SINDBAD SAILS:
A Service Architecture for Inductive Learning
Schemes

Jorg Wicker, Christoph Brosdau, Lothar Richter, and Stefan Kramer

Technische Universitdt Miinchen, Institut fiir Informatik 112, Boltzmannstr. 3,
D-85748 Garching b. Miinchen, Germany
{joerg.wicker, lothar.richter, stefan.kramer}@in.tum.de,
christoph.brosdau@campus.lmu.de

Abstract. The paper presents SINDBAD SAILS (Service Architecture
for Inductive Learning Schemes), a Web Service interface to the inductive
database SINDBAD. To the best of our knowledge, it is the first time a
Web Service interface is provided for an inductive database. The combi-
nation of service-oriented architectures and inductive databases is par-
ticularly useful, as it enables distributed data mining without the need to
install specialized data mining or machine learning software. Moreover,
inductive queries can easily be used in almost any kind of programming
language. The paper discusses the underlying concepts and explains a
sample program making use of SINDBAD SAILS.

1 Introduction

Inductive databases are databases which handle data, patterns and models, and
which support the complete knowledge discovery process on the basis of inductive
query languages. Many of the proposals for inductive databases and constraint-
based data mining are restricted to single pattern domains (such as itemsets or
molecular fragments) or single tasks, such as pattern discovery or decision tree
induction. Although the closure property is fulfilled by many of those approaches,
the possibilities of combining various techniques in multi-step and compositional
data mining are rather limited. In previous work [1, 2], we presented a prototype
system, SINDBAD (structured inductive database development), supporting the
most basic preprocessing and data mining operations such that they can be com-
bined more or less arbitrarily. One explicit goal of the project is to support the
complete knowledge discovery process, from pre-processing to post-processing,
on the basis of database queries. The research extends ideas discussed at the
Dagstuhl perspectives workshop “Data Mining: The Next Generation” [3], where
a system of types and signatures of data manipulation and mining operators was
proposed to support compositionality in the knowledge discovery process. One
of the main ideas was to use the simplest possible signature (mapping tables
onto tables) as a starting point for the exploration of more complex scenarios.
The relational model was chosen, as it possesses several useful properties, from

closure to convenient handling of collections of tuples. Moreover, it is possible to
take advantage of mature and optimized database technology. Finally, systems
supporting (variants of) SQL are well-known and established, making it easier
to get users acquainted with new querying facilities.

In this work, we present a Web Service interface to SINDBAD. Using this in-
terface, all features of SINDBAD can be made available on a dedicated server. In
this way, SINDBAD data mining services can be started from arbitrary clients.
It is possible to distribute tasks over multiple servers to decrease the load on each
machine. Another effect is the availability of features of SINDBAD in many dif-
ferent programming languages and on many different platforms. Thus, machine
learning and data mining methods can be combined easily with native pro-
gramming language constructs, such as conditional statements or loops, without
having to install specialized libraries or software packages.

This paper is organized as follows. First we give a brief introduction to SIND-
BAD, its concepts and its implementation. For a more detailed introduction we
have to refer to previous publications [1,2]. Subsequently, we give an overview
of Web Services in general. The following sections describe the Web Service in-
terface of SINDBAD. Finally, we summarize related work on Web Services for
machine learning and data mining.

2 SINDBAD

2.1 Concepts and SiQL

SiQL (structured inductive database query language), the query language of
the SINDBAD system, is a straightforward extension of SQL. Instead of just
adding complicated data mining operators to SQL, we focused on incorporating
small, but extensible and adjustable operators that can be combined to build
more complex functions. The query language supports the knowledge discovery
process by a successive transformation of data. As each pre-processing and data
mining operator returns a table, the queries can be nested arbitrarily, and the
kind of compositionality needed in multi-step data mining can be achieved easily.
The mining operators were designed in analogy to relational algebra and SQL:
For instance, we made heavy use of the extend-add-as operator which adds the
results of a data mining operation as new columns to a relation (see below).
Moreover, we devised a feature-select clause in analogy to the select clause. It
selects features that fulfill a given condition, e.g., an information gain above a
certain threshold or the highest correlation coefficient with respect to a given
column.

From each category of preprocessing/mining algorithms, we implemented
most fundamental representatives. For discretization, we included equal fre-
quency or equal width, for feature selection a filter approach based on informa-
tion gain or variance, for pattern mining, the computation of frequent itemsets
using APriori, for clustering k-Medoids, and for classification k-nearest neighbor
and rule induction (pFOIL, a propositional variant of FOIL [4]). External tools
can be integrated via wrappers.

We adopted the extend [5] operator to add the results of various data min-
ing operations as new attributes to a given relation. It computes a function for
each tuple and adds the result as the value of a new attribute. In SINDBAD,
the extend operator adds the result of clustering, instance- or rule-based pre-
dictions, and sampling to a table. For clustering/classification, the cluster/class
membership is indicated by an additional attribute. In sampling, the sample
membership determined by a random number generator is given in the new at-
tribute. In this way, we can split datasets, for instance, into a training set and a
test set. For clustering and instance-based learning (k-nearest neighbor), other
methods for handling tuples and distances are provided as well.

One of the central concepts of SINDBAD is that of distances between objects.
This is not restricted to tuples of a single relation. Using relational distance
measures, it is possible to apply clustering and instance-based learning to multi-
relational data [6]. Most relational distance measures are based on recursive
descent and set distances, i.e., distances between sets of points. In the simplest
case, the computation of a distance between two sets of tuples A and B boils
down to computing the minimum distance between two elements of each set
(single linkage), dsy (A4, B) = minge 4 e d(a, b).

One of the most recent additions is the integration of full-fledged predictive
models in the form of rule sets. For simplicity, we chose pFOIL, a propositional
variant of the traditional FOIL algorithm [4]. The addition of models required
significant extensions of the data model of the system. Models can be composed
of component models. The evaluations of component models (e.g., class predic-
tions) can be aggregated by combining functions. Combining functions can be
defined in terms of logical or arithmetic operators. In this way, rule sets, weighted
rule sets, trees, linear classifiers, and ensembles can be handled conveniently. For
details of the query language and the implementation, we have to refer to a more
comprehensive publication [1]

2.2 Implementation

The SINDBAD prototype is implemented in Java on top of a PostgreSQL data-
base. For parsing the queries, we used the lexical analyzer generator JFlex (see
http://jflex.de/) and the parser generator Cup (see http://www2.cs.tum.
edu/projects/cup/). The implementation supports arbitrarily nested queries.
In the future, we are planning to integrate a full-fledged analysis of parse trees,
opening possibilities for query optimization. The system is built on top of Post-
greSQL (see http://wuw.postgresql.org/), an open source relational database
management system. Most of the inductive queries are broken down and trans-
lated into a larger number of less complex non-inductive queries. The implemen-
tation of data mining features as PostgreSQL functions seems to be critical for
performance.

Table 1. Excerpt of a SINDBAD session. SiQL is used to learn rules for the activity
of chemical structures against HIV. In the first few queries, the partitioning into a
training and a test set is configured (20)-(22). In the next step, a test (23) and a
training (24) set is generated using the given parameters (25% of examples set into test
set, the remaining into training set, the distribution in column activity is preserved
in both sets). Subsequently, the FOIL algorithm is configured to use MDL pruning
during the learning process (26) and rules are learned on the training data using the
FOIL algorithm (27). The resulting rules are stored in the relation hiv_rules. Finally,
the learned rules are displayed (28) and applied to the test set (29). In this step, an
additional column per learned rule is appended to the test set showing the prediction
of the rule.

(20)> configure sampling method = ’holdout’;
(21)> configure sampling_percentage = ’0.25’;
(22)> configure sampling_keep_ratio_column =
> Jactivity’;
(23)> create table hiv_train_test as
> extend hiv_formatted
> add sample membership as test_flag;
(24)> create table testset as
> select * from hiv_formatted
> where test_flag = false;
(25)> create table trainset as
> select * from hiv_formatted
> where test_flag = true;
(26)> configure foil_mdl = ’true’;
(27)> create table hiv_rules as learn rules
> for activity in trainset;
(28)> show table hiv_rules;
(activity = true <- £683 = true AND
£262 true AND f219 = true AND
£165 = true)

(29)> extend testset add
> model prediction of
> hiv_rules
> as learned_activity;

3 Web Services

A Service-Oriented Architecture (SOA) is a design paradigm for distributed
computational resources, described by their capabilities and typically made ac-
cessible on the internet [7]. Encapsulating functionality in an SOA, parts of a
software system can be reused regardless of specific requirements on the under-
lying system, programming language or location of the provided service.

Fig. 1. Components of a Web Service environment

Service directory

refers to service

publishes
WDSL

searches

(SOAP)

calls WDSL (SOAP)

Service provider User of service

uses (SOAP)

One possible implementation of an SOA is a Web Service (see Figure 1). Web
Services are offered on the internet and can be accessed by the Simple Object
Access Protocol (SOAP). The specification of a Web Service is split into three
parts:

1. SOAP (Simple Object Access Protocol), an XML-based message format for
the communication and embedding into transport protocols,

2. WSDL (Web Service Description Language), an XML-based description lan-
guage to describe the Web Service, its interfaces and parameters, and

3. UDDI (Universal Description, Discovery and Integration Protocol) (op-
tional), the directory service for Web Services, specifying the standardized
directory structure for administration and search for Web Service meta-data.

4 SINDBAD SAILS

SINDBAD SAILS (SINDBAD Service Architecture for Inductive Learning
Schemes) introduces an implementation of a Web Service interface for SIND-
BAD. It can be used to access SINDBAD on one or more dedicated servers.

Thus, it is possible to access it from multiple clients and distribute tasks over
multiple servers.

4.1 Motivation

Building a Web Service on top of an inductive database offers many advantages:
First of all, it is possible to run the (in most cases) computationally intensive
operations on separate systems and distribute work that can be done simultane-
ously. As the computations are carried out on the server, the hardware require-
ments on the client are not very high. While this feature can be achieved by
other implementations than a Web Service interface, common implementations
in most cases require certain packages or software on the client machines. When
using Web Services, this does not necessarily apply. In some cases it is beneficial
to install packages to handle the access to the service. This depends on the used
programming language on the clients. However, as the implementation of the
service and the client are completely independent, it is up to the user which
language, package, or software is used.

The distinction between the implementation of the data mining and prepro-
cessing algorithms on the server running SINDBAD and the implementation of
the user code on the client side makes it easier to use the data mining algorithms.
The users do not need to know the details of the algorithms: They just need to
submit the data in the right format and send it to the server.

The advantage of inductive databases compared to other possible implemen-
tations is due to the status of patterns and models in such systems. Just as regu-
lar data items, patterns and models are viewed as first-class objects in inductive
databases. Taking advantage of a service-oriented architecture, it is possible to
transfer data, patterns and models from one inductive database to another. In
this way, distributing data mining tasks and integrating methods and results
from multiple servers becomes an easy task.

Finally, the use of data mining and machine learning features in programming
languages has not received much attention so far. Whereas machine learning is
considered important in the context of reasoning, or more generally, artificial in-
telligence systems [8], the use of inductive queries in regular computer programs
has not yet been discussed in the literature. The approach differs from R and
MATLAB implementations and interfaces, and older libraries like MLC++ [9],
in its additional layer of abstraction offered by the query language SiQL. Using
SINDBAD SAILS, it is easily possible to use basic machine learning and data
mining in (almost) arbitrary programming languages, without the need to install
specialized software.

4.2 Features and Implementation

SINDBAD SAILS is a combination of a SINDBAD database and a Web Service
implemented in PHP. The library PEAR::SOAP (see http://pear.php.net/
package/S0AP/) is used to generate the WSDL file from the main class that
handles the input and output and organizes further processing. The PHP classes

Table 2.

Data Mining methods and their parameters

Method Details

cluster(Method to start execution of KMedoids algorithm in
numberCluster, SINDBAD. Parameters set the number of clusters
data) and the input data.

classify(Starts classification with KNearest Neighbor algorithm.
numberNeighbours, Parameters set the number of neighbours
data, to be considered, the data to classify, the training data
classified, and the column containing the class informations.
column)

ruleLearning(Learns rules for a given target concept in the data.
target, The result is returned in multiple relations.
data)

frequentItems(Searches frequent itemsets in the input relation.
minsupport, A parameter sets the minimum support of an itemset
data) to be considered as frequent.

provide several methods which can be called over the http interface (see Table
2). All the functionality needed to archieve WSDL/PHP handling is provided by
the PEAR:SOAP library. An integration of a SINDBAD call over a SINDBAD
SAILS interface into an external programm is executed in three steps (see Figure
2). The user — in this case the program — issues a SOAP call using the SOAP
http interface. The interface translates the method into one or more SiQL queries
and passes them by a command line call to SINDBAD. In SINDBAD, the SiQL
calls are processed, and results are returned to the SOAP interface. The SOAP
interface returns the results, depending on a user-defined parameter, on a certain

level of detail (see below).

Fig. 2. Workflow of a SINDBAD SAILS call

A detailed overview over a SINDBAD SAILS call is given in Figure 3: Data
Mining methods are translated into SiQL queries and executed by the underlying
SINDBAD database. Methods for uploading the data on and downloading results
from the server are provided. The input for the algorithms is either uploaded

User <l———|> SOAP 4- D Parser

SOAP call WebConnect JavaConnect SINDBAD
SiQL DB-Connect

Response data SiQL Result ML

from a given URL or a result of a former query on the database is used. We
decided not to upload the data via transformation into XML and back, as this
would require the client to implement this functionality, and we intended to keep
the requirements on the client side as low as possible. The data is processed by
the preprocessing and data mining algorithms and the results are stored on the
server. They can be downloaded by using a PHP method or used in further
computations. To use data from earlier sessions, an identification number is
associated with each result. This id can be passed to the PHP methods instead
of the URL to the input data. Additionally, each intermediate result can be
obtained from the server. Each Web Service method call returns two integers, the
identifier of the input table and the identifier of the result table. The generated
queries are passed to SINDBAD via command line, the output of SINDBAD
is parsed for thrown exceptions and problems. If any exception is thrown, it is
passed to the client system in a special type which is described in the SOAP
specifications.

Fig. 3. UML Activity diagram of a SINDBAD SAILS call

processing SOAP call

yes

check of datalD
yes

datalD is URL

get table from DB
generate SiQL
pass SiQL to SINDBAD

return error)

no

download succesfull

download of data
transformations in table

generation of new datalD

no

datalD assigned

result table exists

| generation of SOAP response |

return result

The results of the session are returned to the user depending on a parameter
which sets the level of detail of the results. In the default case, the complete result
tables are returned, but it is possible to reduce the returned output. For instance,
for classification tasks, it is possible to return the predicted and actual classes
of each instance instead of the complete instance including that information.
If even less information is sufficient, the system can return just the confusion
matrix or the error rate/AUC. In itemset mining, the full set of solutions, the
borders, or just aggregate statistics of the results can be returned.

A sample call in Java is shown in Table 3. To connect to the Web Service,
the Axis package of Apache is used (see http://ws.apache.org/axis/). First,
a connection to the Web Service is established. Then the task is set to frequent
itemset mining, which is done by the APriori algorithm. Finally, an URL of the
data is sent to the service for download. With this URL, the minimum support
and the level of detail for the results is passed to SINDBAD. If any errors occur
during the execution of the APriori algorithm, an exception is thrown, containing
a detailed error message from SINDBAD. The example is given in Java, but
similar programs can be written in almost any programming language.

Table 3. Simple Java example program using the Web Service interface of SINDBAD.
In the example, the Axis package of Apache is used to establish a connection to the
Web Service.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.(Name;
public class SoapClient
{
public static void main(String[] args) throws Exception

{

String endpoint = "http://SINDBAD.in.tum.de/soap";
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName ("frequentItemsets") ;
Object[] returnset =
(Object[]) call.invoke(
new Object[1{
’http://wwwkramer.in.tum.de/soybean.arff’,
’0.57,
’low’});

5 Related Work

We presented a Web Service interface to the inductive database SINDBAD.
The main difference from similar approaches combining Web Services and data
mining is the use of an inductive database as a basis for data mining. Similar
approaches exist on the basis of the WEKA workbench [10]. WekadWS [11] (see
http://wekadws.wordpress.com/) is a framework with the aim of providing
distributed data mining in grid environments. To implement the Web Service
environment, it uses the Web Service Resource Framework (WSRF). Addition-
ally, it provides a modified Weka Explorer to enable computation on remote or
local hosts. While the Wekad WS offers access to a great number of data mining
algorithms, it does not seem to aim for an easy integration into external pro-
grams. The main focus of the projects seems to be the support of distributed
data mining.

A similar approach introduces a Dynamic Data Mining Process system based
on SOA [12]. Although the WEKA workbench is not used as a backend, the Web
Services are used to manage the internal communication between different data
mining processes. Each data mining process is provided by a single Web Service,
a complete data mining session is a combination of several Web Services. As
the Web Services work independently from each other, it is not obvious how to
combine several different data mining operations into one procedure.

Ghanem et al. [13] presented a tool for biological text mining on the basis of
Web Services. They focus on biological applications and provide a visualization
for non-programmers.

The approach most similar to SINDBAD SAILS is the FAEHIM project [14,
15], which provides a similar functionality, but again uses WEKA as a basis
for most of its data mining algorithms. At the moment, about 75 data mining
algorithms are supported.

A more specialized approach is taken by the Taverna workflow management
system (see http://taverna.sourceforge.net/), which offers support for a
broad range of bioinformatics applications. While Taverna focuses on tasks aris-
ing in biological applications, SINDBAD SAILS is intended for general-purpose
data mining tasks.

6 Conclusion

We presented a data mining Web Service using the SINDBAD inductive
database. To the best of our knowledge, it is the first time a Web Service interface
is offered for an inductive database. Although the combination with SINDBAD
limits the number of currently available data mining algorithms so far, it enables
easy access to some of the most fundamental algorithms. The main advantage of
the inductive database approach is the possibility to use and combine the mining
results almost arbitrarily.

SINDBAD SAILS will support all features of SINDBAD. In addition to pro-
viding a broad range of data mining algorithms publicly on the internet, it is

possible to set up a network of inductive databases and distribute the work over
several servers exchanging result objects between them. Another attractive fea-
ture of the approach is the straightforward use of machine learning and data
mining in programming languages without the need for specialized libraries. As
such, it also points into an interesting direction: the transition from inductive
query languages to inductive programming languages.

References

1.

10.

11.

12.

13.

Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In Bonchi, F., Boulicaut, J.F., eds.: KDID. Volume 3933 of Lecture
Notes in Computer Science., Springer (2005) 124-138

Richter, L., Wicker, J., Kessler, K., Kramer, S.: An inductive database and query
language in the relational model. In: Proceedings of the 10th International Confer-
ence on Extending Database Technology (EDBT 2008), ACM Press (2008) 740-744
Agrawal, R., Bollinger, T., Clifton, C.W., Dzeroski, S., Freytag, J.C., Gehrke, J.,
Hipp, J., Keim, D., Kramer, S., Kriegel, H.P., Liu, B., Mannila, H., Meo, R.,
Morishita, S., Ng, R., Pei, J., Raghavan, P., Ramakrishnan, R., Spiliopoulou, M.,
Srivastava, J., Torra, V., Tuzhilin, A.: Data mining: The next generation. Report
based on a Dagstuhl perspectives workshop organized by R. Agrawal, J-C. Freytag,
and R. Ramakrishnan (2005)

Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5
(1990) 239

Date, C.J.: An Introduction to Database Systems. 4th edn. Addison Wesley (1986)
Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37 (2001)

Ferris, C., Booth, D., Champion, M., Haas, H., Orchard, D., Newcomer,
E., McCabe, F.: Web services architecture. W3c note, W3C (2004)
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Domingos, P.: Structured machine learning: Ten problems for the next ten years.
In: Proceedings of Seventeenth International Conference on Inductive Logic Pro-
gramming, Corvallis, Oregon, Springer (2007)

Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++: A ma-
chine learning library in C++. In: Tools with Artificial Intelligence, IEEE Com-
puter Society Press (1996)

Witten, I.LH., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edition edn. Morgan Kaufmann, San Francisco (2005)

Talia, D., Trunfio, P., Verta, O.: WekadWS: A WSRF-enabled Weka toolkit for
distributed data mining on grids. In: Proc. of the 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD 2005). Vol-
ume 3721 of LNAL, Porto, Portugal, Springer-Verlag (2005) 309-320 ISBN 3-540-
29244-6.

Tsai, C.Y., Tsai, M.H.: A dynamic web service based data mining process sys-
tem. In: CIT ’05: Proceedings of the The Fifth International Conference on Com-
puter and Information Technology, Washington, DC, USA, IEEE Computer Society
(2005) 1033-1039

Ghanemn, M., Chortaras, A., Guo, Y.: Web service programming for biological text
mining. In: Proceedings of the ACM SIGIR’04 Workshop on Search and Discovery
in Bioinformatics. (2004)

14. Ali, A.S., Rana, O., Taylor, I.. Web services composition for distributed data

15.

mining. In: ICPPW ’05: Proceedings of the 2005 International Conference on
Parallel Processing Workshops, Washington, DC, USA, IEEE Computer Society
(2005) 11-18

Ali, A., Ludwig, S., Rana, O.: A cognitive trust-based approach for web service
discovery and selection. In: Third IEEE European Conference on Web Services
(ECOWS 2005). (2005) 12 pp.

