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Abstract. An important problem in Computational Molecular Biology is the 
detection of remote homologues. We show that discriminative models, such as 
CRFs, can be useful in this task, and that we can elegantly encode structural 
information through logic, in frameworks such as TildeCRF.  
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1   Introduction 

An important problem in Computational Molecular Biology is the detection of remote 
homologues, often proteins that have a common ancestor but that have diverged 
significantly in their evolutionary history. A number of tools have been developed 
toward this purpose. Arguably, a popular and effective approach is to model a family 
of proteins as a profile hidden Markov models (pHMM) [3]. Query proteins are 
aligned against the pHMM for the family. Such models are most often trained on 
primary sequence information only, although recent work has shown that greater 
sensitivity can be achieved by using secondary or tertiary information when available 
[2]. 

Hidden Markov models [10] provide a generative model for sequence data. 
Recently, there has been much interest in discriminative models of sequence data, 
such as conditional random fields (CRFs) [7]. In recent work, Kersting el al. [5] 
proposed TildeCRF, an extension to CRFs where the sequence is formed by logical 
atoms, thus providing a natural framework for expressing structured data. Initial 
LogCF results in predicting secondary structure were very promising. 

In this work, we investigate whether probabilistic logical models of sequences can 
be competitive models for detecting remote homologues. In our experiments, we 
encode sequences with structural information as logical atoms, and we use the 
boosting based learning of TildeCRF to generate a discriminative model. 

This paper is organized as follows. After discussing related work in Section 2, we 
will briefly review CRF and TildeCRF in the next two sections. We describe our 



methodology and experiments in Section 5. Preliminary results are discussed in 
Section 6. Finally, Section 7 presents our conclusions and cites future work we intend 
to do. 

2   Related work 

Traditional approaches for homology detection are based on sequence information, 
i.e. they search the database using PSI-BLAST [13] or match against a profile hidden 
Markov model (pHMM) that describes preserved residues of protein sequences by 
creating a statistical model of aligned sequences [3]. These methods work well for 
simple conserved structures with strong sequence similarities, but fail for remote 
homology. More precisely, in the twilight zone of homology, where sequence 
similarity across proteins is poor, but structure is quite often well conserved, 
Bernardes et al. [2] show that alignments obtained using structure information can 
lead to more expressive models than alignments obtained from sequence data only. 

This raises the question of how best one can improve sequence similarity detection 
through structural information. One approach relies on the widely available pHMM 
implementations, such as SAM [11] and HMMER [4], are widely available. Systems 
such as HMMER-STRUCT extend HMMER by considering structural information 
when computing the probabilistic model [9,27]. HMMER-STRUCT achieved good 
experimental results. Experiments showed that secondary and tertiary structural 
information could improve model quality, independently. In a related experiment, it 
was shown that there was a benefit in using packing and accessibility information, 
which is readily available. 

HMMER and SAM are very efficient implementations of a generative 
propositional model for sequence data. Recently, there has been exciting work on 
discriminative models, such as CRFs [7], on the one hand, and on logical models of 
structured sequences, on the other hand.  PRISM [24], SLPs[25], CLP(BN) [26], 
LoHMMs [6], Relational Markov networks (RMN) [15] , Relational Markov models 
[16] and TildeCRF are different approaches to this approach, but all can be used to 
models structured sequence data. PRISM and CLP(BN) have been used to implement 
HMMs. They provide very general frameworks, but allow more compact descriptions 
in the model. In contrast, LoHMMs is a framework specifically designed to handle 
sequences of logical atoms. As a very different alternative, Markov Fields have also 
been upgrade to first order logic, as in Models Relational Markov networks (RMN) 
[15] and Markov logic network (MLN) [14]. In the same spirit as LoHMM, TildeCRF 
can be seen as an attempt towards downgrading such highly expressive frameworks 
for the specific goal of handling logical sequences [5]. 

Interest in CRFs is further motivated by successful applications of CRFs in   
several bioinformatics applications, such as protein secondary structure prediction [5], 
protein fold classification [5,20] and RNA secondary structural alignments [21].  



3   Conditional Random Fields 

CRFs are undirected graphical models to compute a conditional probability 
distribution P(Y|X), where X is a input sequence that we assume has been observed, 
and Y is a set of output variables that we wish to predict. The principal advantage of 
discriminative modelling is that conditional distribution P(Y|X) does not include a 
model of P(X), which often contains many highly dependent features [17]. 

Formally, in special case of a linear chain structure, let G be an undirected 
graphical model over sets of random variables X and Y the labelling of an observed 
sequence X. Then a CRF defines the conditional probability as 
 

P(Y|X) = Z(X)-1 exp { �1..K �kfk(yt, yt-1, xt) } (1) 

 
where {fk(y, y’,xt)}k=1..K is a set of real-valued feature functions, witch are given and 
fixed, Z(X) is a normalization factor and {�k} k=1..K is a parameter vector that will be 
learned via maximizing the conditional likelihood of the training data. In a linear 
chain CRF, a first order Markov assumption is made on the hidden variables and there 
is one feature per transition and one feature per state-observation pair, very much as 
in HMMs. 

Parameter estimation is frequently performed by conditional log likelihood and 
optimized by gradient-based techniques. Because often we have a large number of 
parameters, a kind of penalty called regularization is adopted to avoid overfitting. 
Inference tasks can be performed efficiently by variants of the standard HMM 
algorithms, such as the Viterbi algorithm for finding the most likely explanation. 

4   TildeCRF 

In this work we rely on TildeCRF, to the best of our knowledge the first system that 
can train conditional random fields on logical sequences. The key idea of TildeCRF is 
to use relational regression trees in Dietterich et al.'s gradient tree boosting approach 
[19]. Following Dietterich's work, TildeCRF's potential functions are represented as 
weighted sums of regression trees. On the other hand, in TildeCRF regression trees 
are relational, as in Tilde [18]. Relational regression trees allow abstraction through 
logical variables and unification. 

The compactness and even comprehensibility of TildeCRF, however, comes at the 
expense of a complex parameter estimation problem: the system relies on a non-
parametric functional representation. Therefore, gradient-based optimization 
techniques such as McCallum's MALLET [23], which assume a parameterized 
representation, cannot be applied. Instead, TildeCRF follows Dietterich et al.'s 
gradient tree boosting technique [19], called TreeCRF. In TreeCRF, potential 
functions are represented by sums of traditional regression trees, which are grown 
stage-wise by a variant of boosting. Each regression tree can be viewed as defining 
several new feature combinations one corresponding to each path in the tree from the 



root to a leaf. The resulting potential functions still have the form of a linear 
combination of features, but the features can be quite complex. 

Boosting is implemented in a style similar to Dietterich et al.: one evaluates the 
gradient function at every position in every training example and fits a regression tree 
to these derived examples. But, simplify the derivation of the gradient and afterwards 
the evaluation, it does not use the complete input but a window. Relational regression 
trees upgrade the attribute value representation used within classical regression trees: 
every test is a relational conjunction of atoms. 

In order to induce a relational regression tree, TildeCRF essentially employs 
Blockeel and De Raedt's Tilde, which also explains the name of its approach. Tilde 
learns relational trees by applying the learning from interpretations setting, where 
each example is an interpretation, or more precisely, a set of ground atoms. To learn, 
Tilde basically follows Quinlan's well-known C4.5 algorithm. 

5   Methodology 

 In our study, we work at the super family level of the SCOP database [1], which 
groups families such that a common evolutionary origin is not obvious from sequence 
identity, but probable from an analysis of structure and from functional features. We 
believe that this level best represents remote homologies. 
We aim at investigating the following open problems: (i) does TildeCRF achieve 
significantly better results by using structural information; (ii) is TildeCRF 
competitive with standard tools developed for this task, such as pHMMs. 

 

 
Fig. 1. Experiment schema: the information needed in each test is represented for the three 
arrows ending in TildeCRF box. 

 



In a preliminary test, we select three super families of the alpha class. We then use 
cross-validation [8], leaving one-family out of the training, to evaluate our results. We 
repeat the process three times. In the first experiment, we use sequences of amino 
acids, thus including no structural information whatsoever. In a second experiment, 
we first align a new sequence against a multiple alignment for the family, obtained 
from Clustal-W [12]. In the third step we use information of the secondary structure 
of the protein, obtained using JOY [22]. Finally we compare these results with 
HMMER and HMMER-STRUCT results. 

We have defined a simple form to represent the amino acids of the protein 
sequences into first-order logical sentences: a unique predicate “a” having an arity 1, 
2 or 3, depending on the test being performed. The first term represents the amino 
acid properly and may receive one of 20 letters that are used to represent amino acids 
in biology. The second encode the secondary structure of protein witch that amino 
acid is part and receive “C” for coil, “H” for helixes, “E” for beta and “P” for phi 
angle. The last encode the alignment information, meaning “m” for matches, “i” for 
inserts and “g” for gaps. Then the input sequences are made up of sequences of amino 
acids represented like below. 

 

 
Fig. 2. Input sequence schema.  

6   Evaluation 

Three super families were chosen at random from SCOP alpha class: a.1.1, a.3.1 e 
a.4.1. Accuracy on training and test sets of Java version of TildeCRF are shown in 



tables 1 e 2. The input features consisted of an 11-residue slide window and we 
allowed regression trees of depth 5 at maximum. 

Table 1.  Accuracy on training set 

Super family Amino acid info. Alignment info. Secondary structure info. 
a.1.1 0.43 0.87 0.94 

a.3.1 0.41 0.67 0.75 

a.4.1 0.31 0.71 0.80 
 
Our results show that including more information usually improves both train-set and 
test-set accuracy. This affirmatively answers (i). 

Table 2.  Accuracy on test set 

Super family Amino acid info. Alignment info. Secondary structure info. 
a.1.1 0.17 0.38 0.78 

a.3.1 0.20 0.37 0.34 

a.4.1 0.31 0.46 0.62 
 

In order to assess the significance of the results was used paired t-test [8] 
considering the results as significant at p = 0.05. 

Table 3.  Paired t-test over test results (table 2): P value and statistical significance 

 Amino acid info. Secondary structure info. 
Amino acid info.  0.03934 (yes) 

Alignment info. 0.00277 (yes) 0.00006 (yes) 
 
We next repeated the same experiments using HMMER, arguably one of the most 

popular tools in searching for remote homologues, and HMMER-STRUCT that build 
five pHMMs from the same train set, one for each structural property. The properties 
used are: primary, secondary and tertiary structures, accessibility and packing residue. 
Here we have used HMMER-STRUCT by considering only primary and secondary 
structure properties. Table 4 show results per super family. 

Table 4.  Comparing TildeCRF with others, accuracy on test set 

Super family HMMER HMMER-STRUCT 
Secondary structure info. 

TildeCRF 
Secondary structure info. 

a.1.1 0.67 0,74 0.78 

a.3.1 0,97 0,97 0.34 

a.4.1 0,54 0,56 0.62 
 



HMMER achieved an average accuracy of 0.73 and HMMER-STRUCT 0.76. In 
contrast, TildeCRF achieves only 0.58. This results apparently shows that TildeCRF 
does not perform as well as the others. But it obtained best the results in two of three 
super families we considered, suggesting that question (ii) needs further research in 
improving the performance of TildeCRF through better usage of the structural 
information used by HMMER-STRUCT. 

7   Conclusions and Future Work 

We believe that discriminative statistical relational models, such as conditional 
random fields, can be beneficial in the important problem of remote homology 
detection.  

As a next step, we will include further experiments. We are running the same 
experiments presented in this work for super families of SCOP beta and alpha-beta 
classes. Our intention is to investigate how TildeCRF performs in the three major 
classes of the SCOP database. After, we will enlarge the sampling, running it for as 
many super families as possible. 
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