7) has entries of the form [Lv]; j = ko(zi, 2j) and the
matrix U, € R"*(™*") has entries of the form [Uul;.; = ko(2m+i,2j)- Stacking
both matrices up gives the matrix K,:

— L, (m+n)x (m+n)
e (5 extmsmoen

Further, £; € R™*™ and Ly € R™ " denote the Laplacian matrices corre-
sponding to W and W, respectively. Hence, we have the following optimization
problem:

A(T,T) = argmin J(A). (15)
AcRM (m+n)
Although the Hilbert spaces Hi,..., Hys can stem from different data point

descriptions and/or different kernel functions, we consider the case when they
are obtained with different subsets of the input set Z. Considering the minimizers
in (13), we only allow a subset of the coefficients to be non-zero for each view. As
in Section 3, this corresponds to taking submatrices of the original matrices, i.e.,
for each view v we define L,, € R™*" to be the submatrix of L, that only contains
the columns corresponding to r selected basis vectors zc, (1), - - -, 2¢, (r)- Here, the
number ¢, (i) € {1,...,m + n} denotes the index (column) of the i-th selected
vector of view v. Accordingly, we define U, € R™*" to be the submatrix of U, that
only contains the columns corresponding to 2., (1), - .-, 2c,(r). Finally, we define
K, € R™ to be the kernel matrix with elements [IA(U} = ku(2e, (3) Zeu ()
2,
Hence, we obtain the following optimization problem, whic]h we call Sparse Co-
RankRLS:

A(T, T) = argmin J(A), (16)
AERM"
where
A M Nt R M o
J(A) =Y (S - LUAU) Ly (S — LvAv) +AY ALK, A, (17)
v=1 v=1

A, = (ag)(l),...,ag)(r))t € R” and A = (AL,... At,)t € RM". For case of
notation, we consider the same number of basis vectors for each view. It should
be noted that the above co-regularization setting is valid if different basis vectors
are selected for each view.

Given this matrix formulation of our optimization problem, we can follow

the framework described in [3] to find a closed form for the solution: Taking the

~

partial derivative of J(A) with respect to A, we get

L F(A) = 2Lt L0 (S — Lody) + 2R, A,
dA,
M ~ -~
—4v Y UlLy(U.A, - U,A,)
u=1,u#v

By defining G¥ = 2v(M — 1)ULy U,, G) = MK, and G, = LiL;L,, we can
rewrite the above term as
d ~ ~

ﬁJ(A) =2(Gy+ GY 4+ GNA, — 2L LS

u=1,uzv
At the optimum we have d%u J(A) = 0 for all views, thus we get the exact
solution by solving
el —wUiLyUs ...\ [A, LtL.S
20U Ly Uy G> A, | = | Licrs

with respect to Ay, ..., Ay, where G, = Gy + GY 4+ G. The left-hand side
matrix is positive definite and therefore invertible (see Appendix). By defining

G, 0 ... G} o ... LiLS
g 0G| p_| 0Gy...|g_ | Lices
Gy —wUILyU, ...
C = 721/U2t£UU1 Gg

we can formulate the solution of the system as follows:

A=(B+C+D)'E. (18)

The computational complexity of constructing the vector E is O(Mmr). Fur-
ther, the matrices B, C, and D can be constructed in O(Mr?m), O(M?r?n),
and O(Mr?), respectively. The resulting matrix (B + C + D) € RMr>Mr can
be inverted in O(M?3r3). Hence, our algorithm scales linearly in the number
of unscored data items. Note that the multiplications involving the Laplacian
matrices £y, and Ly can be accelerated using the approach described in [22].
Assuming n > m we have shown the following theorem:

Theorem 1. For fized parameters \,v € RT and assuming n > m, the solution
of the Sparse Co-RankRLS optimization problem (16) can be found in O(M3r3 +
M?r%n) time.

4.3 Efficient Regularization Parameter Selection

When performing experiments, the recurrent matrix inversion in (18) for each
combination of the regularization parameters A and v could be time-consuming.
Therefore, we propose a procedure which accelerates this parameter selection
process. Writing D as D = AD with an appropriate (positive definite) matrix D
and rewriting D as D = GG! using the Cholesky decomposition [9], we obtain

(B+C+D) ' =(B+C+A\D)
— (GG(B+C)(G) G+ AGGY)
= (GY G HB+O)GH) +AI) G

Further, the matrix G—1(B+C)(G?)~! can be eigen decomposed to VAV, where
A is a diagonal matrix containing the eigenvalues and V' is matrix composed of
the eigenvectors [9]. Hence, we get

(B+C+D)™' = (G {(VAVI + AI) G

= (G W (A+AD) VG
and the solution in (18) can be rewritten as
A=(GH WA+ A VIGTE.

Thus, by fixing the parameter v we can efficiently search for the second reg-
ularization parameter A. The decompositions and the inversion of G can be
calculated in O(M373) time, and hence, the overall training complexity is not
increased. The computational cost of calculating (A+AI)~!is O(Mr), since it is
a diagonal matrix. If the matrices VIG™1E € RM™*! and (G')~1V € RMrxMr
are stored in memory, the subsequent training with different values of A\ can be
performed in O(M?r?) time.

5 Experiments

We evaluate the performance of the Sparse Co-RankRLS algorithm on the parse
ranking task, namely the task of ranking given parses for an unseen sentence.
For this purpose, we use the Biolnfer corpus [15] which consists of 1100 manually
annotated sentences. A detailed description of the parse ranking problem and
the data used in the experiments is given in [23]. Each sentence is associated with
a set of candidate parses. The manual annotation of the sentence, present in the
corpus, provides the correct parse. Further, each candidate parse is associated
with a goodness score that indicates how close to the correct parse it is. The
correct ranking of the parses associated with the same sentence is determined
by this score. While the scoring induces a total order over the whole set of
parses, the preferences between parses associated with different sentences are
not considered in the parse ranking task.

Using the definitions presented in Section 2, we consider each sentence as
an instance and the parses generated for the sentence as the labels associated
with it. The score of an input indicates how well the parse included in the input
matches the correct parse of the sentence. We have previously demonstrated that
the RankRLS algorithm performs comparably to some state-of-the-art ranking
methods [11]. In this section, we will compare the performance of the Sparse
Co-RankRLS algorithm with that of the RankRLS algorithm.

5.1 Experimental Setup

From the 1100 sentences of the Biolnfer corpus we randomly select 600 and 500
sentences for the training and final validation phase, respectively. To simulate
a semi-supervised setting, we consider that only 50 sentence-parse pairs in the
training set are scored, while the remaining 550 sentences do not have the scoring
information associated with them. For the evaluation of the Sparse Co-RankRLS
method we set the number M of views to 2. Further, we randomly select 20
sentences and their associated parses from the unscored data set as basis vectors
for the first view and repeat this procedure for the second view. According to
Section 4 we select different basis vectors for each view.

Both of the algorithms have the regularization parameter A that controls the
tradeoff between the minimization of the training error and the complexity of the
learnt function(s). In addition, the Sparse Co-RankRLS algorithm has the reg-
ularization parameter v that controls the agreement between the predictions of
the different views. As a similarity measure for parses, we use the best perform-
ing graph kernel with the appropriate parameter considered in [12]. The values
of the regularization parameters for RankRLS as well as for Sparse Co-RankRLS
are estimated during a 10-fold cross-validation procedure, with the splits being
performed on the sentence level ensuring that all parses associated with the same
sentence are present in the same fold. In the semi-supervised setting each fold
consists of one tenth of labeled and unlabeled data present in the training set.
For the cross-validation phases, we randomly select 7 parses for each sentence
to be associated with it, out of which 2 parses are used for training the model

Standard RankRLS|Sparse Co-RankRLS
0.373 0.344

Table 1. Comparison of the parse ranking performances of the standard RankRLS and

the Sparse Co-RankRLS algorithms using a normalized version of the disagreement

error (1) as performance evaluation measure.

and 5 for testing. Finally, we use 5 parses per sentence for the final validation
procedure.

5.2 Results

The normalized version of the disagreement error (1) is used to measure the
performance of the ranking algorithms. The error is calculated for each sentence
separately and the performance is averaged over all sentences.

The algorithms are trained on the whole parameter estimation data set with
the best found parameter values and tested with the 500 sentences reserved for
the final validation. The results of the validation are presented in Table 1. They
show that the Sparse Co-RankRLS algorithm notably outperforms the RankRLS
method. Here, the results of the Sparse Co-RankRLS algorithm are obtained by
averaging the predictions of the two views.

Furthermore, to test the statistical significance of the performance difference
between the Sparse Co-RankRLS and RankRLS algorithms, we conduct the
Wilcoxon signed-ranks test [7]. The sentences reserved for the final validation
are considered as independent trials. We observe that the performance differences
are statistically significant (p < 0.05).

6 Conclusions

We propose Sparse Co-RankRLS, a semi-supervised regularized least-squares al-
gorithm for learning preference relations. The computational complexity of the
algorithm is O(M?3r3 + M?r?n), where n is the number of unlabeled training
examples. We formulate the algorithm within the co-regularization framework,
which aims at improving the prediction performance by minimizing the disagree-
ment of all prediction hypotheses on the unlabeled data. In our experiments, we
consider a parse ranking task and show that the Sparse Co-RankRLS algorithm
significantly outperforms the standard RankRLS algorithm on this task.

Due to the fact that our semi-supervised preference learning algorithm has a
linear complexity in the number of unlabeled examples, it is primarily applicable
in cases when only a small amount of labeled but a large amount unlabeled data is
available for training. In the future, we aim to evaluate our Sparse Co-RankRLS
algorithm on various tasks where labeled data is scarce.

Acknowledgments

This work has been supported by Tekes, the Finnish Funding Agency for Tech-
nology and Innovation. We would like to thank CSC, the Finnish IT center for
science, for providing us extensive computing resources.

References

10.

11.

12.

13.

14.

. Ravindra B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications

(Encyclopedia of Mathematics and its Applications). Cambridge University Press,
March 1997.

. Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. In Proceedings of the 11th Annual Conference on Computational Learning
Theory, pages 92-100, New York, NY, USA, 1998. ACM.

Ulf Brefeld, Thomas Gartner, Tobias Scheffer, and Stefan Wrobel. Efficient co-
regularised least squares regression. In Proceedings of the 25rd International Con-
ference on Machine learning, pages 137-144, New York, NY, USA, 2006. ACM.

. Ulf Brefeld and Tobias Scheffer. Co-em support vector learning. In Proceedings of

the 21st International Conference on Machine learning, page 16, New York, NY,
USA, 2004. ACM.

Richard A. Brualdi and Herbert J. Ryser. Combinatorial Matriz Theory. Cam-
bridge University Press, 1991.

Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-linear models for label
ranking. In Sebastian Thrun, Lawrence Saul, and Bernhard Schélkopf, editors,
Advances in Neural Information Processing Systems 16, pages 497-504, Cambridge,
MA, 2004. MIT Press.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research, 7:1-30, 2006.

Johannes Fiirnkranz and Eyke Hiillermeier. Preference learning. Kiinstliche Intel-
ligenz, 19(1):60-61, 2005.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins
University Press, 1996.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector learning for
ordinal regression. In Proceedings of the Ninth International Conference on Articial
Neural Networks, pages 97-102, London, 1999. Institute of Electrical Engineers.
Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jorma Boberg, and Tapio
Salakoski. Learning to rank with pairwise regularized least-squares. In Thorsten
Joachims, Hang Li, Tie-Yan Liu, and ChengXiang Zhai, editors, SIGIR 2007 Work-
shop on Learning to Rank for Information Retrieval, pages 27-33, 2007.

Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg, and Tapio Salakoski. Graph
kernels versus graph representations: a case study in parse ranking. In Thomas
Gartner, Gemma C. Garriga, and Thorsten Meinl, editors, Proceedings of the
ECML/PKDD’06 workshop on Mining and Learning with Graphs (MLG’06), 2006.
Tomaso Poggio and Frederico Girosi. Networks for approximation and learning.
Proceedings of the IEEE, 78(9):1481-1497, 1990.

Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. STAM Journal on Matriz Analysis Applications, 11(3):430—
452, 1990.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Bjérne, Jorma Boberg, Jouni
Jarvinen, and Tapio Salakoski. Biolnfer: A corpus for information extraction in
the biomedical domain. BMC Bioinformatics, 8:50, 2007.

Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classifica-
tion. In J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle,
editors, Advances in Learning Theory: Methods, Model and Applications, pages
131-154, Amsterdam, 2003. IOS Press.

David Rosenberg and Peter L. Bartlett. The rademacher complexity of co-
regularized kernel classes. In Marina Meila and Xiaotong Shen, editors, Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics,
pages 396-403, 2007.

Bernhard Schélkopf, Ralf Herbrich, and Alex J. Smola. A generalized represen-
ter theorem. In David P. Helmbold and Bob Williamson, editors, Proceedings of
the 14th Annual Conference on Computational Learning Theory, pages 416—426,
London, 2001. Springer.

Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. A co-regularization approach
to semi-supervised learning with multiple views. In Proceedings of ICML Workshop
on Learning with Multiple Views, 2005.

Vikas Sindhwani and David Rosenberg. An rkhs for multi-view learning and mani-
fold co-regularization. In Andrew McCallum and Sam Roweis, editors, Proceedings
of the 25th Annual International Conference on Machine Learning (ICML 2008),
pages 976-983, Helsinki, Finland, 2008. Omnipress.

Alex J. Smola and Bernhard Scholkopf. Sparse greedy matrix approximation for
machine learning. In Pat Langley, editor, Proceedings of the 17th International
Conference on Machine Learning, pages 911-918, San Francisco, Ca, USA, 2000.
Morgan Kaufmann Publishers Inc.

Evgeni Tsivtsivadze, Tapio Pahikkala, Antti Airola, Jorma Boberg, and Tapio
Salakoski. A sparse regularized least-squares preference learning algorithm. In
Anders Holst, Per Kreuger, and Peter Funk, editors, 10th Scandinavian Confer-
ence on Artificial Intelligence (SCAI 2008), volume 173, pages 76-83. I0S Press,
2008.

Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg, Aleksandr
Myllari, and Tapio Salakoski. Regularized least-squares for parse ranking. In
A. Fazel Famili, Joost N. Kok, José Manuel Pefia, Arno Siebes, and A. J. Feelders,
editors, Advances in Intelligent Data Analysis VI, pages 464-474. Springer, 2005.

Appendix

We will show that the matrix

Gl —2VU{LU02 PN

—2I/U§£U01 GQ

is positive definite. To prove that, we decompose the above matrix into a sum
of matrices

Gl — QV(M — 1)UltEUUl 0

Xl 0 GQ—ZV(M—l)U§£U02

and _ _ _ _
V(M— 1)Uf£UU1 —l/UfEUUQ

Xy = —VU%L‘/UUE v(M — 1)05,6(]02

The matrix X is positive definite as each block matrix is positive definite (we

require the matrix K, to be positive definite). Further, the matrix X5 is positive
semidefinite as we can write it as a sum of positive semidefinite matrices of the
form

0--- 0 0 . 0

0--- VUfﬁUﬁl —VUztEUUJ -+ 0
:] = Xap X ey
0-- —vULyU; -+ vULyU; -+ 0

0--- 0 0 .. 0

where X(; ;y = (0,...,0,vPU;,0,...,0,—/vPU;,0,...,0). Here, the positive
semidefinite matrix L is decomposed as Ly = P*P using the Cholesky decom-
position [9].

