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Abstract. We developed a methodology that both facilitates and en-
hance the search for homogeneous subtypes in data. We applied this
methodology to medical research on Osteoarthritis and Parkinson’s Dis-
ease and to chemical databases in chemoinformatics. We release this
methodology as the R SubtypeDiscovery package to enable reproducibility

of our analyses. In this paper, we present the package implementation
and we illustrate its output on molecular data from chemoinformatics,
which we bring public. Our methodology includes different techniques
to process the data, a computational approach repeating data modelling
to select for a number of subtypes or a type of model, and additional
methods to characterize, compare and evaluate the top ranking models.
Therefore, this methodology does not solely cluster data but it also pro-
duces a complete set of results to conduct a subtype discovery analysis.

1 Introduction

In medical research, it is of interest to identify subtypes of diseases like Os-
teoarthritis (OA) and Parkinson’s Disease (PD) that present clinical heterogene-
ity. We can do so by searching for homogeneous clusters in values of markers
that reflect the severity of the disease. For chemoinformatics, in order to under-
stand the relationship between different bioactivity classes of molecules, subtype
discovery of chemical databases may improve our understanding of the similar-
ity (and distance) between different phenotypic effects as induced by drugs and
chemicals.

To this aim, we developed a methodology mimicking a cluster analysis pro-
cess: from data preparation to cluster evaluation. In particular, it implements
various data preparation techniques to facilitate the analysis given different data
processing [1]. It also features a computational approach that repeats data mod-
elling in order to select for a number of subtypes or a type of model. Additionally,



it defines a selection of methods to characterize, compare and evaluate the top
ranking models [2].

As the search for subtypes appears in many areas, we abstract from the
application we have done up to now and make it available as the R SubtypeDis-

covery package. We present its implementation in this paper. The outline is as
follows: in section 2, we give the main features of our methodology, in section 3
we discuss the design of the package, which we illustrate by an example on the
chemoinformatics molecular data.

2 A methodology for subtype discovery

The methodology consists of a number of steps. We next discuss these steps in
detail.

Data preparation. As data preparation can influence largely the result of data
analyses, our methodology includes various methods to transform and process
data, e.g. computing the z-scores of variables to obtain scale-invariant quantities.
Alternatively, we may want to remove the time dimension in the data because we
do not want to model clusters only characterized by the time. As an example,
age in OA and disease duration in PD are two time variables known to play
a major role in the overall severity of these diseases. To proceed, we analyze
the residual variance of a regression on the time [1]. Other methods implement
L2/L1 and max data normalization, and centering with respect to the mean,
the median or the min.

Cluster analyses. We use the model based clustering framework developed by
Fraley and Raftery [3]. As shown in [4], the framework relies on the concept of
reparameterization of the covariance matrix which enables to select and adapt
the level of complexity of the covariance by controlling its geometry, see Fig. 1.

Fig. 1. On the left, we illustrate a simple modelling with three mixtures in two di-
mensions which are defined by their center µk and their geometry Σk, k = 1, 2, 3. On
the right, we illustrate two mixtures on a single dimension. The gray is most likely
and determines the cluster membership. The black is less likely and informs on the
clustering uncertainty.



For a given number of mixtures and a covariance model, the EM-algorithm is
used to estimate the model parameters. It alternates iteratively between Expec-
tation to estimate for each observation its cluster membership likelihood, and
Maximization to optimize the model parameters that maximize the likelihood.
Then the iterative process stops as likelihood improvements become very small.
Moreover, as the starting point of EM may influence the final result, in our anal-
yses we repeat model estimation given different starting points. We then use the
starting point that leads to the most likely model.

BIC analysis. The larger the number of parameters, the more likely it is that
our model may overfit the data which restricts its generality and comprehen-
siveness. Therefore, to select the most likely model, Kass and Raftery [5] prefer
the Bayesian Information Criterion (BIC) to the Akaike Information Criterion
(AIC) because it approximates the Bayes Factor; we use the BIC in our analyses,
BIC = −2 logLMIX + log (N × ♯params). We further approach the problem of
selecting a number of subtypes and a type of model computationally by repeating
the data modeling. Thus, especially analyzing the BIC scores of those models,
we report in first place a BIC table that aggregates the best scores given all
repeats. Second, we provide rankings on models, number of clusters and starting
values. Finally, in another set of tables, we characterize those BIC scores given
their mean, standard deviation, median, 2.5 and 97.5% quantiles. See Table 2
for an extract output of those tables.

Selected methods to characterize, compare and evaluate subtypes. To more easily
evaluate the influence on the cluster results of different data preparation or
to compare two by two cluster results, we need efficient visualization tools to
see the prominent characteristics of the cluster results. Influenced by Tukey [6]
and Tufte [7,8] for scientific data visualization and by Brewer’s suggestions for
color selection in geography [9], we selected three types of visual-aids, namely
the heatmaps [10], the dendrograms of hierarchical clustering [11], and parallel
coordinates [12].

In complement to visual-aids, we use table-charts that report the main clus-
ter characteristics and that allow cross-comparison between cluster results. We
address the first aspect using the log of the odds which we express for a cluster
k on a factor l as logoddskl = log ((A × D)/(B × C)), see Table 1.

Table 1. For each sum score l, we consider a middle value δl such as the data set mean
or median. For cells A and B, we use it to count how many observations i in the cluster
Sk have a sum score above and below its value. For cells C and D, we proceed to a
similar count but on the rest of the observations i ∈ {S − Sk}.

xi < δl xi ≥ δl

i ∈ Sk A B
i ∈ {S − Sk} C D



We address the second aspect using regular association tables. From these
tables, the χ2-statistic is calculated to draw a single association measure in
terms of the Cramer’s V nominal association coefficient. It expresses as V =
√

χ2/(n × m) where n is the sample size and m = min(rows, columns) − 1. It
takes values in [0, 1], one stands for completely correlated variables and zero for
stochastically independent ones.

As we perform unsupervised analyses, it is important to know whether the
cluster result generalizes to the total patient population. We address this aspect
from the machine learning point of view by measuring the classification accuracy
of machine learning algorithms like naive Bayes, linear Support Vector Machines
or one nearest neighbor as a baseline.

Finally, when conducting a subtype discovery analysis, a key concern is the
cluster evaluation. For that purpose, we implemented a simple mechanism to
add study-specific evaluation procedures of the subtypes. In OA for instance, as
the study involves siblings pairs, we defined two statistical tests that assess the
level of familial aggregation in each subtype and its significance.

3 The package, its implementation and a sample analysis

Package design. The implementation articulates around three main containers:
the data set cdata, the cluster model cmodel and the set of cluster results
cresult. Their entity-relationship cardinalities is as follows: a cresult describes
a SubtypeDiscovery analysis, it holds a data set cdata and it holds several cluster
models cmodel. In Fig. 2, we illustrate cdata requiring an input data set and a
description of how it should be interpreted into settings. We also describe the
relation between cdata, cmodel and cresult.

Plotting a cdata container gives for each variable its boxplot, histogram and
information like, e.g. its empirical mean or standard deviation. Regards cresult,
plotting can be restricted to a queried cmodel or, by default, it plots all of them.
We illustrate such plot for the top-ranking model (VVI, 6, 6022) in Fig. 3. Finally,
a print on a cresult generates a report that includes the different table charts
from the BIC analysis and those focusing on the top-ranking cluster results
characterististics, two-by-two comparison, and evaluation. We report some of
the most important table-charts in Table 2.

Public wada2008 data set and sample analysis. Originally generated by Edward
O. Cannon, the data set is composed of substances taken from the 2008 WADA
(World Anti-Doping Agency) Prohibited List together with molecules having
similar biological activity and chemical structure from the MDL Drug Data
Report database. Those molecules may belong to ten different activity classes:
the β blockers, anabolic agents, hormones and related substances, β-2 agonists,
hormone antagonists and modulators, diuretics and other masking agents, stim-
ulants, narcotics, cannabinoids and glucocorticosteroids. This list of molecules
was imported into Molecular Operating Environment (MOE) from which all 184
two dimensional descriptors were calculated. The wada2008 data set is similar
to the wada2005 which was previously published in [13].



library(SubtypeDiscovery)
# LOAD DATA SET
data(wada2008)

data(wada2008_settings)
# PREPARE CDATA

cdata1 <- set_cdata(data=wada2008,
prefix="WADA2008_Sample_Analysis", settings=wada2008_settings)

# PREPARE NEW CDATA FOR CANALYSIS ON PRINCOMP (EXPL. 95\% OF THE VAR.)
cdata2 <- get_cdata_princomp(cdata1)
# PREPARE THE SET OF RESULTS FOR CLUSTER MODELLING

x <- set_cresult(cdata=cdata2, fun_pattern=list(mean=patternMean)
cfun_settings=list(modelName=c("EII","VII","EEI","VEI","EVI","VVI"),

G=3:6, rseed=6013:6024))
# PROCEED TO THE MODELLING, SAVING, BIC ANALYSIS, PLOT, PRINT AND WRITE MODELS
x <- analysis(x)

cresult

function(cmodel)
fun_plot

function(cmodel)
fun_stats

function(cmodel)
fun_pattern

nbr_top_models

cfun_params
G, modelName, rseed

rinfo

ranking
bicanalysis

prefix

fun_bic_pattern

cdata

tdata

prefix
“2008-12-12_prefix”

transf.

cmodel

model
G
modelName
mu_k
sigma_k
...

pattern
mu_k
median_k
2.5%_k
97.5%_k
...
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Fig. 2. In the top figure, we illustrate graphically the making of a cdata data set
container by set cdata() which takes as input raw data and settings. These settings
describe in particular the sequence of transformation to apply on the data. Next, we
report the main three classes of our package, i.e. the data container cdata, the model
container cmodel and the set of cluster results container cresult.

4 Concluding remarks

We developed a methodology to facilitate and enhance the search for more ho-
mogeneous subtypes with application to medical research and chemoinformatics.



Table 2. Given all repeats, we report tables with the best BIC scores, the starting
values leading the most likely model, the ranking of the models given a number of
clusters and vice versa and the cross comparison of cluster results (VVI, 6, 6022) and
(VVI, 6, 6016). Then, on factor A/d, A/B, C.1, C.2, KHK, Q, Pha., Phys., numbers
above 1 and below -1 illustrate high odd ratios especially characterizing a subtype,
whereas the association table and the Cramer’s V measure (65%) illustrate the level
of association between the results.

EII VII EEI VEI EVI VVI

3 -172857.6 -137398.7 -173010.0 -120257.3 -133262.9 -109035.2
4 -173025.8 -131224.6 -173178.1 -114099.2 -129299.2 -104159.8
5 -173194.1 -127733.5 -173346.4 -109503.1 -126058.9 -99545.5
6 -173362.1 -124697.7 -173514.5 -105724.1 -122780.8 -93887.8

EII VII EEI VEI EVI VVI

3 6013 6013 6013 6022 6017 6014
4 6013 6013 6013 6023 6017 6017
5 6016 6019 6016 6018 6020 6017
6 6016 6022 6016 6016 6024 6022

EII VII EEI VEI EVI VVI

3 1 4 1 4 4 4
4 2 3 2 3 3 3
5 3 1.9 3 2 2 2
6 4 1.1 4 1 1 1

3 4 5 6

EII 5 5 5 5
VII 3.7 3.8 3.9 4
EEI 6 6 6 6
EVI 3.3 3.3 3.1 3
VEI 1.8 2 2 2
VVI 1.3 1 1 1

1 2 4 6 3 5 A/d A/B C.1 C.2 KHK Q Pha. Phy.

2 824 227 - .4 - .8 .93 Inf -1.3 -2.6 -1.6 -1.4
5 15 13 7 42 494 446 .8 1.5 -1.5 .5 1.7 0.5 1.5 1.4
1 193 243 - .3 - .9 .8 Inf - .9 -3.3 - .8 .0
3 177 55 -3.8 -Inf Inf - .5 -Inf -Inf -Inf -Inf
4 5 156 60 27 .9 1.6 -1.3 -2.3 1.5 2.1 2.0 2.1
6 53 -Inf -Inf Inf -Inf -Inf Inf -Inf -Inf

A/d - .9 - .6 .4 1.4 - .0 .6
A/B -1.5 - .6 1.2 1.1 1.4 .1
C.1 1.5 .7 - .8 -1.3 -1.2 - .2
C.2 1.2 Inf - .7 -7.8 Inf 2.7

KHK -1.9 - .9 1.0 1.4 1.5 .2
Q -3.7 -1.5 .8 5.5 - .0 - .7

Pha. -2.2 - .6 1.2 1.4 1.5 .0
Phys. -2.1 -1.1 1.8 1.1 1.4 .5

χ2 0
V 65%
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Fig. 3. This Figure exhibits a color image illustrating the six average pattern of (VVI, 6,
6022). It also characteristizes the different subtypes on all variables which we grouped
by factor. The plot-scale refers to the z-scores with 95% of the values that should
fit within [−2, 2]. In this Figure, the yellow subtype with (248) molecules displays
an especially high profile on most descriptors. In the contrary, the blue (53) and red
(232) subtypes show comparatively low profiles. These two subtypes differentiate on
the Partial charge factor where we may account the blue zigzag pattern to the type of
the variables which are scores.



In this context, to enable reproducibility of our analyses, we release and docu-
mented this methodology as the R SubtypeDiscovery package. In this paper, we
presented the package implementation and we illustrated its output on an ex-
ample from chemoinformatics. Ongoing research focuses on the stability of the
cluster results given different random starts or when noise is added to data. Parts
of the package are also regularly revised or improved aiming for a more reliable
and usable methodology.
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