Sunday 19 September
17:00 - 20:00
Pick-up of registration materials for pre-registrered participant, Casa de Convalescència
(note: no on-site registration
is possible on Sunday)
Monday 20 September
8:00 - 19:00: Registration desk is open
9:00 - 17:30: Workshops and tutorials, including Discovery Challenge workshop
18:00 - 18:30: Opening and awards ceremony
18:30 - 19:30: Invited talk by Hod Lipson
19:30 - : Welcome reception
Tuesday 21 September
9:00 - 9:20: Announcements
9:20 - 10:20: Invited talk by Tomaso Poggio
Session 1: Rules and Patterns 1
Tuesday 21 September
10:50 - 12:40, aula magna
Chair: Jilles Vreeken
Mining Top-k Frequent Itemsets Through Progressive Sampling
Andrea Pietracaprina, Matteo Riondato, Eli Upfal, Fabio Vandin Integrating Constraint Programming and Itemset Mining
Siegfried Nijssen, Tias Guns Using Background Knowledge to Rank Itemsets
Nikolaj Tatti, Michael Mampaey NDPMine: Efficiently Mining Discriminative Numerical Features for Pattern-Based Classification
Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, Tarek Abdelzaher Adverse Drug Reaction Mining in Pharmacovigilance data using Formal Concept Analysis
Jean Villerd, Yannick Toussaint, Agnès Lillo-Le Louët
Session 2: Bayesian Learning 1
Tuesday 21 September
10:50 - 12:40, room 11-13
Chair: Ulf Brefeld
Three Approaches for Making the Naive Bayes Classifier Discrimination-Free
Sicco Verwer, Toon Calders Nonparametric Bayesian Clustering Ensembles
Pu Wang, Carlotta Domeniconi, Kathryn Blackmond Laskey Large Margin Learning of Bayesian Classifiers based on Gaussian Mixture Models
Franz Pernkopf, Michael Wohlmayr Variational Bayesian mixture of robust CCA models
Jaakko Viinikanoja, Arto Klami, Samuel Kaski Graphical Multi-Way Models
Ilkka Huopaniemi, Tommi Suvitaival, Matej Oresic, Samuel Kaski
Session 3: Ensemble Learning
Tuesday 21 September
10:50 - 12:40, room 10-12
Chair: TBA
Leveraging Bagging for Evolving Data Streams
Albert Bifet, Geoff Holmes, Bernhard Pfahringer Learning with Ensemble of Randomized Trees: New Insights
Vincent Pisetta, Pierre-Emmanuel Jouve, Djamel A. Zighed Learning with Randomized Majority Votes
Alexandre Lacasse, François Laviolette, Mario Marchand, Francis Turgeon-Boutin Bagging for Biclustering: Application to Microarray Data
Blaise Hanczar, Mohamed Nadif Recognition of Instrument Timbres in Real Polytimbral Audio Recordings
Elzbieta Kubera, Alicja Wieczorkowska, Zbigniew Ras, Magdalena Skrzypiec
Session 4: Web Mining and Collaborative Tagging
Tuesday 21 September
14:20 - 16:10, aula magna
Chair: Carlos Castillo
Induction of Concepts in Web Ontologies through Terminological Decision Trees
Nicola Fanizzi, Claudia d'Amato, Floriana Esposito Demand-Driven Tag Recommendation
Guilherme Vale Menezes, Jussara Almeida, Fabiano Belém, Marcos André Gonçalves, Anísio Lacerda, Edleno Silva de Moura, Gisele L. Pappa, Adriano Veloso, Nivio Ziviani Learning to Tag From Open Vocabulary Labels
Edith Law, Burr Settles, Tom Mitchell Efficient Confident Search in Large Review Corpora
Theodoros Lappas, Dimitrios Gunopulos Large Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings
Jason Weston, Samy Bengio, Nicolas Usunier
Session 5: Kernel Methods
Tuesday 21 September
14:20 - 16:10, room 11-13
Chair: Thore Graepel
A Unifying View of Multiple Kernel Learning
Marius Kloft, Ulrich Rückert, Peter L. Bartlett Constructing Nonlinear Discriminants from Multiple Data Views
Tom Diethe, David Roi Hardoon, John Shawe-Taylor Vector Field Learning via Spectral Filtering
Luca Baldassarre, Lorenzo Rosasco, Annalisa Barla, Alessando Verri Many-to-Many Graph Matching: a Continuous Relaxation Approach
Mikhail Zaslavskiy, Francis Bach, Jean-Philippe Vert Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition
Somayeh Danafar, Arthur Gretton, Jürgen Schmidhuber
Session 6: Topic Models and Dimensionality Reduction
Tuesday 21 September
14:20 - 16:10, room 10-12
Chair: Geoff Webb
A Segmented Topic Model Based on the Two-parameter Poisson-Dirichlet Process
Lan Du, Wray Buntine, Huidong Jin Topic Models Conditioned on Relations
Mirwaes Wahabzada, Zhao Xu, Kristian Kersting Topic Modeling for Personalized Recommendation of Volatile Items
Maks Ovsjanikov, Ye Chen Learning an Affine Transformation for Non-linear Dimensionality Reduction
Pooyan Khajehpour Tadavani, Ali Ghodsi Sparse Unsupervised Dimensionality Reduction Algorithms
Wenjuan Dou, Guang Dai, Congfu Xu, Zhihua Zhang
Session 7: Link Prediction and Graph Classification
Tuesday 21 September
16:40 - 18:30, aula magna
Chair: Bjorn Bringmann
Learning Algorithms for Link Prediction based on Chance Constraints
Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, Lise Getoor Graph Regularized Transductive Classification on Heterogeneous Information Networks
Ming Ji, Yizhou Sun, Marina Danilevsky, Jiawei Han, Jing Gao Fast and Scalable Algorithms for Semi-supervised Link Prediction on Static and Dynamic Graphs
Rudy Raymond, Hisashi Kashima Directed Graph Learning via High-Order Co-linkage Analysis
Hua Wang, Chris Ding, Heng Huang Predicting Labels for Dyadic Data
Aditya Menon, Charles Elkan
Session 8: Reinforcement Learning 1
Tuesday 21 September
16:40 - 18:30, room 11-13
Chair: Irina Rish
Smarter Sampling in Model-Based Bayesian Reinforcement Learning
Pablo Samuel Castro, Doina Precup Incorporating Domain Models into Bayesian Optimization for Reinforcement Learning
Aaron Wilson, Alan Fern, Prasad Tadepalli Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration
Tobias Jung, Peter Stone Exploration in Relational Worlds
Tobias Lang, Marc Toussaint, Kristian Kersting Evolutionary Dynamics of Regret Minimization
Tomas Klos, Gerrit Jan van Ahee, Karl Tuyls
Session 9: Multi-task, Multi-domain and Large-scale Learning
Tuesday 21 September
16:40 - 18:30, room 10-12
Chair: Katharina Morik
Shift-invariant Grouped Multi-task Learning for Gaussian Processes
Yuyang Wang, Roni Khardon, Pavlos Protopapas Cross Validation Framework to Choose amongst Models and Datasets for Transfer Learning
Erheng Zhong, Wei Fan, Qiang Yang, Olivier Verscheure, Jiangtao Ren Predictive Distribution Matching SVM for Multi-Domain Learning
Chun-Wei Seah, Ivor W. Tsang, Yew-Soon Ong, Kee-Khoon Lee Porting Decision Tree Algorithms to Multicore Using FastFlow
Marco Aldinucci, Salvatore Ruggieri, Massimo Torquati Large Scale Support Vector Learning with Structural Kernels
Aliaksei Severyn, Alessandro Moschitti
19:20 - : Poster reception 1 at Institut d'Estudis Catalans
Wednesday 22 September
9:00 - 9:20: Announcements
9:20 - 10:20: Invited talk by Jiawei Han
Session 10: Social Networks
Wednesday 22 September
10:50 - 12:40, aula magna
Chair: Tanya Berger-Wolf
Selecting Information Diffusion Models over Social Networks for Behavioral Analysis
Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda Finding Critical Nodes for Inhibiting Diffusion of Complex Contagions in Social Networks
Chris J. Kuhlman, V. S. Anil Kumar, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz Analysis of Large Multi-Modal Social Networks: Patterns and a Generator
Nan Du, Hao Wang, Christos Faloutsos Surprising Patterns for the Call Duration Distribution of Mobile Phone Users
Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms
B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos
Session 11: Bayesian Learning 2
Wednesday 22 September
10:50 - 12:40, room 11-13
Chair: Hendrik Blockeel
Expectation Propagation for Bayesian Multi-task Feature Selection
Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Thibault Helleputte, Pierre Dupont A Geometric View of Conjugate Priors
Arvind Agarwal, Hal Daume Permutation Testing Improves Bayesian Network Learning
Ioannis Tsamardinos, Giorgos Borboudakis An Efficient and Scalable Algorithm for Local Bayesian Network Structure Discovery
Sérgio Rodrigues De Morais, Alex Aussem Bayesian Knowledge Corroboration with Logical Rules and User Feedback
Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, Thore Graepel
Session 12: Sparse Learning
Wednesday 22 September
10:50 - 12:40, room 10-12
Chair: Roni Khardon
Classification with Sums of Separable Functions
Jochen Garcke Solving Structured Sparsity Regularization with Proximal Methods
Sofia Mosci, Lorenzo Rosasco, Matteo Santoro, Alessando Verri, Silvia Villa Learning Sparse Gaussian Markov Networks Using a Greedy Coordinate Ascent Approach
Katya Scheinberg, Irina Rish Efficient and Numerically Stable Sparse Learning
Sihong Xie, Wei Fan, Olivier Verscheure, Jiangtao Ren k-Version-Space Multi-Class Classification Based on k-Consistency Tests
Evgueni Smirnov, Georgi Nalbantov, Nikolay Nikolaev
Session 13: Active and Adversarial Learning
Wednesday 22 September
14:20 - 16:10, aula magna
Chair: Peter Flach
Asking Generalized Queries to Ambiguous Oracle
Jun Du, Charles X. Ling Complexity Bounds for Batch Active Learning in Classification
Philippe Rolet, Olivier Teytaud A Unified Approach to Active Dual Supervision for Labeling Features and Examples
Josh Attenberg, Prem Melville, Foster Provost Mining Adversarial Patterns via Regularized Loss Minimization
Wei Liu, Sanjay Chawla Online Learning in Adversarial Lipschitz Environments
Odalric-Ambrym Maillard, Rémi Munos
Session 14: Relational Learning
Wednesday 22 September
14:20 - 16:10, room 11-13
Chair: Dunja Mladenic
First-Order Bayes-Ball
Wannes Meert, Nima Taghipour, Hendrik Blockeel Temporal Maximum Margin Markov Network
Xiaoqian Jiang, Bing Dong, Latanya Sweeney Entropy and Margin Maximization for Structured Output Learning
Patrick Pletscher, Cheng Soon Ong, Joachim M. Buhmann
Modeling Relations and Their Mentions without Labeled Text
Sebastian Riedel, Limin Yao, Andrew McCallum Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models
Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude Shavlik
Session 15: Graph Mining
Wednesday 22 September
14:20 - 16:10, room 10-12
Chair: Hiroshi Motoda
Online Structural Graph Clustering Using Frequent Subgraph Mining
Madeleine Seeland, Tobias Girschick, Fabian Buchwald, Stefan Kramer Latent Structure Pattern Mining
Andreas Maunz, Christoph Helma, Tobias Cramer, Stefan Kramer Relational Retrieval Using a Combination of Path-Constrained Random Walks
Ni Lao, William Cohen Coniunge et Impera: Multiple-Graph Mining for Query-Log Analysis
Ilaria Bordino, Debora Donato, Ricardo Baeza-Yates Hub Gene Selection Methods for the Reconstruction of Transcription Networks
José Miguel Hernández Lobato, Tjeerd Dijkstra
17:30 - 19:00: Guided visits of Palau de la Musica Catalana
19:00 - 20:00: Invited talk by Juergen Schmidhuber, Petit Palau
20:00 - : Gala dinner, Palau de la Musica Catalana
Thursday 23 September
9:00 - 9:20: Announcements
9:20 - 10:20: Invited talk by Leslie Pack Kaelbling
Session 16: Spectral Analysis and Graph Clustering
Thursday 23 September
10:50 - 12:40, aula magna
Chair: Stefan Wrobel
Euclidean Distances, Soft and spectral Clustering on Weighted Graphs
François Bavaud Improved MinMax Cut Graph Clustering with Non-negative Relaxation
Feiping Nie, Chris Ding, Dijun Luo, Heng Huang A Game-Theoretic Framework to Identify Overlapping Communities in Social Networks
Wei Chen, Zhenming Liu, Xiaorui Sun, Yajun Wang Laplacian Spectrum Learning
Pannagadatta K. Shivaswamy, Tony Jebara On The Eigenvectors of p-Laplacian
Dijun Luo, Chris Ding, Heng Huang, Feiping Nie
Session 17: Rankings and Partial Orders
Thursday 23 September
10:50 - 12:40, room 11-13
Chair: Johannes Furnkranz
Kantorovich Distances between Rankings with Applications to Rank Aggregation
Stéphan Clémençon, Jérémie Jakubowicz Predicting Partial Orders: Ranking with Abstention
Weiwei Cheng, Michaël Rademaker, Bernard De Baets, Eyke Hüllermeier Conditional Ranking on Relational Data
Tapio Pahikkala, Willem Waegeman, Antti Airola, Tapio Salakoski, Bernard De Baets Fast Active Exploration for Link-Based Preference Learning Using Gaussian Processes
Zhao Xu, Kristian Kersting, Thorsten Joachims Adapting Decision DAGs for Multipartite Ranking
José Ramón Quevedo, Elena Montañés, Oscar Luaces, Juan José del Coz
Session 18: Reinforcement Learning 2
Thursday 23 September
10:50 - 12:40, room 10-12
Chair: Leslie Kaelbling
Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information
Hirotaka Hachiya, Masashi Sugiyama Adaptive Bases for Reinforcement Learning
Dotan Di Castro, Shie Mannor Dimension Reduction and Its Application to Model-based Exploration in Continuous Spaces
Ali Nouri, Michael Littman Efficient Planning in Large POMDPs through Policy Graph Based Factorized Approximations
Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mikko A. Uusitalo Learning from Demonstration Using MDP Induced Metrics
Francisco S. Melo, Manuel Lopes
Session 19: Rules and Patterns 2
Thursday 23 September
14:20 - 16:10, aula magna
Chair: Toon Calders
A Concise Representation of Association Rules using Minimal Predictive Rules
Iyad Batal, Milos Hauskrecht A Measure of Robustness of Association Rules
Yannick Le Bras, Patrick Meyer, Philippe Lenca, Stéphane Lallich Fast Extraction of Locally Optimal Patterns Based on Consistent Pattern Function Variations
Frédéric Pennerath Maximal Exceptions with Minimal Descriptions
Matthijs van Leeuwen Fast, Effective Molecular Feature Mining by Local Optimization
Albrecht Zimmermann, Björn Bringmann, Ulrich Rückert
Session 20: Learning and Mining in Dynamic Domains
Thursday 23 September
14:20 - 16:10, room 11-13
Chair: TBA
Weighted Symbols-Based Edit Distance for String-Structured Image Classification
Cécile Barat, Christophe Ducottet, Elisa Fromont, Anne-Claire Legrand, Marc Sebban Adaptive Parallel/Serial Sampling Mechanisms for Particle Filtering in Dynamic Bayesian Networks
Eva Besada-Portas, Sergey M. Plis, Jesus M. de la Cruz, Terran Lane Hidden Conditional Ordinal Random Fields for Sequence Classification
Minyoung Kim, Vladimir Pavlovic Classification and Novel Class Detection of Data Streams in A Dynamic Feature Space
Mohammad M. Masud, Qing Chen, Jing Gao, Latifur Khan, Jiawei Han, Bhavani Thuraisingham On Classifying Drifting Concepts in P2P Networks
Hock Hee Ang, Vivekanand Gopalkrishnan, Wee Keong Ng, Steven Hoi
Session 21: Online Learning
Thursday 23 September
14:20 - 16:10, room 10-12
Chair: Einoshin Suzuki
Automatic Model Adaptation for Complex Structured Domains
Geoffrey Levine, Gerald DeJong, Li-Lun Wang, Rajhans Samdani, Shankar Vembu, Dan Roth Competitive Online Generalized Linear Regression under Square Loss
Fedor Zhdanov, Vladimir Vovk Online Knowledge-Based Support Vector Machines
Gautam Kunapuli, Kristin P. Bennett, Amina Shabbeer, Richard Maclin, Jude Shavlik Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss
Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier Example-dependent Basis Vector Selection for Kernel-Based Classifiers
Antti Ukkonen, Marta Arias
Session 22: Semi-supervised Learning
Thursday 23 September
16:40 - 18:30, aula magna
Chair: Charles Elkan
Accelerating Spectral Clustering with Partial Supervision
Dimitrios Mavroeidis A Cluster-Level Semi-Supervision Model for Interactive Clustering
Avinava Dubey, Indrajit Bhattacharya, Shantanu Godbole Semi-supervised Projection Clustering with Transferred Centroid Regularization
Bin Tong, Hao Shao, Bin-Hui Chou, Einoshin Suzuki Constrained Parameter Estimation for Semi-Supervised Learning: The Case of the Nearest Mean Classifier
Marco Loog Semi-Supervised Abstraction-Augmented String Kernel for Multi-Level Bio-Relation Extraction
Pavel Kuksa, Yanjun Qi, Bing Bai, Ronan Collobert, Jason Weston, Vladimir Pavlovic, Xia Ning
Session 23: Trajectory Mining and Process Mining
Thursday 23 September
16:40 - 18:30, room 11-13
Chair: Latifur Khan
Collective Traffic Forecasting
Marco Lippi, Matteo Bertini, Paolo Frasconi Unsupervised Trajectory Sampling
Nikos Pelekis, Ioannis Kopanakis, Costas Panagiotakis, Yannis Theodoridis Clustering Vessel Trajectories with Alignment Kernels under Trajectory Compression
Gerben De Vries, Maarten van Someren Exploration-Exploitation of Eye Movement Enriched Multiple Feature Spaces for Content-Based Image Retrieval
Zakria Hussain, Alex P. Leung, Kitsuchart Pasupa, David R. Hardoon, Peter Auer, John Shawe-Taylor Process Mining Meets Abstract Interpretation
Josep Carmona, Jordi Cortadella
Session 24: MDL, Outliers, and Anomalies
Thursday 23 September
16:40 - 18:30, room 10-12
Chair: Arno Siebes
Summarising Data by Clustering Items
Michael Mampaey, Jilles Vreeken ITCH: Information-Theoretic Cluster Hierarchies
Christian Böhm, Frank Fiedler, Annahita Oswald, Claudia Plant, Bianca Wackersreuther, Peter Wackersreuther Synchronization Based Outlier Detection
Junming Shao, Christian Böhm, Qinli Yang, Claudia Plant On Detecting Clustered Anomalies using SCiForest
Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs
Frank Eichinger, Klaus Krogmann, Roland Klug, Klemens Bhöm
18:30 - 19:30: Community meeting, Casa de Convalescència
19:45 - : Poster reception 2 at Universitat de Barcelona
Friday 24 September
9:00 - 10:00: Invited talk by Christos Faloutsos
10:30 - 18:30: Workshops and tutorials, including Industrial Session
18:30 - : Farewell cava
|