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Goal for the Tutorial 

Point out the new challenges introduced by evolving data like 
resource aware learning, change detection, novelty detection, 
multi-horizons analysis, and reasoning about the learning 
process. 

   We elaborate on important application areas where data 
evolution must be taken into account 

  we discuss the impact of evolution on economical data, and on 
understanding social networks; 

   we investigate how learning under constraints   (time, storage 
capacity and other resources) is affected by data evolution;  

  we identify applications that require model learning over complex 
data (as in Customer Relationship Management or Social Tagging)  

  present appropriate adaptive learning methods. 
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Tutorial Presenters 

Athena Vakali 

http://oswinds.csd.auth.gr/~avakali/ 

Associate Professor at the Department of Informatics of 
Aristotle University, Thessaloniki, Greece. Her main 
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social Web data and she published more than 100 papers 
in refereed journals and Conferences.  

Joao Gama 
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book on Knowledge Discovery from Data Streams. 
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Tutorial Structure 

Block 1: Introduction 
Block 2: Supervised learning on streams 

  Mining and adapting classifiers 
  Dealing with concept drift 
  Novelty detection 

Block 3: Unsupervised learning on streams 
  Adapting clusters 
  Probabilistic models 
  Learning on complex data 

Joao Gama 
Mykola Pechenizkiy 
Indre Zliobaite 

Myra Spiliopoulou 
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Tutorial Structure 

Block 4: Mining evolving social data 
  Structures and Models 
  Community Detection in Evolving Social Graphs 
  Applications of Evolving Community Detection 

Block 5: Mining under resource constraints 
  Introduction 
  Approaches 

Block 6: Conclusions and Outlook 

Athena Vakali 

Ernestina 
Menasalvas 
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Presentation Agenda  (tentative) 
  Block 1: Introduction 
  09:10-09:50 Block 2: Supervised learning on streams   

    (Joao Gama,Mykola Pechenizkiy,Indre Zliobaite)  
  09:50-10:30 Block 3: Unsupervised learning on streams  

    (Myra Spiliopoulou) 

  10:30-11:00 Tiny Break 

  11:00-11:40 Block 4: Mining evolving social data (Athena Vakali ) 
  11:40-12:20 Block 5: Mining under resource 

                                                        constraints (Ernestina Menasalvas) 

  12:20-12:30 Block 6: Conclusions and Outlook 
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Presentation Outline 

 Block 1: Introduction 
Block 2: Supervised learning on streams  

  Mining and adapting classifiers 
  Novelty detection 
  Dealing with concept drift in AIS 

Block 3: Unsupervised learning on streams  
Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Joao Gama) 

(Joao Gama) 

(M. Pechenizkiy and I. Žliobaitė) 
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Evolving Data: Illustrative Example 
Wind Power Generation 
At the end of 2009, the 

worldwide capacity of wind powered 
generators was 159.2 gigawatts (GW).  

In 2020 the penetration of removable 
energies should be 20% 

EC recommendation 

Goal: 
• Given wind velocity and direction predict the power produced by a 
set of turbines for a time horizon 

Wind energy is intermittent. 
Wind energy market requires predictive models 
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Predicting Wind Power 
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Numerical weather prediction 

Numerical weather prediction uses current weather conditions as input 
into mathematical models of the atmosphere to predict the weather. 
The atmosphere is a fluid. NWP uses the state of the fluid at a given time 
and use the equations of fluid dynamics and thermodynamics to 
estimate the state of the fluid at some time in the future 

Usual NWP : 
• Predictions for every hour in the next 
24, 48, 72 hours 
• Predictions are delivered every day 
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Numerical Weather Predictions 
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From NWP to Wind Power Prediction 
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From NWP to Wind Power Prediction 

Wind Velocity 

Wind Direction 

Wind Power Prediction 
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Wind Power Prediction 
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Challenges from Evolving Data 

It is impractical to store and use all the historical data for training: 
  it would require infinite storage and running time 

Requires Incremental learning 
There may be concept-drift in the data, meaning, the underlying 
concept of the data may change over time.  
Uncertainty and reliability of predictions 
Novel classes may emerge from unlabelled examples in the stream. 
We might be interested in: 

  prediction / forecast for different time horizon 

  modeling for different time granularities 

  mine evolution of the decision models based on the changes observed in 
a sequence of windows 
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Stream Classification 

Construct a classification model based on past records 
Use the model to predict labels for new data 

•  Single Classifiers 
•  Ensemble of Classifiers 
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Stream Classification 

Processing each example: 
•  Small constant time 

•  Fixed amount of main memory 

•  Single scan of the data 

• Without (or reduced) revisit old records. 

Processing examples at the speed they arrive 
Decision Models at anytime 
Ability to detect and react to concept drift 
Ideally, produce a model equivalent to the one that would be obtained 
by a batch data-mining algorithm 

(20)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

The Very Fast Decision Tree 

Mining High-Speed Data Streams, P. Domingos, G. Hulten; 
KDD00 
The base Idea: 
A small sample can often be enough to choose the optimal 
splitting attribute 

  Collect sufficient statistics from a small set of examples 
  Estimate the merit of each attribute 
  Use Hoeffding bound to guarantee that the best attribute is really 

the best. 
  Statistical evidence that it is better than the second best 

How many examples are enough? 
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yes 
no 

Packets > 10 

Protocol = http 

Protocol = ftp 

yes 

yes no 

Packets > 10 

Bytes > 60K 

Protocol = http 

H(Bytes) - H(Packets) >  

Data Stream 

Data Stream 

From Gehrke’s SIGMOD tutorial slides 

(22)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Hoeffding bound 

Suppose we have made n independent observations of a 
random variable r whose range is R. 
The Hoeffding bound relates the mean in the sample with the 
mean in the population: 
With probability 1-δ  

  The true mean of r is in the range           where 

  Independent of the probability distribution generating the 
examples. 
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Entropy as Splitting Criteria  

How to measure the ability of an attribute to discriminate between classes? 
Many measures. Entropy is a popular one: H(x) = Σ pi log2 pi 

Growing a decision tree is guided by reducing the 
entropy, that is the randomness or difficulty to predict 
the class. 
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Entropy: Sufficient Statistics 

Each leaf stores sufficient statistics to evaluate the splitting 
criterion 

  For each attribute 
•  If Nominal 

–  Counter for each observed value per class 
•  If Continuous 

–  Binary tree with counters of observed values 
–  Discretization: e.g. 10 bins over the range of the variable 
–  Univariate Quadratic Discriminant (UFFT) 
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Classifying Test Examples 
VFDT like algorithms can classify test examples at any time 
To classify a test example 

  The example traverse the tree from the root to a leaf 
  It is classified using the information stored at this leaf. 

•  The original VFDT classifies the test example using the majority class. 
VFDT like algorithms store in leaves much more information: 

  The distribution of attribute values per class. 
•  Required by the splitting criteria 

  Information collected from hundred’s (or thousand’s) of examples! 
Can we use this information? 

  Functional Leaves 
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Classification strategies 

Accurate Decision Trees for mining high-speed Data Streams, J. Gama, 
R. Rocha; KDD03 

Two classification strategies:  
•  The standard strategy use ONLY information about the class 

distribution: P(yi ) 
•  A more informed strategy, use the sufficient statistics P(xj | yi) 
•  Classify the example in the class that maximizes P(yi | X ) 

•  Naive Bayes Classier: P(yi | X) ∝ log(P(yi)) + Σ log (P(xj | yi)) 

VFDT stores sufficient statistics of hundred of examples in the 
leaves. 
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Illustrative Evaluation 
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Training time / Memory used 
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Properties of VFDT like Algorithms 
Low variance models: 

  Stable decisions with statistical support. 

  No need for pruning; 

  Decisions with statistical support; 

Low overfiting: 

  Examples are processed only once. 

  Decisions are taken using different set of examples 

Convergence: VFDT becomes asymptotically close to that of 

a batch learner. The expected disagreement is δ/p; where p is 

the probability that an example fall into a leaf. 
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VFDT like algorithms: Multi-Time-Windows 
A multi-window system: each node (and leaves) receive examples from 
different time-windows of examples 

Useful for change detection: 
•  Compare distributions at different nodes 
• The RS algorithm 
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Automatic adaptation to change by growing the tree 

+ 
The training set: 

Projecting the final tree in the instance space: 
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Ensembles of Classifiers 

H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-Drifting 
Data Streams using Ensemble Classifiers”, KDD'03. 

Train K classifiers from K chunks 
For each subsequent chunk  

•  train a new classifier 
•  test other classifiers against the chunk 
•  assign weight to each classifier 
•  select top K classifiers 
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Kolter and Maloof, Using additive expert ensembles to cope with Concept drift, Proc. 22º 
ICML, 2005 

The Dynamic Weighted Majority (DWM) maintains:  
  An ensemble of base learners,  

  Predicts using a weighted-majority vote of these experts, and  

  Dynamically creates and deletes experts in response to changes in performance. 

Experts can use the same algorithm for training and prediction; 
  They are created at different time steps so they use different training set of examples. 

  The final prediction is obtained as a weighted vote of all the experts. 

•  For each class, DWM sums the weights of all the experts predicting that class, and predicts the class with 
greatest weight. 

  The learning element of DWM, first predicts the classification of the training example. 

  The weights of all the experts that misclassified the example are decreased 
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Ensembles for Mining Skewed Data Streams 

J.Gao, B. Ding, W. Fan, J. Han, P. Yu: Classifying Data Streams with Skewed Class 
Distributions and Concept Drifts. IEEE Internet Computing 12(6): 37-49 (2008) 

Ubiquitous Skewed Distributions 
•  Examples from the interesting classes are scarce 

•  Credit card frauds, network intrusions 

Existing Stream Classification Algorithms used to be evaluated 
on balanced data 
Problems: 

•  Ignore minority examples 
•  The cost of misclassifying minority examples is usually huge 
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Learning from Skewed Data 

Learning from batches of examples over time: 
• Insufficient positive examples 

STEP 1 – Sampling 
• Accumulate positive examples 
• Use negative examples from the last batch 

STEP 2 – Generate an Ensemble 
• Sample negative examples from the last 
batch 
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Analysis 

Incorporation of old positive examples 
•  increase the training size, reduce variance 
•  negative examples reflect current concepts, so the increase in 

boundary bias is small 

Ensemble 
•  reduce variance caused by single model 
•  disjoint sets of negative examples the classifiers will make 

uncorrelated errors 
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Classification on Demand 

On Demand Classification of Data Streams Charu C. Aggarwal, Jiawei Han, 
Jianyong Wang, Philip S. Yu KDD 04 

On demand classification can dynamically select the appropriate 
window of past training data to build the classifier. 
A supervised micro-cluster for a set of: 

  d-dimensional points Xi1 … Xin  
  with time stamps Ti1…Tin and  
  belonging to the class Ci  
is defined as the (2d+4) tuple (CF1t, CF^2t,CF1x, CF^2x, n, Ci),  
  wherein CF^2x and CF1x each correspond to a vector of d entries. 
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Properties of micro-clusters 

Each micro-cluster has a unique id 
Micro clusters are additive 
Incremental update of micro-cluster 

  When a new data point is available: 
•  Update the nearest neighbor of the same class 

•  If the diameter increases to a threshold value 

–  Start a new micro cluster with a single point 

Micro clusters are subtractive 
  CFt – CF t-Δt summarizes  

the stream in the interval 
CF’s at time t CF’s at time t-Δt 
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Snapshots 

Store the micro-clusters at different moments in time. These stored 
micro-cluster states are referred to as snapshots. Snapshots are stored 
in such a way that:  

  Maintain sufficient amount of information about different time 
horizons.  

  Avoid the storage of an unnecessarily large number of time horizons 

  This is achieved with the use of a geometric time frame. 
–  Snapshots are classified into different frame numbers. The frame 

number of a particular class of snapshots defines the level of granularity 
in time at which the snapshots are maintained.  

–  Snapshots of frame number i are stored at clock times which are 
divisible by 2i but not by 2i+1. 

»  Each frame as limited capacity 

–  The closer to the current time, the denser are the snapshots stored. 
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Classification on Demand 

How do we find the most effective horizon for 
classification at a given moment in time?  

  A small portion of the training stream is not used for the creation 
of the micro-clusters. This portion of the training stream is 
referred to as the horizon fitting stream segment.  

  The remaining portion of the training stream is used for the 
creation and maintenance of the class-specific micro-clusters 

Consider an example in which: 
  the current clock time is tc, and  

  a horizon of length h in order to find the micro-clusters in the time period 
(tc-h, tc). 
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Classification on Demand 

Consider an example in which: 

  the current clock time is tc, and  

  a horizon of length h in order to find the micro-clusters in the time period 
(tc-h, tc). 

Finding the micro-clusters for the time period of interest 

  Find the stored snapshot which occurs just before the time tc-h.  

  For each micro-cluster in the current set S(tc), we find the list of ids in 
each micro-cluster.  

  For each id in the list of ids, we find the corresponding micro-clusters in 
S(tc-h), and subtract the CF vectors for the corresponding micro-clusters.  

  The resulting set of micro-clusters correspond to the time horizon (tc-h, 
tc). 



8 

(43)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Classification on Demand 
Evaluation 

  Once the micro-clusters for a particular time horizon have been determined, they are used to 
determine the classification accuracy of that particular horizon.  

•  This process is executed periodically in order to adjust for the changes which have occurred in the stream in 
recent time periods. 

•  For this purpose, we use the horizon fitting stream segment. 

  A data point x is classified in the class of the nearest neighbor micro-cluster 

  Evaluate for all time horizon in the geometric time frame 

Illustrative Example  
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Predictions at different granularities 

Analysis of Web click streams 
  Raw data at low levels:  

•  seconds, web page addresses, user IP addresses, … 

  Analysts want: changes, trends, unusual patterns, at reasonable levels of details 

•  E.g., Average clicking traffic in North America on sports in the last 15 minutes is 40% 
higher than that in the last 24 hours.” 

Analysis of power consumption streams 
  Raw data:  

•  power consumption flow for every household, every minute  

  Patterns one may find: average hourly power consumption surges up 30% for 
manufacturing companies in Chicago in the last 2 hours today than that of the same 
day a week ago 

Slide from Jiawei Han 
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A Tilted Time-Frame Model 

31 days 24 hours 4 qtrs 12 months 

Time Now 

24hrs 4qtrs 15minutes 7 days 

Time Now 

25sec. 

Up to 7 days: 

Up to a year: 

Logarithmic (exponential) scale: 

2t 1t 4t 8t 16t 
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Presentation Outline 

 Block 1: Introduction 
Block 2: Supervised learning on streams  

 Mining and adapting classifiers 
  Novelty detection 
  Dealing with concept drift in AIS 

Block 3: Unsupervised learning on streams  
Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Joao Gama) 
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Novelty Detection 

Classification problems where the full set of class labels is 
unknown. 

Automatic identification of unforeseen phenomena embedded in a 
large amount of normal data. 
Novelty is a relative concept with regard to our current knowledge: 

•  It must be defined in the context of a representation of our current 
knowledge. 

•  Specially useful when novel concepts represent abnormal or unexpected 
conditions 

•  Expensive to obtain abnormal examples 

•  Probably impossible to simulate all possible abnormal conditions 
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In real problems, as time goes by 
•  The distribution of known concepts may change 

•  New concepts may appear 

By monitoring the data stream, emerging concepts may be discovered 
Emerging concepts may represent 

•  An extension to a known concept (Extension) 

•  A novel concept (Novelty) 

Several interesting applications: Early Detection of Fault in Jet Engines, 
Intrusion Detection in computer networks, Breaking News in a ow of 
text documents (news articles), Burst of Gamma-ray (astronomical 
data), 
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One-class classication 
  Model knowledge about a single profile 

  New examples may be identified as members of that profile or not 

Methods based on Frequencies 
  A pattern is surprising if the frequency of its occurrence differs 

substantially from that expected by chance, given the previously seen 
data. (TARZAN; Keogh et al., 2002) 

Methods based on decision structure 
  Considers decisions taken by each unit in a decision structure. 

  In a stable state, the contribution of each unit is likely to remain constant. 
Changes in the participation of decision units may indicate a conceptual 
change 
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One-class classification 

Concept-learning in the absence of counter-examples: an 
autoassociaton-based approach Nathalie Japcowicz, 1999 
Three layer network 

  The nr. of neurons in the output layer is equal to the input layer 
  The network is trained to reproduce the input at the output layer 
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One-class classification 

To classify a test example x  
•  Propagate x through the network and let y be the corresponding 

output; 
•  If   Σ(xi - yi )2 < Threshold Then the example is considered from 

class normal; 
•  Otherwise, x is a counter-example of the normal class 
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Nearest Neighbor for One-class Classification 

Nearest neighbour for novelty detection (Tax, 2001) 
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OLLINDA 

Cluster-based novelty detection, Spinoza, Carvalho, Gama, SAC 08. 

Initial Phase: Supervised, batch mode 
  Start by modeling the normal condition. 

  Learns a partial model about what is known. 

  Based on a set of classified examples. 

Second Phase: Process stream of unlabelled examples 
  For each incoming example: 

•  If it is explained by the current model: classify the example and discard 

•  If it is not explained: Store in a short-term memory 

•  Time to Time 

–  Find clusters in the examples stored in the Short Term Memory 

–  Clusters far away from existing ones: Novel concept. 

–  Clusters closed to existing ones: Extend known concepts. 
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Initial Model 
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Online Phase 

(57)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Bibliography on Novelty Detection 
Online Novelty Detection on Temporal Sequences, by Junshui Ma, Simon Perkins, in the ACM International Conference on 
Knowledge Discovery and Data Mining (SIGKDD) 2003. 

A Framework for Diagnosing Changes in Evolving Data Streams, by Charu C. Aggarwal, in the ACM International Conference on 
Management of Data (SIGMOD) 2003. 

Efficient Elastic Burst Detection in Data Streams, by Yunyue Zhu, Dennis Shasha, in the ACM International Conference on 
Knowledge Discovery and Data Mining (SIGKDD) 2003. 

Active Mining of Data Streams, by Wei Fan, Yi-an Huang, Haixun Wang, Philip S Yu, in the SIAM International Conference on Data 
Mining (SIAM DM) 2004. 

OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams; E. Spinosa, A. Carvalho, J. Gama; 
SAC 2007: 448-452 

Novelty Detection from Evolving Complex Data Streams with Time Windows, M. Ceci, Annalisa Appice, C. Loglisci, 
C. Caruso, F.Fumarola, D.Malerba:. ISMIS 2009: 563-572 

Classification and Novel Class Detection in Data Streams with Active Mining, M. Masud, J. Gao, L. Khan, Jiawei Han, 
B. Thuraisingham:. PAKDD (2) 2010: 311-324 

(58)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Software 
VFML 

  http://www.cs.washington.edu/dm/vfml/ 

  Very Fast Machine Learning toolkit for mining high-speed data streams and very large data sets. 

MOA 
  http://sourceforge.net/projects/moa-datastream/ 

  A framework for learning from a data stream. Includes tools for evaluation and a collection of 
machine learning algorithms. Related to the WEKA project, also written in Java, while scaling to 
more demanding problems. 

Rapid Miner 
  http://rapid-i.com/ 

  The Data Stream plugin provides operators for data stream mining and for learning drifting 
concepts 

KNIME 

  http://www.knime.org/   
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Presentation Outline 

 Block 1: Introduction 
Block 2: Supervised learning on streams  

 Mining and adapting classifiers 
 Novelty detection 
  Dealing with concept drift in AIS 

Block 3: Unsupervised learning on streams  
Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(M. Pechenizkiy  
and I. Žliobaitė) 
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Concept Drift: Application Perspective 

CD refers to non-stationary supervised learning problems 
 but there are different types of CD  
 and different types of applications 

Personal recommenders, spam filters, fraud detection, 
navigation are affected by drifts coming from different sources 
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Motivation 

View CD research from an application perspective 
What is the match between the mainstream CD research 
assumptions and properties of the applications? 
Identify promising future research directions from the 
application perspective 

We will talk about 
 Why changes appear in different applications? 
 What are the properties of CD application tasks? 
 How the application tasks can be categorized in terms of 

these basic properties? 
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What is Concept Drift ? 

The closed world assumption in data mining 
  learn a model from examples described by a finite set of features 

In reality some important properties are not observed  
  hidden  variables that influence the concept 

Hidden variables may change over time 
  concepts learned at one time can become inaccurate 
  possible changes in the characteristic properties of the concept 

Concept Drift 
  changes in the hidden  context  that can induce more or less 

radical changes in the target concept 
  Virtual concept drift  - changes due to population drift  
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Desired Properties of a System Handling Concept Drift 

Adapting to concept drift asap 
  must have assumptions of what and how may change 

Being robust to noise and distinguishing it from concept drift 
  e.g. occasionally wrong selection or rating of an item, clicking a 

link, connection failure (mobile computing) 

Elasticity 
  discouraging brittleness  

Being capable to recognize and react to reoccurring contexts 
  such as seasonal differences 
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Categorization of applications (Žliobaitė & Pechenizkiy, 2010) 
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Properties of the tasks 

DATA  task (detection, classification, prediction, ranking) 
 type (time series, relational, mix) 
 organization (stream/batches, data re-access, missing) 

DRIFT  change type (sudden, gradual, incremental, reoccurring) 
 source (adversary, interests, population, complexity) 
 expectation (unpredictable, predictable, identifiable) 

DECISIONS and GROUND TRUTH 
 labels (real time, on demand, fixed lag, delay) 
 decision speed (real time, analytical) 
 ground truth labels (soft, hard) 
 costs of mistakes (balanced, unbalanced) 
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Categorization of applications 
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Change types 
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Landscape of applications 
Types of apps 

Industries 
Monitoring/ 
control 

Personal assistance/ 
personaliza2on 

Management 
and planning 

Ubiquitous 
applica2ons  

Security, Police  Fraud detec;on, 
insider trading 
detec;on, adversary 
ac;ons detec;on  

‐‐‐‐‐‐‐‐  Crime volume 
predic;on 

Authen;ca‐
;on, 
Intrusion 
detec;on 

Finance, Banking, 
Telecom, Credit 
Scoring, Insurance, 
Direct Marke;ng, 
Retail, Adver;sing, 
e‐Commerce 

Monitoring & 
management of 
customer segments, 
bankruptcy 
predic;on 

Product or service 
recommenda;on, 
including 
complimentary 

Demand 
predic;on, 
response rate 
predic;on, 
budget 
planning 

Loca;on 
based 
services, 
related ads, 
mobile apps 

Educa;on (higher, 
professional, child‐
ren, e‐Learning)  
Entertainment, 
Media  

Gaming the system, 
Drop out predic;on 

Music, VOD, movie, 
learning object 
recommenda;on, 
adap;ve news 
access, personalized 
search 

Player‐
centered game 
design, 
learner‐
centered 
educa;on 

Virtual reality, 
simula;ons 

…  …  …  …  … 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STREAMS/  

SENSORS 
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CFB Boiler Optimization 
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Online mass flow prediction in CFB boilers 

asymmetric nature  
of the outliers 

short consumption  
periods within  
feeding stages 

data collected from a typical experimentation with CFB boiler 

Pechenizkiy et al. 2009 

(72)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

PREDICTIVE  

ANALYTICS 



13 

(73)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Food sales prediction: utility of Belgium milk in Sep. 2009 
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Challenges in food sales prediction (Zliobaite et al., 2009) 
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Reoccuring and suddent drift in food sales 
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DIAGNOSTICS/ 

DECISION MAKING 
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Antibiotic Resistance Prediction (Tsymbal et al., 2008)  

predict the sensitivity of a pathogen to an antibiotic based on data 
about the antibiotic, the isolated pathogen, and the demographic and 
clinical features of the patient. 
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How Antibiotic Resistance Happens  
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PERSONALIZATION / 
RECOMMENDERS 
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Recommender Systems 

We Know What You Ought 
To Be Watching This Summer 

Lessons learnt from Netflix: 
 Temporal dynamics is important 
 Classical CD approaches may not work 

     (Koren, SIGKDD 2009) 

Something Happened in Early 2004… 

Are movies getting better with time? 
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Multiple sources of temporal dynamics 

Both items and users are changing over time  
Item-side effects: 

  Product perception and popularity are constantly 
changing 

  Seasonal patterns influence items’ popularity  
User-side effects: 

  Customers ever redefine their taste 
  Transient, short-term bias; anchoring 
  Drifting rating scale 
  Change of rater within household 
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Categorization of CD Handling Strategies 

Evolving Methods vs. Informed Methods 
  Evolving: adapt the learner at regular intervals without 

considering whether changes have really occurred  
•  instance selection and instance weighting 

  Informed: modify the model only after a change was detected  
•  used in conjunction with a detection model 

Training set manipulation vs. model manipulation 
  Training set:  

•  Instance weighing and selection; windowing vs. filtering 

  Model  manipulation: 
•  VFDT and similar approaches 
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Outlook to Handling Concept Drift 

From general methods to more  specific application oriented 
problems like 

 delayed labeling 
 label availability  
 cost-benefit trade off  of the model update 

Changing the focus to  
 change description 
 prediction reoccurring contexts and  
 meta learning in addition to change detection 
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Current situation 

Where CD research is heading to?  
Where should it go to? 

Come in the afternoon to HaCDAIS workshop , listen what other 
presenters say and share your experience and vision 
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End of Block 2 

Thank you! 

Questions? 
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(Myra Spiliopoulou) 
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Applications of unsupervised learning on evolving data 

Mei & Zhai (KDD’05) 

Lin et al. (SDM’10) 
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Applications of unsupervised learning on evolving data 

•  Finding hot topics in news 
•  Tracing changes in 

customer preferences for 
reliable prediction of demand 

•  Capturing community dynamics 
•  Detecting vessel fleets and 

outliers 
•  Making reliable 

recommendations 

Yehuda Koren, CACM’10 
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Modeling evolving data for unsupervised learning 

Data stream model of computation (Guha et al, 2003) 

A stream is a sequence of data points x1,x2,...,xi, ... 
that arrive in increasing order of the index i. 

An algorithm operating upon a stream 
is subject to memory constraints 
must minimize the number of passes over the data. 

A learning algorithm operating upon a stream 
must maintain a good model of the encountered data 
subject to constraints on time and space. 
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Maintaining a good model upon all the data? 

IF the data generating process is not stationary 
 THEN we want a good model on the most recent data. 

⇒ We must forget the oldest data. 

IF the data generating process is stationary 
 THEN we do not need to remember the oldest data. 

⇒ We may as well forget the oldest data. 

(93)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Unsupervised model adaptation across the time axis 

Stream 
Clustering 

Dynamic 
probabilistic 

models 

Spectral 
Clustering 

Tensor-based 
clustering 

Discovery & 
Monitoring of (e.g.): 
• customer segments 
• communities 
• vehicle fleets Multi-relational 

clustering 

Tensor 
based 

Topic Discovery 
& Monitoring 
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Unsupervised model adaptation across the time axis 

Stream 
Clustering 

Dynamic 
probabilistic 

models 

Multiple streams 

Spectral 
Clustering 

Tensor-based 
clustering 

One stream & 
static data 

Multi-relational 
clustering 

Tensor 
based 

One 
stream 
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  Learning on complex data 

Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Myra Spiliopoulou) 
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Some core ideas in stream clustering 

•  Online and offline components 
  Summarize clusters to centroids (Guha et al., 2000 and 2003) 
  Micro-clusters (Aggarwal et al., 2003) 

•  Summarization of data instances 

•  Working with snapshots 

•  Reporting on cluster changes 
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CluStream (Aggarwal et al., 2003) 

Clustering framework for evolving data streams: 
  Online and offline components 

  Summarization of the information on the stream 

  Multiple time windows (snapshots) 

  Reporting on cluster changes 

micro-clusters macro-clusters 

Pyramidal 
time frame 
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CluStream (Aggarwal et al., 2003) 

Let a stream of d-dimensional data points X1,X2,...,Xi, ... 
that arrive in increasing order of the index i. 
Micro-cluster over 

  a set of data points                       Xi1
, Xi2

,..., Xin
 

  arrived at ti1, ti2,..., tin 
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CluStream (Aggarwal et al., 2003) 

Let a stream of d-dimensional data points X1,X2,...,Xi, ... 
that arrive in increasing order of the index i. 

Micro-clusters are stored at each snapshot. 

Pyramidal time frame  for time snapshots: 
  Let α be a positive integer parameter. 
  A snapshot of order j is taken at clock value T, where  

  retaining only the last α+1 snapshots of order j at any timepoint. 
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CluStream (Aggarwal et al., 2003) 

Online component for micro-cluster maintenance 

For given snapshot parameter α and for number of micro-clusters q: 
When enough data instances have arrived: 

Build the first q clusters 
When a new data instance x arrives: 
IF x is close enough to the centroid of a micro-cluster M 
AND IF falls within the maximum boundary of M 

THEN assign it to that micro-cluster 
ELSE IF x should become a new micro-cluster 

THEN either delete an old micro-cluster or merge two old ones 
At each snapshot: 

Delete the data of the least recent snapshot 
Compute the most recent snapshot, omitting redundant computations 

Outlier 

most proximal 
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CluStream (Aggarwal et al., 2003) 

Offline component for macro-cluster creation: 

For given time-horizon h and for number of clusters K: 
Re-compute the data: 
1.  Find the snapshots belonging to this horizon. 
2.  Identify the micro-clusters to be considered 
3.  Re-compute the vectors of each micro-cluster, 

as they were within the desired snapshots 
Build the clusters: 
1. Pick micro-cluster centroids as initial seeds with probability 
proportional to micro-cluster size 
2. Assign each micro-cluster to its closest seed 
3. Re-compute the seeds as weighted centroids 
Report on added, deleted and retained micro-clusters 

Micro-clusters 
have unique ids 

Vectors for different 
datasets can be added 
and subtracted 

Micro-clusters are 
treated as data points 
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DenStream (Cao et al., 2007) 

Density-based stream clustering 

• online and offline components 
• summarization of data instances 

• working with snapshots 

DBSCAN (Ester et al., 1996) 
•  robust to noise 
•  clusters need not be spheres 

Micro-clusters 
instead of data points 

Time horizon 
with an ageing function 
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DenStream (Cao et al., 2007) 

Time horizon: 
  Damped time window [0,now] 
  ageing function 

that assigns exponentially decreasing weights 

Micro-cluster: 
  group of proximal data points pi1 , pi2  , ..., pin   

  that arrived at ti1 , ti2  , ..., tin  
  with joint weight                                      at timepoint t 
  with center computed as weighted average of data points 
  and radius computed as weighted distance of points from center 
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DenStream (Cao et al., 2007) 

core-micro-cluster: 
  its weight is more than a threshold µ
  its radius is less than a threshold ε 

potential core-micro-cluster: 
  its weight is more than a threshold fragment of µ: βµ, β in (0,1] 
  its radius is less than ε 

outlier micro-cluster: 
  its weight is less than βµ 
  its radius is less than ε 
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DenStream (Cao et al., 2007) 

Online component for micro-cluster maintenance (1/2) 

For given thresholds µ, β, ε and at each new data instance x: 
Identify closest p-micro-cluster 
IF the updated radius does not exceed the threshold: 

merge x to the p-micro-cluster  
Identify closest o-micro-cluster 
IF the updated radius does not exceed the threshold: 

merge x to o-micro-cluster 
IF the updated o-micro-cluster weight exceeds threshold: 

promote it to p-micro-cluster 
ELSE   Turn x to a (singleton) o-micro-cluster  

ELSE 

o/p-micro-clusters can be 
updated incrementally (106)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

DenStream (Cao et al., 2007) 

Online component for micro-cluster maintenance (2/2) 

For given thresholds µ, β, ξ and every Tµ,β periods: 

For each p-micro-cluster: 
Recompute its weight and eventually degrade it to an o-micro-cluster 

For each o-micro-cluster: 
Recompute its weight 
If weight is larger than threshold, promote it to a p-micro-cluster 
Else If it is lower than threshold ξ, delete it. 

Determined by the 
fading function 
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DenStream (Cao et al., 2007) 

Offline component for clustering: 
DBSCAN 
+ 
modified notion of density, using 

                                            either 

Max distance of points from 
micro-cluster center 
Average distance of points from 
micro-cluster center 
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ClusTree (Kranen et al., 2009) 

Anytime stream clustering: 
  Online and offline components 

  Summarization of the information on the stream 

  Working with snapshots 
  Exploitation of available time for quality improvement 
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Anytime stream mining (Kranen et al., ‘09) 

Principle of anytime algorithms: 
  Deliver a model at any time 
  Improve the model if more time is available 

Model adaptation whenever an instance arrives 
+ 
Model refinement whenever time permits 

Slide from 
Kranen et al. 
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Anytime stream clustering with ClusTree (Kranen et al.’09) 

Model:= Tree structure 

Online component: 

node = micro-cluster 

At each data point arrival: 
1. Push data point down the tree as far as time permits. 
2. Take similar data points on the way down. 
3. Grow the tree further if time permits. 

hitchhiking 
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Anytime stream clustering with ClusTree (Kranen et al.’09) 

Activities in a node / micro-cluster: 
  Insert a new data point 
  Pull a data point down the subtree 
  Keep a buffer of data points (hitchhikers), 

to be pulled down the subtree 
  Aggregate data points 
  Split – create subtree - for model refinement 

A data point: 
traverses the tree towards a leaf node, 
takes (max two) hitchhikers in its way down the tree, 
leaves a hitchhiker at a node, if their ways do not match anymore. 

Slide from 
Kranen et al. 
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Anytime stream clustering with ClusTree (Kranen et al.’09) 

Number of micro-clusters and cluster purity 
with increasing stream speed (synthetic data): 
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Some core ideas in stream clustering 

•  Online and offline components 
  Summarize clusters to centroids (Guha et al., 2000 and 2003) 
  Micro-clusters (Aggarwal et al., 2003) 

•  Summarization of data instances 

•  Working with snapshots 

•  Reporting on cluster changes 
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Cluster monitoring: What is a cluster ? 

All objects of a region 
  The dimensions and the metric are invariant. 

All objects satisfying a function 
  The dimensions are invariant. 

A set of objects 
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MONIC (Spiliopoulou et al., 2006) 

1.  Partition the time axis into timepoints t1, ..., tm  
2.  Cluster (adaptively?) the data at each snapshot. 
3.  Compare the sets of clusters (need not be of equal strength) 

Matching model: 
  How to track a given cluster? 
  When is a new cluster a mutation of an old one? 

Transition model: 
  Is an old cluster associated with exactly one new cluster? 
  How did the cluster change with respect to other clusters? 
  What kind of internal changes did the cluster experience?  
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MONIC – Matching Model (Spiliopoulou et al., 2006) 

For each cluster X in ξ: 
1. For each Y in ξ‘ built at the next timepoint t‘ 
compute 

2. Choose Ybest with max overlap to X 
3. If overlap(X, Ybest) does not exceed τ, then discard Ybest 

For two given clusterings ξ, ξ’ (built at t1, t2, t1<t2) 
and for threshold τ: 
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MONIC – Transition model 

Cluster 
Transitions 

  survival 
  split into multiple clusters 
  absorption from a cluster 
  disappearance 
  appearance of a new cluster 

External 
(w.r.t the whole clustering) 

Internal 
(w.r.t the cluster itself) 

  size 
shrink / expand 

  compactness 
more compact/ more diffuse 

  location 
  no change 

survived clusters 
only (subject to t) 
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MONIC – Lifetime of clusters and clusterings 

Lifetime of a cluster X := 
 Number of adjacent timepoints where X has survived 

  Strict lifetime 
  Lifetime under internal transitions 
  Lifetime with absorptions 

Survival ratio of a clustering := 
 Portion of clusters that survive at the next timepoint 

Passforward ratio of a clustering:= 
 Portion of clusters that survive or get absorbed at the  

            next timepoint 

Indicates the extend to which a clustering 
describes the data of the next timepoint. 
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MONIC on the ACM H2.8: 

We label clusters with their two most frequent words,  
subject to a frequency threshold. 

association rules 
spatial 

association rules 
cluster 

knowledge discovery 
spatial 
cluster 

knowledge discovery 

ass
oci

ati
on

 ru
les

 

knowledge discovery 
spatial 
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Presentation Outline 

 Block 1: Introduction 
 Block 2: Supervised learning on streams 

Block 3: Unsupervised learning on streams 
 Adapting clusters 
  Probabilistic models 
  Learning on complex data 

Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Myra Spiliopoulou) 
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Dynamic topic model according to Blei & Lafferty (2006) 

Static model with Dirichlet priors α (documents), β (topics) 

N 

z 

w 

θ

α

β

document-specific 
topic proportions 

words 
(observed) 

K number of topics (fixed) 

A 
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Dynamic topic model according to Blei & Lafferty (2006) 

N 

z 

w 

θ

α

β
K 

A 
N 

z 

w 

θ

α

A 

β

Method inferring α, β
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Dynamic topic model according to Blei & Lafferty (2006) 

N 

z 

w 

θ

α

β
K 

A 
N 

z 

w 

θ

α

A 

β

kth topic at slice i 
evolves smoothly 
from kth topic of slice i-1  

Learning on the whole 
vocabulary 
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Adapting a probabilistic model over a text stream 

LDA thread 
  L. AlSumait et al. On-line LDA: Adaptive Topic Models for Mining 

Text Streams with Applications to Topic Detection and Tracking 
(ICDM’08) 

  R. Nallapati et al. Multiscale Topic Tomography (KDD’07)  

PLSA thread 
  Qiaozhu Mei “Contextual Text Mining” – PhD thesis (2009), 

papers since KDD’05 
  A. Gohr et al. Topic Evolution in a Stream of Documents (SDM’09) 
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Online LDA (AlSumait et al., 2008) 

Underpinnings: 
Gibbs sampling for the estimation of 

  document-specific topic proportions q 
  topic-specific word proportions f 

Time axis is discretized – sliding window of size d slices 
The model generated at slice t-1 is used as prior for LDA for the 
stream portion St  in slice t. 

(126)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Online LDA (AlSumait et al., 2008) 

Underpinnings:
The model generated at slice t-1 is used as prior for LDA for the 
stream portion St in slice t. 

  Stream St introduces new words. 
  Parameters of topic k are determined from its past distributions: 

Vector of weights for φi, i={t-d,...,t} 

Vt: number of unique words in St 

Evolution matrix of topic k: 
hasVt columns, a column is φi

k 
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Online LDA (AlSumait et al., 2008) 

Evaluation for document modeling 
  Comparison to an LDA method that remembers all data. 
  Experiments on Reuters and NIPS (1988-2000) 

Perplexity 
towards held-out data: 
lower values are better. 
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Online LDA (AlSumait et al., 2008) 

Evaluation on topic evolution 
  Interesting findings on the evolution of NIPS topics 
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Adaptive PLSA (Gohr et al, 2009) 

Underpinnings:
Time axis is discretized – sliding window of size δ slices

The model generated at slice t-1 is used as basis for PLSA 
adaptation for the stream portion St in slice t. 

  Old documents are forgotten, new documents are folded-in 
  Old words are forgotten, new words are folded-in. 
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Adaptive PLSA (Gohr et al, 2009) 

Evaluation for document modeling 
  Comparison to a PLSA method that re-learns from scratch 
  Stream of SIGIR (2000-2007) 
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Adaptive PLSA (Gohr et al, 2009) 

Topic threads in SIGIR (2000-2007) 

Evaluation 

Clustering 

Web 

Supervised 
learning 

Presentation, 
later emphasis 
on multimedia 
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Contextual text mining with generative models (Q. Mei) 

Temporal evolution of topics 
over a stream D of weblog documents 
Let di be the document arriving at timepoint ti, i=1, 2, ... 
Assume K global topics θ1, θ2,... θK and   background topic θB. 
The likelihood of word w 
in document d at t is: 
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Topic evolution on a text stream (Mei et al., 2005) 

Stream of hurricane news: K=5 topics 
after removal of non-discriminative words (background model), 
labeling of the topics and weighting the strength of the words in 
each topic label at each timepoint. 
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Presentation Outline 

 Block 1: Introduction 
 Block 2: Supervised learning on streams 

Block 3: Unsupervised learning on streams 
 Adapting clusters 
 Probabilistic models 
  Learning on complex data 

Block 4: Mining evolving social data  
Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Myra Spiliopoulou) 
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Unsupervised model adaptation across the time axis 

Stream 
Clustering 

Dynamic 
probabilistic 

models 

Multiple streams 

Spectral 
Clustering 

Tensor-based 
clustering 

One stream & 
static data 

Multi-relational 
clustering 

Tensor 
based 

One 
stream 
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Example: Recommendations over users, items and tags 

P. Symeonidis, A.Nanopoulos, Y. Manolopoulos. “Tag 
Recommendations based on Tensor Dimensionality Reduction”, Int. 
Conf. on Recommender Systems (RecSys’08), Lausanne, Switzerland, 
Oct. 2008. 

Items 

Users Tags 
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Example: Recommendations over users, items and tags 

P. Symeonidis, A.Nanopoulos, Y. Manolopoulos. “Tag 
Recommendations based on Tensor Dimensionality Reduction”, Int. 
Conf. on Recommender Systems (RecSys’08), Lausanne, Switzerland, 
Oct. 2008. 

Items 

Users Tags 
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Example: Recommendations over users, items and tags 

P. Symeonidis, A.Nanopoulos, Y. Manolopoulos. “Tag 
Recommendations based on Tensor Dimensionality Reduction”, Int. 
Conf. on Recommender Systems (RecSys’08), Lausanne, Switzerland, 
Oct. 2008. 



24 

(139)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Clustering over multiple, correlated streams 

Challenges: 
1. Multiple streams (and some *almost* static data) 

Items 

Users Tags 

Postings 

Items 

Customers 

Transactions 

Students 

Exams 

Courses Patients 

Treatments 

Diseases 

Medications 
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Clustering over multiple, correlated streams 

Challenges: 
1. Multiple streams (and some *almost* static data) 

2. Correlated streams of different speeds 

3. Streams of permanent objects, not of data points: 
Data objects may show up more than once. 

4. New objects may show up at any time. 
Old objects might be forgotten (in *some* applications). 

Items 

Customers 

Transactions 
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Incremental clustering + Stream clustering on complex data 

How to model data and their relations? 
Data on Tensor Data on Cube 

(multi-relational) 

•  Paradigm covers graphs 
•  Solid theoretical underpinnings  
   and mathematical groundwork 
•  Combines with advances on 
   generative models 
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One topic thread towards tensor-based stream clustering 
Evolutionary clustering (with temporal smoothness) 

  D. Chakrabarti, R. Kumar, A. Tomkins. “Evolutionary clustering”, 12th ACM SIGKDD 
Int. Conf (KDD’06), Philadelphia, PA, Aug. 2006 

Incremental spectral clustering (with temporal smoothness) 
  Y. Chi, X. Song, D. Zhou, K. Hino, B. Tseng. “Evolutionary Spectral Clustering by 

Incorporating Temporal Smoothness”, 13th ACM SIGKDD Int. Conf. (KDD’07), San 
Jose, CA, Aug. 2007. 

Incremental learning with generative models and temporal smoothness 
  Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B. Tseng. “FacetNet: A Framework for 

Analyzing Communities and their Evolutions in Dynamic Networks”, World Wide Web 
Int. Conf. (WWW’08), Beijing, China, Apr. 2008. 

Incremental tensor-based clustering 
  J. Sun, D. Tao, C. Faloutsos. “Beyond streams and graphs: dynamic tensor analysis”, 

12th ACM SIGKDD Int. Conf. (KDD’06), Philadelphia, Aug. 2006 
  Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, A. Kelliher. “MetaFac: 

Community Discovery via Relational Hypergraph Factorization”, ACM SIGKDD Int. 
Conf. (KDD’09), Paris, France, June-July 2009 
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Evolutionary clustering (Chakrabarti et al., ‘06), (Chi et al., ‘07) 

1.  Two aspects of model quality (Chakrabarti et al.,’06): 
                                  captures quality of current clustering 

                                  captures similarity to previous clustering 

2.  Model learning as optimization problem for 

  Find a sequence of models that minimizes cost 
(Chakrabarti et al.,’06) 

  Build a model that minimizes cost wrt previous 
model (Chi et al.,’07) 

Snapshot cost 
CS 

Temporal cost 
CT 

k-means 
agglomerative hierarchical 

k-means 
spectral for graph partitioning 
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Modeling temporal smoothness (Chi et al.,’07) 

Snapshot cost of clustering ξ’ at t’: 

Two functions for temporal cost of clustering ξ’ at t’ 
towards clustering ξ at t (t:=t’-1): 
1)  Preserving Cluster Quality (PCQ): 

SSE of the elements in ξ’ as they were at t 
towards 
their non-normalized centers at t, 

 normalized by the cardinalities of the clusters at t’ 

k-means 

NOT ORIGINAL 
NOTATION ! 
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Modeling temporal smoothness (Chi et al.,’07) 

Snapshot cost of clustering ξ’ at t’: 

Two functions for temporal cost of clustering ξ’ at t’ 
towards clustering ξ at t (t:=t’-1): 
2)  Preserving Cluster Membership (PCM): 

 originally assuming that |ξ|=|ξ’|=K, and relaxing this later 
on. 

k-means 

NOT ORIGINAL 
NOTATION ! 
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Modeling temporal smoothness (Chi et al.,’07) 

Snapshot cost of clustering ξ’ at t’: 

Two functions for temporal cost of clustering ξ’ at t’ 
towards clustering ξ at t (t:=t’-1): 
2)  Preserving Cluster Membership (PCM): 

 originally assuming that |ξ|=|ξ’|=K, and relaxing this later 
on. 

k-means 

NOT ORIGINAL 
NOTATION ! 

Symmetric function; 
contrast to MONIC’s asymmetric 
best-matching model 
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One topic thread towards tensor-based stream clustering 
Evolutionary clustering (with temporal smoothness) 

  D. Chakrabarti, R. Kumar, A. Tomkins. “Evolutionary clustering”, 12th ACM SIGKDD 
Int. Conf (KDD’06), Philadelphia, PA, Aug. 2006 

Incremental spectral clustering (with temporal smoothness) 
  Y. Chi, X. Song, D. Zhou, K. Hino, B. Tseng. “Evolutionary Spectral Clustering by 

Incorporating Temporal Smoothness”, 13th ACM SIGKDD Int. Conf. (KDD’07), San 
Jose, CA, Aug. 2007. 

Incremental learning with generative models and temporal smoothness 
  Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B. Tseng. “FacetNet: A Framework for 

Analyzing Communities and their Evolutions in Dynamic Networks”, World Wide Web 
Int. Conf. (WWW’08), Beijing, China, Apr. 2008. 

Incremental tensor-based clustering 
  J. Sun, D. Tao, C. Faloutsos. “Beyond streams and graphs: dynamic tensor analysis”, 

12th ACM SIGKDD Int. Conf. (KDD’06), Philadelphia, Aug. 2006 
  Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, A. Kelliher. “MetaFac: 

Community Discovery via Relational Hypergraph Factorization”, ACM SIGKDD Int. 
Conf. (KDD’09), Paris, France, June-July 2009 
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MetaFac (Lin et al., KDD’09) 

1.  Community-related data modeled on multiple tensors 
  Facet: set of objects of the same type (tensor mode) 
  Relation: interaction among facets – at least binary 
  Multi-relational hypergraph: facets & relations among them 

2.  Metagraph factorization for community discovery 
3.  Generalization for evolving data: 

  Given a metagraph G 
and a timestamped sequence of data tensors defined on G, 
find 
a non-negative core tensor and corresponding factors/facets 
for each timepoint t 

  assuming consistent interactions in a community 

More on tensor-based clustering for community discovery in Block 4 
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Incremental clustering + Stream clustering on complex data 

How to model data and their relations? 
Data on Tensor Data on Cube 

(multi-relational) 

•  Paradigm covers graphs 
•  Solid theoretical underpinnings  
   and mathematical groundwork 
•  Combines with advances on 
   generative models 

•  Does not cover categorical data 
•  All objects to come must be  
   known in advance (heuristics  
   may be used instead) 

•  Paradigm covers  
   categorical data 
•  Covers re-appearing,  
   fading and new objects 
•  Combines with existing  
   stream algorithms 
•  Scales well to number  
   of modes and badly to  
   number of dimensions 
•  Memory management  
   is a challenge (150)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Mining a multi-table data set 

Naive solution: 
  Join the tables and  
  mine the result 

Violates the core assumption 
of tuple independence 
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Mining a multi-table data set (Kroegel, 2003) 

Non-naive solution: Propositionalization 
  Specify a target table T 
  For each tuple x in T 

and tupleset Tx in a table T’ 
•  build four columns per numerical attribute in T’ 

and fill in the min, max, avg and count of values for x in Tx 

•  build one column per value of nominal attribute in T’ and fill it 

 as extensions to T 
  Mine the extended table T 
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Propositionalization in the example dataset 
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Mining a multi-table data stream 

Challenges: 
  Dealing with the past 

  Dealing with the future 

How many nominal values may show up per attribute? 
How long to wait until a tuple shows up? 

Which data to forget ... 
... for each table? 
Which attribute values to forget? 
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Mining a multi-table stream (Siddiqui et al., 2009) 

Components: 
  Typification of streams with respect to oblivion 

  Tuple ranking 
 Management of windows and caches 

  Tuple expansion with data from multiple streams 

  Incremental clustering algorithm (Siddiqui & Spiliopoulou, DS’09) 
  Incremental tree induction algorithm (__, SSDBM’10) 

Stream preparation at timepoint ti 

window-based 

cache-based 
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Preprocessing at each mining run: Tuple ranking 

For each visible tuple x of target stream T: 
  For each stream T’ associated with a : 

expand x with the tuples inside the window 
  For each stream T’ associated with a cache: 

• weight each tuple in T’ with the number of references to it 

•  assign a bonus to tuples that are already in the cache 

•  apply a decay function to reduce the weight of older tuples 

•  update the cache with the top-rank tuples, 
fetching them from secondary storage if necessary 

Sim
pli
fie

d 

window 

cache 
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Preprocessing: Tuple expansion 

Target stream 
T 

Other stream 
T’ 

rel 

Tuple 
concatenation 

Tuple 
summarization 

generate columns for 
avg, count, max, min 

nu
m

er
ica

l 

nominal 

generate one column 
for each attribute value 
upto rA columns 
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Preprocessing: Tuple expansion  

Target stream 
T 

Other stream 
T’ 

rel 

Tuple 
concatenation 

Tuple 
summarization 

generate columns for 
avg, count, max, min 

generate one column 
for each attribute value 
upto rA columns 

nu
m

er
ica

l 

nominal 

IF value is no longer referenced 
THEN free column 
IF rA is excheeded 
THEN cluster values of similar 
tuples together 
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Mining a multi-table stream (Siddiqui et al., 2009) 

Components: 
 Typification of streams with respect to oblivion 

 Tuple ranking 
   Management of windows and caches 
 Tuple expansion with data from multiple streams 

  Incremental clustering algorithm (Siddiqui & Spiliopoulou, DS’09) 
  Incremental tree induction algorithm (__, SSDBM’10) 

Stream preparation at timepoint ti 

window-based 

cache-based 
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Tree Induction on PKDD’99 competition data (Siddiqui et al., 10) 

Impact of remembered objects on quality over time: 
100 a 

20 d  
30 t 

200 a 
40 d  
30 t 

300 a 
50 d  
30 t 

everything 
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REWIND: Unsupervised model adaptation 

Stream 
Clustering 

Dynamic 
probabilistic 

models 

Multiple streams 

Spectral 
Clustering 

Tensor-based 
clustering 

One stream & 
static data 

Multi-relational 
clustering 

Tensor 
based 

One 
stream 

New book “SOCIAL NETWORK DATA ANALYTICS”, ed. Charu Aggarwal: 
Chapter 6 “EVOLUTION IN SOCIAL NETWORKS: A SURVEY” 
by Myra Spiliopoulou to appear 
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End of Block 3 

Thank you! 

Questions? 
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Introduction 
  The Web (and especially Web 2.0) has become a source of vast amounts of 

social data which are evolving in fast rates. 

  Users participate massively in Web 2.0 applications such as:  
  social networking sites (e.g.                    ), 

  blogs, microblogs (e.g.                                             ),  
  social bookmarking/tagging systems (e.g.                                             )  

  Social data refer to different types of actors  
  users  

  content           handled separately or together 

  metadata 

 that are associated via various types of interactions 

metadata 
used to 

annotate 
resources 

users  
tag/comment on/upload  

content  

users  
create friendship bonds/ 

exchange messages 
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Motivation for Mining Social Data 

 The availability of massive sizes of data gave new impetus to data 
mining. 

  e.g. more than 400 million active Facebook users, sharing on average more 
than 25 billion pieces of content each month [Facebook Statistics 2010]  

 Mining social web data can act as a barometer of the users’ opinion. 
Non-obvious results may emerge. 

 Collaboration and contribution of many individuals 
             formation of collective intelligence 
 Wisdom of the crowd : more accurate, unbiased source of information.  

 Social data mining results can be useful for applications such as 
recommender systems, automatic event detectors, etc 

 Various mining techniques are/can be used: community detection, 
clustering, statistical analysis, classification, association rules mining, … 

[Facebook Statistics 2010] http://www.facebook.com/press/info.php?statistics 
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Static vs Evolving social data 
Assume data from a social networking website spanning the time 
period of the year 2009… 

User u1 has commented on user’s u2 posts 20 times in 2009. 
User u1 has three friends, users u2, u4, and u10. 

User u1 has commented on user’s u2 posts 10 times in February 2009, 
10 times in April 2009 and 0 times during the rest of 2009. 
User u1 has only one friend until May 2009, user u2. In June 2009 she 
makes two new friends, users u4 and u10. 

Which information is richer? 
Time 

granularity 
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Motivation for Mining Evolving Social Data 
 Analysis of social data referring to a given time period is of great 

importance. However, as social data are evolving rapidly, the analysis of the 
evolution of social data over time is deemed crucial.  

  Identifying over time the events that affect social interactions 
  tracking posts in a micro-blogging website to identify floods, fires, riots, or other 

events and inform the public 
 Highlighting trends in users’ opinions, preferences, etc 

  companies can track customers’ opinions and complaints in a timely fashion to 
make strategic decisions 

 Tracking the evolution of groups (communities) of users or resources, 
finding changes in time and correlations 
  Develop better personalized recommender systems to improve user experience 
  scientists can more easily identify and relate social phenomena 
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Structures and models  
The network model as an obvious choice… 
 Social data are interconnected through associations forming a 

network or graph G(V, E), where V is the set of nodes and E is 
the set of edges. 

 nodes represent entities/objects and edges represent relations 
 different types of nodes and edges 
 weighted/unweighted 
 directed/undirected 

In a weighted network 
each edge (i,j) has an 
arithmetic value 
(weight) wi,j denoting 
its significance 
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Resources 

Users 

Structures for static social data  
 Hypergraph: generalization of a graph where an 

edge connects more than one nodes 
 Folksonomy: lightweight knowledge 

representation emerging from the use of a 
shared vocabulary to characterize resources – 
tripartite hypergraph  [Hotho06, Mika05] 

 Projection on bipartite  & unipartite graphs  for 
simplicity [Au Yeung09] 

  e.g. tag-tag network where two tags are 
connected if they have been assigned to the 
same resource 

 Graph’s structure can be encoded in an 
adjacency matrix A if G: unweighted (A[i,j] = 1, 
(i,j)∈E  ) or a similarity matrix M if G: weighted 
(M[i,j] = wi,j (i,j), (i,j)∈E ) 

u1, technorati.com, search 
u1, technorati.com, web2.0 
u1, google.com, engine 
u2, google.com, search 
u2, technorati.com, blogs 

u1 u2 

r1 r2 

Tags 
t1 

t2 

t3 

t4 

blogs 

engine 

web2.0 

search 

technorati.com google.com 

Tags 
t1 

t2 

t3 

t4 

blogs 

engine 

web2.0 

search 
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Structures for static social data  
 Hypergraph: generalization of a graph where an 

edge connects more than one nodes 
 Folksonomy: lightweight knowledge 

representation emerging from the use of a 
shared vocabulary to characterize resources – 
tripartite hypergraph  [Hotho06, Mika05] 

 Projection on bipartite  & unipartite graphs  for 
simplicity [Au Yeung09] 

  e.g. tag-tag network where two tags are 
connected if they have been assigned to the 
same resource 

 Graph’s structure can be encoded in an 
adjacency matrix A if G: unweighted (A[i,j] = 1, 
(i,j)∈E  ) or a similarity matrix M if G: weighted 
(M[i,j] = wi,j (i,j), (i,j)∈E ) 

u1, technorati.com, search 
u1, technorati.com, web2.0 
u1, google.com, engine 
u2, google.com, search 
u2, technorati.com, blogs 

Tags 
t1 

t2 

t3 

t4 

blogs 

engine 

web2.0 

search 

Tags 
t1 

t2 

t3 

t4 

blogs 

engine 

web2.0 

search 
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   t1             t2             t3              t4          …      tk-1                   tk 

  G1           G2            G3             G4          …     Gk-1                  Gk           
                

                 seg1                                         seg2      …             segm                  

        

          

 the graph stream 
as a sequence of 
snapshot graphs                                                 
G = {Gt }, t∈ℕ 

Models for evolving social data 

G 

 fine- 
grained 

 coarse- 
grained 

graph 
snapshots 

timeline 

segments 

graph 
stream 
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   t1             t2             t3              t4          …      tk-1                   tk 

  G1           G2            G3             G4          …     Gk-1                  Gk           
                

                 seg1                                         seg2      …             segm                  

        

          

 the graph stream 
as a sequence of 
snapshot graphs                                                 
G = {Gt }, t∈ℕ 

Models for evolving social data 

G 

 fine- 
grained 

 coarse- 
grained 

adjacency/similarity 
matrices 

folksonomies 

graph 
snapshots 

timeline 

segments 

graph 
stream 
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   t1             t2             t3              t4          …      tk-1                   tk 

  G1           G2            G3             G4          …     Gk-1                  Gk           
                

                 seg1                                         seg2      …             segm                  

        

          

 the graph stream 
as a sequence of 
snapshot graphs                                                 
G = {Gt }, t∈ℕ 

Models for evolving social data 

G 

 fine- 
grained 

 coarse- 
grained 

Pre-processing technique 
Identify graph segments consisting 
of similar snapshots and compute a 

smooth graph approximation for 
each segment [Yang09] 

adjacency/similarity matrices 

tensors: generalization of matrices (> 2 
dimensions) [Sun06] 

graph 
snapshots 

timeline 

segments 

graph 
stream 
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   t1             t2             t3              t4          …      tk-1                   tk 

  G1           G2            G3             G4          …     Gk-1                  Gk           
                

                 seg1                                         seg2      …             segm                  

        

          

 the graph stream 
as a sequence of 
snapshot graphs                                                 
G = {Gt }, t∈ℕ 

Models for evolving social data 

G 

 fine- 
grained 

 coarse- 
grained 

tensors 

“multi-graphs” with edges 
encoding relations as well as 
temporal information [Zhao07] 

graph 
snapshots 

timeline 

segments 

graph 
stream 
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Assumptions for modeling graph updates  
Evolving data demand evolving structures. But how can a graph 
structure change over time? 
Assuming discrete time-steps 
Between time-step t and t+1 : 
 only one update operation can take place (single update )  
 multiple update operations can take place (batch update ) 
Evolution of graph structure Gt to Gt+1 

 Growth - arrival of new nodes 
 Shrinkage - departure of existing nodes 
 Densification - creation of new edges, 
 Sparsification - deletion of existing edges 
 Weight updates - weight increase / decrease for existing edges 
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    t1                    t2              …             tk 

    S1                   S2                            Sk           
      

      

     
     

Evolution of the graph model using aggregation techniques 

Evolving 
bipartite 
graphs as 
sequences of 
observed new 
edges and 
weights. 
Updates are 
modeled with 
slice matrices 
S1, S2,… , Sk,   
k ∈ℕ   [Tong08]                                

2

slice 
matrices 

timeline 

2 2 
1

1 
3 

red nodes 
1 1 

blue nodes 2 

red nodes 
2 

blue nodes 

3 

2
24

2

red nodes 
4 

blue nodes 2 2 

 The graph at time-slice tk can be created by aggregating the updates 
observed at previous time-slices.  

 Creation and update of a “time aggregate adjacency matrix“ M(t) placing 
different emphasis on links based on their age: 

 (i) Global Aggregation, (ii) Sliding Window, (iii) Exponential Weighting 
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    t1                    t2              …             tk 

    S1                   S2                            Sk           
      

      

     
     

Evolution of the graph model using aggregation techniques 

Evolving 
bipartite 
graphs as 
sequences of 
observed new 
edges and 
weights. 
Updates are 
modeled with 
slice matrices 
S1, S2,… , Sk,   
k ∈ℕ   [Tong08]                                

2

slice 
matrices 

timeline 

2 2 
1

1 
3 

red nodes 
1 1 

blue nodes 2 

red nodes 
2 

blue nodes 

3 

2
24

2

red nodes 
4 

blue nodes 2 2 

E.g. if k = 3, applying the global aggregation scheme: 

M(t1) =                  M(t2) =                      M(t3) = 
1 1 

2 

1 1 2 

3 

2 

1 5 2 

3 

4 2 
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Explicit communities are easily identified, e.g. groups in Facebook 
Implicit communities are hidden and (graph) analysis is required for their 
identification, e.g. Flickr clusters 

Community detection algorithms aim to identify implicitly-defined 
communities in graphs with graph mining techniques. 

Numerous communities in Web 2.0 social networks:  
 tags describing the same concept (tag clouds) 
 users sharing common interests 
 or combined communities of both users and tags 

Communities in social data 
community Definitions 

  Groups of vertices which probably share 
common properties and/or play similar roles 
in the graph. [Fortunato07]  

  Sets of nodes more densely connected to each 
other than to the rest of the graph vertices. 
[Girvan02] 
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Motivation for community detection in social data  

 Interesting to look for communities since they form functional 
units (e.g. sets of resources relevant to a topic) for the local 
(within group) and the global (over the whole graph) level. 

 Community detection can influence tasks such as: 
 designing crawl strategies on the Web 
 predicting evolution of network-based data collected from the 

Web 
 developing improved methodologies for content outsourcing, 

recommendation, etc 
 revealing (hidden) emerging phenomena on the Web 
 understanding social interactions in Web 2.0 settings 
 automatic event identification from social data 
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Community Detection in Social Graphs 
Measures 

Methodologies 
Graph partitioning Spectral algorithms 
Clustering Methods based on statistical inference 
Divisive algorithms Dynamic algorithms 
Modularity-based methods 

Quantitative, for assessing relations 
between nodes 

Qualitative, for evaluating 
community structure 

co-occurrence modularity 
cosine similarity local modularity 
tf- idf cut-size 
betweeness centrality node outwardness 
structural similarity 

Extra challenges: overlapping 
of hierarchical communities 
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Community Evolution 

 Community structure changes as the underlying graph evolves 
 Community evolution patterns  

»                                    [Falkowski06] 

[Palla07] 

Recent research areas 
 Identification of community 
evolution 
 Evolutionary community 
detection 
 Incremental community 
detection 

mature 

decline 
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Community Detection in Evolving Social Graphs 
Classification of methods for community detection in evolving graphs  
Community detection in 

snapshot graphs and 
mapping  across 

successive structures 

based on Clique 
Percolation and community 

overlap [Palla07] 

based on Mutual Awareness 
expansion and interaction 

correlation [Lin07] 

based on the 
membership of core 

nodes [Wang08] 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 

Incremental 
community 
detection 

based on dynamic  
modularity 

maximization 
[Gorke10] 

density-based, 
DENGRAPH [Falkowski08] 

Mixed methods combining 
evolutionary community 
detection and community 

mapping 

Identification of temporally 
smooth local communities 
and community mapping 

[Kim09] 

Community detection on 
graph segment 

approximations and  
community mapping 

[Yang09] 

MetaFac [Lin09] 

FacetNet [Lin08] 

community factorization [Chi07] 

Stream-Group [Duan09] 

GraphScope [Sun07] 
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Community detection in snapshot graphs and mapping of 
communities across successive community structures 

Typical procedure: 
1.  Static snapshot graphs for each time-step 
2.  Traditional community detection 

technique applied on each snapshot 
3.  For each snapshot: mapping of each 

community to its predecessor and 
successor using a similarity measure and/
or temporal smoothing technique 

Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

based on Clique 
Percolation and 

community overlap [Palla07] 

based on Mutual Awareness 
expansion and interaction 

correlation [Lin07] 

based on the 
membership of core 

nodes [Wang08] 
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Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

based on Mutual Awareness 
expansion and interaction 

correlation [Lin07] 

based on the 
membership of core 

nodes [Wang08] 

based on Clique Percolation 
 and community overlap [Palla07] 
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Community Detection with Clique Percolation Method (CPM) 

 Community detection as a percolation process [Palla05] 
 Starting from a k-clique, nodes are attached  
 as long as they are reachable through clique adjacency 
 k-clique community: the union of k-cliques that can be reached from one 

to the other through a sequence of adjacent k-cliques 

k-clique: complete 
sub-graph of k nodes 

CPM applied to static time-dependent 
snapshots of two social networks [Palla07] 
 Los Alamos cond-mat article archive (142 
months, 30000 authors) 
 Mobile phone-call network (52 weeks, 4 
million users) 
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Community Mapping  
G’t : joint graph comprising the union of links 
from networks Gt and Gt+1  
Ct , C’t : community structure of Gt , G’t  
For each community              and                    
there is one community                containing it.  
Mapping procedure 

1. For each                 find sets       and         
 of enclosed communities 

2. For each pair                                      and 
                      compute relative overlap 
3. Match pairs of communities in descending  
order of relative overlap 

       Gt              G’t                     Gt+1  

Death 

Propagation 

Birth 
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Community evolution results in the co-authorship network 

size 

size 

age 

age 

size 

size 

age 

age 
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Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

based on Clique 
Percolation and 

community overlap [Palla07] 

based on Mutual Awareness 
expansion and interaction 

correlation [Lin07] 

based on the 
membership of core 

nodes [Wang08] 

(194)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Community detection based on mutual awareness expansion 

Identification and evolution of thematic communities in the 
Blogosphere [Lin07] 

Mutual awareness leads to community formation. 
 Given a query, construct a time-dependent directed graph where 
nodes are bloggers and edges their interactions.  
 Model mutual awareness expansion with a random walk process and 
find community structure for each graph G(V,E) 

 Compute expected path length (symmetric social distance - ssd) between 
every pair of nodes 

  Iteratively isolate a set of nodes S (community) from G so that ssd 
between members of S and V \S is maximized 

 Identify community evolution by mapping communities from two 
subsequent structures 

Two actors being aware of each other. E.g. two 
bloggers leaving comments on each other’s blog   
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Community mapping using interaction correlation 

Each community is represented with a 
vector in an interaction space, modeling 
the interactions between all actors 
Histogram intersection is used to compute 
the interaction correlation of two 
communities 
For each community     find                : the 
one that is more similar to it in the future 
For each community        find                    : 
the one that is more similar to it in the 
past 
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Evolution of communities in the “Katrina” –query graph 
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Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

based on Clique 
Percolation and 

community overlap [Palla07] 

based on Mutual Awareness 
expansion and interaction 

correlation [Lin07] 

based on the 
membership of core 

nodes [Wang08] 
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CoreTracker 

Observation: community membership is generally unstable 
Focus on representative core nodes to track community evolution [Wang08] 

 Community detection in graph snapshots with whichever algorithm 
 Identification of core nodes in each community based on centrality 
 Community Ct +1 successor of Ct  if they share a common core vertex 
AND Ct +1 shares a common core vertex with an ancestor of Ct  

Phenomena 
Split: Ct has more than one 
successor 
Mergence: Ct owns more than 
one predecessor 
Birth: Ct has no predecessor 
Death: Ct has no successor 

core node 
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Evolutionary community identification 
  Real world data are usually ambiguous and noisy.  An 

algorithm extracting communities at each time-step 
independently of the other, often results in community 
structures with high temporal variation.  

  Evolutionary community identification methods lead to 
smoother community evolution, as they utilize the history of 
the community structure to maximize temporal smoothness 

Approaches: 

  Traditional clustering techniques in an evolutionary setting 

  Spectral clustering 

  Non-negative matrix/tensor factorization 

  Methods identifying graph stream segments and detecting 
community structure in them 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 
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Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 
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Traditional clustering techniques in an evolutionary setting 
Evolutionary clustering in an online setting [Chakrabarti06] 

Simultaneous optimization of two potentially conflicting criteria:              
(i) snapshot quality sq, and (ii) history quality hq 
At each time-step the framework finds a clustering based on the new 
similarity matrix Mt and the history so far, which optimizes: 

Similarity matrix 

 Let matrix F(t) store the #features shared between each pair of nodes 
 The similarity measure should have memory of previous 

interactions 

 local similarity matrix :                                        (cosine similarity) total similarity matrix : 

Generic framework 
Two instantiations are proposed: 
 agglomerative hierarchical algorithm 
 k-means 

temporal 
similarity via 
time-series 
correlation 
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Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 
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Spectral clustering approach 

Spectral clustering uses the spectrum of the graph’s similarity matrix to 
perform dimensionality reduction for clustering in fewer dimensions 
Evolutionary spectral clustering applied in multi-mode networks [Tang08] 

 m-mode network: 
 Interaction between two modes approximated by interactions between 
communities:                                  , where                      : community  

 membership for actors in mode X(i) , and       : group interaction 
matrix 
Approximation problem formulation : 

temporal 
smoothness 

interaction 
approximation 

spectral relaxation 

The effect of temporal 
change is adopted as a 

regularization term 
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Spectral clustering approach 

Spectral clustering uses the spectrum of the graph’s similarity matrix to 
perform dimensionality reduction for clustering in fewer dimensions 
Evolutionary spectral clustering applied in multi-mode networks [Tang08] 

 m-mode network: 
 Interaction between two modes approximated by interactions between 
communities:                                  , where                      : community  

 membership for actors in mode X(i) , and       : group interaction 
matrix 
Approximation problem formulation : 

temporal 
smoothness 

interaction 
approximation 

spectral relaxation 

                    , are 
iteratively calculated with 
an effective algorithm 
involving eigen-vector 
calculation until F2 < ε 

 Communities are derived 
from        with K-means 
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Non-negative matrix/tensor factorization 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 

MetaFac [Lin09] 

FacetNet [Lin08] 

community factorization [Chi07] 
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Community factorization 

Representation of blogosphere at time t  as a mixture of community graphs weighted 
by their intensities  - Community Factorization [Chi07] 

Let                                                 be the tensor created by the adjacency matrices of 
the successive graph snapshots 

From each At a set of basis dense subgraphs Bt is extracted via graph partitioning 

Basis tensor B  is obtained by stacking all Bt  together 

Community graph:                        , where m : # of all basis subgraphs and uji : weight 

Problem formulation : minimization of  

vti : the intensity of community Ci at time t 

Model of community with 
 structural aspects: community graph representing intra-community 
interactions 
 temporal aspects: community intensity representing its activity level over time 
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Community factorization 

Representation of blogosphere at time t  as a mixture of community graphs weighted 
by their intensities  - Community Factorization [Chi07] 

Let                                                 be the tensor created by the adjacency matrices of 
the successive graph snapshots 

From each At a set of basis dense subgraphs Bt is extracted via graph partitioning 

Basis tensor B  is obtained by stacking all Bt  together 

Community graph:                        , where m : # of all basis subgraphs and uji : weight 

equivalent to  

Model of community with 
 structural aspects: community graph representing intra-community 
interactions 
 temporal aspects: community intensity representing its activity level over time 
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Community factorization 

U, V are identified by non-negative matrix factorization 
Regularization terms are also inserted to smooth community temporal 
trends (evolution of intensity over time) 

Community graph and temporal trends for community related to hurricane 
Katrina 
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Identification of graph stream segments and community 
structure 

Stream-Group [Duan09] 

GraphScope [Sun07] 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 

Problem definition: given a graph stream, 
find good change points in time to segment  
it, and identify communities within each 
segment. 
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Stream-Group [Duan09] 

GraphScope [Sun07] 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 
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GraphScope 
Method applied on unweighted undirected bipartite graphs [Sun07] 

Operates without parameters based on Minimum Description Length (MDL) 

Considering the graph as a binary adjacency 
matrix with  “1” denoting the presence of a link 
between two nodes, the goal is to organize the 
graph into homogeneous sub-matrices with low 
entropy and compress them separately. 

Aim: the minimization of total encoding cost 

Partition encoding cost Graph encoding cost 
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GraphScope 

 Depending on the lowest encoding cost, each new graph is 
included in the current segment or initiates a new segment 

 For each segment, source and destination nodes are 
partitioned separately permuting the matrix’s rows and 
columns so that the encoding cost is decreased 

Finally 
Compression with GraphScope achieves in fitting the graph in 

less than 4%  of the original space 
Data are organized into few homogenous communities 
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Stream-Group [Duan09] 

GraphScope [Sun07] 

Evolutionary 
community 
detection 

Spectral 
clustering 

[Tang08] 

Non-negative matrix/tensor 
factorization 

Traditional clustering 
techniques in an 

evolutionary setting 
[Chakrabarti06] 

Identifying graph stream 
segments and community 

structure  in them 
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modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                       to evaluate the goodness of a partition 
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modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                       to evaluate the goodness of a partition 

#edges falling within 
communities minus the 
expected number in an 

equivalent random network 

(216)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                       to evaluate the goodness of a partition 
Procedure 
1. For each new graph arrival, identify its community structure 
2. Compute similarity between new structure and current segment’s structure 
3. If similarity over threshold, the community structure of the current segment is 
updated incrementally with the new data 
4. else,  a new segment is initiated 
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modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                       to evaluate the goodness of a partition 
Procedure 
1. For each new graph arrival, identify its community structure 
2. Compute similarity between new structure and current segment’s structure 
3. If similarity over threshold, the community structure of the current segment is 
updated incrementally with the new data 
4. else,  a new segment is initiated 

1. Find compact groups of 
nodes  via an heuristic step 

2. Merge groups while 
goodness indicator increases 
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modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                    to evaluate the goodness of a partition 
Procedure 
1. For each new graph arrival, identify its community structure 
2. Compute similarity between new structure and current segment’s structure 
3. If similarity over threshold, the community structure of the current segment is 
updated incrementally with the new data 
4. else,  a new segment is initiated 
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modularity 

Stream-Group 

Stream-Group: applied on dynamic weighted directed graphs [Duan09] 

Uses: 
 Random Walk with Restart  to compute the graph’s relevance matrix R 

  rij  expresses the probability that random walker will stay at i  when starting from j  

  relevance scores between within community nodes are usually higher than the 
ones between different communities 

 an extension of                        to evaluate the goodness of a partition 
Procedure 
1. For each new graph arrival, identify its community structure 
2. Compute similarity between new structure and current segment’s structure 
3. If similarity over threshold, the community structure of the current segment is 
updated incrementally with the new data 
4. else,  a new segment is initiated 

Merging step of the community detection 
alg using as seed the intersection of the 
partitions of the current segment and the 
new graph 

(220)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Mixed methods combining evolutionary community 
detection and community mapping 

Approaches: 
 Identification of temporally smooth 
local communities and then 
mapping across successive 
community structures [Kim09] 

 Community detection on graph 
segment approximations and then 
mapping across successive 
community structures [Yang09] 

Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

Evolutionary 
community 
detection 

Mixed methods combining 
evolutionary community 
detection and community 

mapping 

Identification of temporally 
smooth local communities 
and community mapping 

[Kim09] 

Community detection on graph segment 
approximations and  community mapping 

[Yang09] 
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Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

Evolutionary 
community 
detection 

Mixed methods combining 
evolutionary community 
detection and community 

mapping 

Identification of temporally 
smooth local communities 
and community mapping 

[Kim09] 

Community detection on graph 
segment approximations and  
community mapping [Yang09] 
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Tracing the Timeline of Networks 

  Identifies changepoints in the graph stream by measuring the distance between 
nodes [new-born, deceased, stable] of subsequent snapshots [Yang09] 

 Generates smooth approximations of graph segments to address the problem of 
noise, by iteratively adding to the approximation graph edges whose nodes have 
small distance 

Segmentation and smoothing for the Enron dataset 

Changes in 
degree, neighbors 
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 Community detection method requiring definition of three parameters 
 identification of all k-cliques in each approximate graph 

 multiple community memberships are solved assigning the respective nodes 
to the community with which they have most interactions (weight ) 

 each community attract its neighboring nodes whose weight to the 
community is over a judgment threshold 

 communities that are tightly connected (with respect to a weight threshold) 
are merged 

 Community correlation and evaluation 
 this method does not apply community mapping directly, but rather evaluates 

the smoothness of successive community structures by calculating their 
correlation considering both edge and node overlap   

Tracing the Timeline of Networks 

  Identifies changepoints in the graph stream by measuring the distance between 
nodes [new-born, deceased, stable] of subsequent snapshots [Yang09] 

 Generates smooth approximations of graph segments to address the problem of 
noise, by iteratively adding to the approximation graph edges whose nodes have 
small distance 

Changes in 
degree, neighbors 
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Community detection in 
snapshot graphs and 

mapping  across 
successive structures 

Evolutionary 
community 
detection 

Mixed methods 
combining evolutionary 

community detection and 
community mapping 

Identification of temporally 
smooth local communities 
and community mapping 

[Kim09] 

Community detection on graph segment 
approximations and  community mapping 

[Yang09] 
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A Particle – and Density-based Method 
Removes the constraint for identical number of communities between successive 
structures [Kim09] 

Creates a t-partite graph linking nodes belonging to subsequent graph snapshots 
based on a similarity function  

community modeled as a l-clique-by-clique (l-KK ) 

 temporal smoothing at node level with cost embedding 

 density-based clustering based on σ’t , an extension of structural similarity σt  [σt 
(u,w) is the normalized  number of common neighbors between u,w] 

 automatically determines parameter ε with modularity optimization 

E.g. considered similar 
when sharing a neighbor 

CTN 

CSN 

Community mapping based on the 
density of links between local 
clusters with an heuristic alg 
maximizing mutual information 

a 4-clique-by-clique KK[3,3,4,3] 

time 

local  
cluster 
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Incremental community detection 

The community structure of successive 
time-steps is incrementally adjusted 
based on graph modification operations. 

 Graph modification operations (e.g. new 
vertex or edge) arrive as a stream 
 Community structure is updated rather than 
recalculated (improves efficiency) 
Naïve approach compared to evolutionary 
community identification 

based on dynamic  
modularity maximization 

[Gorke10] 

density-based,  DENGRAPH 
[Falkowski08] 

Incremental 
community 
detection 
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based on dynamic  
modularity maximization 

[Gorke10] 

density-based,  
DENGRAPH [Falkowski08] 

Incremental 
community 
detection 
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DenGraph 

Incremental density-based clustering  method [Falkowski08] 

 Let  min{num_interactionsi→j,num_interactionsi→j} = ki,j 

 Node-distance matrix, where: dist(i,i) = 1 and dist(i,j)  = 0  if  ki,j = 0, or else 
                                                             dist(i,j) = 1 / ki,j 

 Clusters are built by connecting adjacent (µ, ε)-neighborhoods [Ester96] 

 A (µ,ε)-neighborhood is built around a core node and includes at least µ 
nodes within a radius of ε 
 Border nodes are included in a neighborhood but are not cores 
 Noise nodes are not included in any neighborhood 



39 

(229)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Effects of increased proximity among nodes upon the community 

DenGraph 
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Effects of decreased proximity or node/edge removal 

DenGraph 
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Presentation Outline 

 Block 1: Introduction 
 Block 2: Supervised learning on streams 

 Block 3: Unsupervised learning on streams 
Block 4: Mining evolving social data  

 Structure and Models 
 Community Detection in Evolving Social Graphs 
  Applications of Mining Evolving Social Data 

Block 5: Mining under resource constraints  
Block 6: Conclusions and Outlook 

(Athena Vakali) 
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clustering of users  
exploiting the time dimension  

Applications of Mining Evolving Social Data 
The results of community detection, or different mining techniques, on 
evolving social data can be exploited in applications: 

social network analysis 
image from [Touchgraph] event detection 

diagram from [Sun07] 

trend detection 
image from [Trendsmap] 

[Touchgraph] http://www.touchgraph.com/TGFacebookBrowser.html 
[Trendsmap] http://trendsmap.com/   
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Social network analysis  

 Data mining can offer new insights in the analysis of the 
structure and evolution of social networks. 
  Important technique : evolving community detection, as 

communities constitute meaningful units of organization 

 The methods we mentioned so far have presented research 
results for data networks derived from the following sources… 
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Source Community detection method 

synthetic datasets Chi07, Duan09, Gorke10, Kim09, Lin08, Tang08, Yang09 

benchmark datasets (e.g. dolphin’s network, 
IEEE VAST dataset) 

Chi07, Yang09 

article online archives (e.g. DBLP, arXiv) Gorke10, Kim09, Lin08, Palla07, Tang08, Wang08, Yang09 

mobile phone call networks Palla07, Sun07, Wang08, Yang09 

imdb actor collaboration dataset Wang08 

Enron e-mail dataset Duan09, Falkowski08, Sun07, Tang08, Wang08,Yang09 

blog data  Chi07, Lin07, Lin08 

Flickr Chakrabarti06 

mobile device proximity networks Sun07 

company call networks Yang09 

football match schedules Kim09 

department e-mail dataset Gorke10 

Digg Lin09 

Social network analysis  
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Event detection 
Graph segmentation community 
detection methods 
[GraphScope, Stream-Group] 
can identify significant change-
timepoints in the stream which 
constitute events. 

Definition of event 
 the information flow  between a group of social 
actors on a specific topic over a certain time 
period  [Zhao07] 

 occasions that take place at a specific time and 
location, for instance concerts, parties, etc. 
[Quack08] 

closely 
related 

with time 

  Event detection from social data streams (triples of actor, text, time) 
exploring features in three dimensions: textual content, social, and 
temporal [Zhao07] 

1. text representation with vectors using TF-TD and application of the graph-cut 
clustering algorithm [Shi00], resulting in topic clusters 

2. for each topic: timeline segmentation into meaningful intervals based on 
fluctuations in the intensity of topic-related discussion 

3. for each topic: calculation of  (i) information flow  pattern between pairs of actors as 
vectors and (ii) dynamic time warping-based similarity between pairs of information 
flow patterns 

4. creation of a network with pairs of actor as nodes and calculated similarities as 
edges, and application of graph-cut clustering [Shi00] (236)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Event detection 
Graph segmentation community 
detection methods 
[GraphScope, Stream-Group] 
can identify significant change-
timepoints in the stream which 
constitute events. 

Definition of event 
 the information flow  between a group of social 
actors on a specific topic over a certain time 
period  [Zhao07] 

 occasions that take place at a specific time and 
location, for instance concerts, parties, etc. 
[Quack08] 

closely 
related 

with time 

Dataset : geo-tagged photos from Flickr grouped in areas [Quack08] 

1.  Image clustering: computation of a dissimilarity matrix combining visual 
and textual features (tags), and application of a hierarchical agglomerative 
clustering algorithm 
2. Classification of clusters in objects or events using an ID3 decision tree 
and two extra features for each cluster: 

  the number of days covered by its photos (defined by the photos’ timestamps) 
  the number of users who took the photos 
Main idea: objects, such as landmarks, are photographed by many users 

throughout the year, whereas events usually last one or two days and 
are covered by fewer users 
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Trend detection 
  Social data fluctuate in their structure and frequency as they evolve. At each time-

period there are some topics, images, tags, etc, that are most popular amongst 
users (trends). Data mining can be used for detecting trends in evolving social data. 

  Trends can be identified globally  or even locally  (within communities) and they 
usually indicate what interests users the most at a given time 

Trend identification in Twitter 
  Twitter : popular microblogging website where users are allowed to                     

post short messages (up to 140 chars) and “follow” the posts of others 
  Rich source of rapidly evolving social data which are also public.                      

Suitable for trend detection 
  Recently, there have been many attempts to statistically analyze Twitter data 
  Evolving Twitter data  to identify trending keywords for different weekdays [Java07]  
 Microblogging as a form of electronic word-of-mouth for sharing consumer 

opinions concerning brands. Sentiment identification performed in Twitter posts to 
identify trending sentiments about brands [Jansen09]. 
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Trend detection 
  Social data fluctuate in their structure and frequency as they evolve. At each time-

period there are some topics, images, tags, etc, that are most popular amongst 
users (trends). Data mining can be used for detecting trends in evolving social data. 

  Trends can be identified globally  or even locally  (within communities) and they 
usually indicate what interests users the most at a given time 

Trend identification in the blogosphere 
Traditional approach:  calculation of the frequency of appearance of each term in all blogs 

for each time-step 
However, in [Chi06] different emphasis is put on every blog depending on its overall amount 

of contribution to the trend 
Data represented as a combination of information capturing: (i) temporal changes in them 

and (ii) characteristics of individual bloggers 
  Method based on SVD: produces scalar eigen-trends capturing overall trends,                        

and authority scores representing the contribution of each blog to trends 
  Method based on HOSVD: applied on keyword-specific blog-citation                          

graphs to produce structural eigen-trends, hub scores and                                                                
authority scores capturing structural changes 

Resemblance 
to HITS 

(239)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Clustering of users exploiting the dimension of time 

Social data can be analyzed for automatic synthesis of user profiles  
Case study: Social Tagging Systems (STS) 
Clustering of users in STS according to topics of interest and the time 
locality of tagging activity [Koutsonikola09] 

e.g. a user who tagged a set of photos depicting sports is probably interested in sports. 
However, if his tagging activity took place during the Olympic games, maybe he is simply 
interested in the Olympics and is not a regular sports fan. 
 Segmentation of time in frames 
 A user is related to a given tag if he has assigned at least one semantically close 
tag. The topic-distance between two users is calculated based on the similarity of 
their relations to all involved tags. 
 Time-similarity between a user and a tag is calculated with the cosine coefficient. 
The time-distance between two users is calculated considering their similarity over 
all timeframes. 
 Topic-based clustering with K-means, then refinement with time criterion 
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End of Block 4 

Thank you! 

Questions? 
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Introduction and Motivation 

Challenge:  
• a stream is theoretically infinite so cannot be materialized.  
Data have to be processed in a single pass using little 
memory.  
Based on this restriction one can identify two divergent 
objectives:  
1. the analysis should produce comprehensive and exact results 
and detect changes in the data as soon as possible. 
2. The single pass demand together with resource limitations 
allow only to perform the analysis on an approximation of the 
stream or a window (finite subset of the stream). 
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Introduction and Motivation 

Data streams are mostly generated or sent to resource 
constrained computing environments: 

•  Data generated on-board astronomical spacecrafts 
•  Data generated in sensor networks. The additional constraint that 

sensor nodes consume their energy rapidly with data 
transmission 

•  Data received in resource-constrained environment represents a 
different category of applications: 

•  Personal Digital Assistants PDAs: users might request sheer 
amounts of data of interest to be streamed to their mobile devices. 
Storing and retrieving these huge amounts of data are also 
infeasible in such an environment 
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Applications 

• monitoring physiological data streams obtained from wearable 
sensing devices. Such monitoring can be either for: 

•  applications for pervasive healthcare management,  
•  Applications  for seniors,  
•  emergency response personnel,  
•  soldiers in the battlefield 
•   or athletes 

• Onboard analysis of data streams: data generation would 
exceed the bandwidth to transfer these streams of data to 
ground stations for analysis. They necessitate the need for 
onboard analysis of data streams. 
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Applications 

• Wearable sensors available in theMarket 
•  SenseWear Armband from BodyMedia 
•  Wearable West 
•   LifeShirt Garment from Vivometrics 

• SenseWear armband can measure heat flux, accelerometer, 
galvanicskin response, skin temperature,near body temperature 
• Arm band can store up to about 5 days of data. 
• Detecting emerging patterns in  
soldiers, elderly individuals, animals… 
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Applications 

• MineFleet: A Vehicle Data Stream Management and Mining 
Software System 

•  On-board Module: 
•  Continuous data streams from the vehicle data bus 

•  Onboard data stream mining 
•  Communicates with a remote control station. Privacy 

management 
•  Central control station: 

•  Data Management, Data mining, Communicates with the on-board 
modules over wireless networks, Privacy management 
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Applications 

• Vehicle Data Stream Mining [Kargupta] 
•  Vehicle Health Monitoring and Maintenance: 

•  Detecting unusual behavior for a subsystem 

•  Fuel Consumption Analysis: 
•  Is the vehicle burning fuel efficiently? Identify influencing factors 

•  Detect influence of driver behavior on gas mileage  

•  Driver Behavior Monitoring: 
•  Route monitoring: Fixed and variable routes 

•  Direct Cost Issues: e.g. Idling, braking habits, Safety Issues 

•  Vehicle location related services 
•  Vehicular network security and privacy management 
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Computational resources affected 

Stream mining affects settings in: 
•  memory,  
•  processing cycles,  
•  Communication bandwidth and  
•  battery.  

• Stream mining algorithms: 
•  typically linear or sub-linear algorithms  
•  characterized by being space efficient.  

• BUT:  
•  Most of these algorithms are not designed with regard to 

adaptation to resource availability 
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Issues (Gaber) 

•  the input,  
•  output, and  
•  processing settings of an algorithm 

•   could be changed according to measurements of resource 
availability in a time frame: 

•  Find: 
•  resource consumption patterns and  

•  algorithm settings. 

• Challenge: 
•  Limited computational resources 
•  Limited bandwidth 
•  Change of the user’s context 
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Approaches 

1.  Based on user specified quality requirements the algorithm 
derives resource requirements, i.e., the memory needed for 
managing stream approximations in order to guarantee the 
requested quality. 

2.  Input adaptation: 
•   load shedding and data synopsis creation using wavelets 

•  Some drawbacks: 
•  solution is through a specific algorithm,  
•  does not handle the situations where more than one resource is 

constrained, may not apply to all kinds of resources,  
•  usually requires some extra processing such as sampling 
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Memory availability (Frakle)   

2  ways of putting resource and quality awareness:  
1. Claim for specific quality requirements and deduce the 
needed resources to achieve this quality. 
2. Limit the resources provided for processing and deduce the 
achievable quality. 

•   Q -> R ? 
•  R -> Q ? 
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 Association  mining. [Nan Jiang and Le Gruenwald] 

Issues  to take into account: 
1. Data Processing method 
2. Memory management method 
3. Data structure to keep itemsets 
4. One pass algorithm 
5. Maintenance and generation 
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Data Processing model  

Landmark model  
  mines all frequent itemsets over the entire history of stream data 

from a specific time point called landmark to the present.  
  not suitable for applications where people are interested only in 

the most recent information of the data streams, such as in the 
stock monitoring systems 

Damped model, (Time-Fading model), mines frequent itemsets 
in stream data in which each transaction has a weight and this 
weight decreases with age.  

  Older transactions contribute less weight toward itemset 
frequencies. Different weights for new and old transactions.  

   suitable for applications in which old data has an effect on the 
mining results, but the effect decreases as time goes on. 

(260)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Data Processing model  

Sliding Windows model finds and maintains frequent itemsets in 
sliding windows. Only part of the data streams within the sliding 
window are stored and processed at the time when the data 
flows in.  

  The size of the sliding window may be decided according to 
applications and system resources.  

  The mining result of the sliding window method totally depends 
on recently generated transactions in the range of the window;  

  all the transactions in the window need to be maintained in order 
to remove their effects on the current mining results when they 
are out of range of the sliding window. 
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Memory management  

•  Classical association rule mining algorithms on static data collect 
the count information for all itemsets and discard the non-
frequent itemsets and their count information after multiple 
scans of the database. when we mine association rules in stream 
data: 

1.  there is not enough memory space to store all the itemsets and 
their counts when a huge amount of data comes continuously. 

2.  the counts of the itemsets are changing with time when new 
stream data arrives. Therefore, we need to collect and store the 
least information possible 

  Some methods uses sizes of itemsets such as 3 or 2 to generate 
only this itemsets.  
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Memory management [Nan Jiang and Le Gruenwald] 

An efficient and compact data structure is needed to store, 
update and retrieve the collected information: 

  bounded memory size and  
  huge amounts of data streams coming continuously. 

Failure in developing such a data structure will largely decrease 
the efficiency of the mining algorithm 
The data structure needs to be incrementally maintained. 

  it is not possible to rescan the entire input due to the huge 
amount of data and requirement of rapid online querying speed. 
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One Pass Algorithm to Generate Association Rules 
[Nan Jiang and Le Gruenwald] 

Association rules can be found in two steps:  
1. finding large itemsets (support is greater than user specified 
support) for a given threshold support and 
2.  generate desired association rules for a given confidence 
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Frequent itemsets [Nan Jiang and Le Gruenwald] 

Should we use an exact or approximate algorithm to perform 
association rule mining in data streams?  
Can its error be guaranteed if it is an approximate algorithm? 
How to reduce and  guarantee the error?  
What is the tradeoff between accuracy and processing speed?  
Is data processed within one pass? 
Can this algorithm handle a large amount of data? 
 Up to how many frequent itemsets can this algorithm mine? 
Can this algorithm handle concept drifting and how? 
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Association generation and maintenance [Nan Jiang and 
Le Gruenwald] 

Mining association rules involves a lot of memory and CPU 
costs.  
This is especially a problem in data streams since the 
processing time is limited to one online scan.  
Approaches of the static world: frequent updating 
data stream environment, stream data are added continuously, 
and therefore, if we update association rules too frequently, the 
cost of computation will increase drastically. 
Some methods assume little concept drifting, that is to say the 
change of data distribution is relatively small. 
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Resources awareness 

Some approaches: 
  Gaber:  AOG, which uses a control parameter to control its output 

rate according to memory, time constrains and data stream rate 
(see later further) 

  Teng et al.: RAMDS algorithm to not only reduce the memory 
required for data storage but also retain good approximation of 
temporal patterns given limited resources like memory space and 
computation power 
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CFI-Stream: -Nan Jiang, Le Gruenwald 

Mining closed frequent itemsets over datastreams: 
   computes and maintains closed itemsets online and 

incrementally,  
  can output the current closed frequent itemsets in real time 

based on users’ specified thresholds.  
  time and space efficient, has good scalability as the number of 

transactions processed increases and adapts very rapidly to the 
change in datastreams. 
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Addition procedure of the algorithm [Nan Jiang and Le Gruenwald] 

Checks if X is in the current closed itemsets set C.  
  If X is in C, it updates X’s support, and for all X’s subsets Y 

belonging to C, it updates Y’s supports. 
  Else, if X is not in C and X has been included by at least one 

transaction in the original transaction set, it checks whether it is a 
closed itemset for itself and all its subsets; and it updates the 
associated supports for all the closed itemsets. 

•   If X is a newly arrived closed itemset and does not exist in the DIU 
tree, the algorithm adds it as a new node to the DIU tree.  

•  else, if X is the added transaction itself, it adds X into the closed 
itemset (lines 10-15); if X is the subset of added transaction, a 
closure checking is performed 
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Deletion phase of the algorithm [Nan Jiang and Le Gruenwald] 

When an itemset X leaves the current sliding window 
CFI-Stream: 

  checks if X is in the current closed itemsets set C and its count is 
greater or equal to two; if so, it updates X’s support and X’s 
subsets’ support belonging to C  

  Otherwise, it checks the itemset X and all its subsets which are in 
the current closed itemset C to see whether they are still closed 
itemsets  and updates the support for all its subsets that are in 
the current closed itemsets 

•  If the subset Y exists in transaction, Y should keep 

• Otherwise a closure check for the subset Y is performed 
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Performance analysis [Nan Jiang and Le Gruenwald] 

Time and space efficiency independent of support information, 
and 
 it can adapt to the concept-drifting in data streams.  
better performance than other state-of-the-art approaches in 
terms of both time and space overhead 

   especially when the minimum support is low,  
  and the dataset is dense 
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COFI-tree mining M. [El-Hajj and O.R. Zaiane] 

FP-trees used in the mining process can all fit in memory. 
COFI algorithm—as an alternative to the FP-growth algorithm 
COFI consists of three main phrases:  

  the construction of an FP-tree representing the original database,  
  The construction of a COFI-tree (Co-Occurrence Frequent Item 

tree) for each frequent item, and  
  the mining of frequent patterns from each COFI-tree.  

In the first phrase, a global FP-tree is constructed in the same 
way as in the FP-growth algorithm. Thus 2 database scan are 
required—one scan for finding the frequency of each item and 
another scan for building the FP-tree 
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COFI tree 

the COFI-tree contains: 
1.   the item,  
2.  its frequency count and 
3.  its participation counter. This counter is initialize to 0, and is 

incremented every time the node is  raversed/ participated. At 
the end of the mining process for the COFI-tree of x, the value 
of this counter is equal to its frequency count. Note that, the 
COFI algorithm requires at most two trees (i.e., the global FP-
tree and the COFI-tree for a specific item) to co-exist at any 
time during the mining process, whereas FP-growth usually 
keeps more than  two trees.  
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Carson Kai-Sang Leung, Dale A. Brajczuk, Jialiang Yu 

to reduce memory consumption required by FP-growth, authors 
replace the first step of FP-streaming by applying the COFI algorithm 
(instead of the FP-growth algorithm) to find “frequent”patterns. 
Such a replacement of the algorithm in the first step of FP-streaming 
leads to both an increase and a decrease in memory consumption in 
different stages of the mining process. 
On the positive side, the use of COFI algorithm reduces memory 
consumption by avoiding recursive projections and constructions of 
FP-trees. Thus, instead of multiple FP-trees, at most two trees (namely, 
the global FP-tree and a COFI-tree for an item x) need to co-exist 
during the mining process.  
However, on the negative side, the construction of a COFI-tree for item 
x requires more memory space than the construction of an FP-tree for 
the same item x  
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Frequent itemsets FP tree (Franke) 

Han et al., 2000: FP-tree 
Giannella et al., 2003:  

  extension to mine streaming data in a time-sensitive way. 
  tilted time window tables represents window-based counts of the 

itemsets. Allow to maintain summaries of frequency information 
of recent transactions in the data at a finer granularity 

  Update the extended FP tree in batches: accumulate incoming 
transactions until enough transactions of the stream have arrived. 
Then, the transactions of the batch are inserted into the tree.  

  Mining the tree: modification of the FP-growth algorithm  that 
uses the tilted window table. The original approach assumes that 
there is enough memory available to deliver results in any 
required quality 
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Franke et al approach 

1. Tries to calculate memory needed for the quaility 
required 

2. Adapts operators to the memory available 
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Franke. Adapting dynamically the tree size 

Adapting ε 
  f < 0.85: Decrease ε by ten percent. Use this ε when processing 

the following batches. 
  • 0.85 < f < 1.0: The value of ε remains fixed. 
  f > 1.0: Increase ε by ten percent. Conduct tail pruning at the 

TTWTs of each node in the pattern tree anddrop all nodes with 
empty TTWTs. Repeat these steps as long as f > 1.0. 

Adapting σ 
   As σ does not influence the size of the tree directly, ε / σ 

remains the same. That is why the user does not provide a fixed 
value of σ, but rather claims for a certain ε / σ that should be 
guaranteed. Again, the user may also specify a lower bound for 
the value of σ.  



47 

(277)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

Franke. Results 
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Franke. Results 
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Franke. Results 
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Memory constraints. Sequential patterns 

Teng et al., 2004 :RAM-DS 
   Resource-Aware Mining for Data Streams 
  uses a wavelet-based approach to control the resource 

requirements. 
  mainly concerned with mining temporal patterns 
  the method can only be used in combination with a certain 

regression-based stream mining algorithm proposed by the 
same authors.  

  Although the proposed algorithm for mining temporal patterns is 
resource-aware, it is not resource-adaptive and does not provide 
guarantees for the quality of the mining results 
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H. Kargupta. Decision trees 

Orthogonal decision trees (ODTs) offer an effective way to 
construct a redundancy-free, accurate, and meaningful 
representation of large decision-tree-ensembles: 

1.  first construct an algebraic representation of trees using 
multivariate discrete Fourier bases.  

2.  The new representation is then used for eigen-analysis of the 
covariance matrix generated by the decision trees in Fourier 
representation. Converts the corresponding principal 
components to decision trees.   

3.  These trees are functionally orthogonal to each other and 
they span the underlying function space. These orthogonal 
trees are in turn used for accurate (in many cases with 
improved accuracy) and redundancy-free (in the sense of 
orthogonal basis set) compact representation of large 
ensembles.  
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ODT. Kargupta: Application weareable 

Variables sensed: 
  Heat flux: The amount of heat dissipated by the body. 
  Accelerometer: Motion of the body 
  Galvanic Skin Response: Electrical conductivity between two 

points on the wearer’s arm 
  Skin Temperature: Temperature of the skin and is generally 

reflective of the body’s core temperature 
  Near-Body Temperature: Air temperature immediately around the 

wearer’s armband. 
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Experiments with ODT [H. Kargupta] 

construction of ODTs using four C4.5 trees  
reports the structure of an ODT obtained by projecting the trees 
along the first principle component.  
aggregated orthogonal decision trees have accuracy 
comparable to that of large Bagging ensembles. 
an aggregated ODT is a good solution for classification 
problems on PDAs, pocket PCs or cell-phones 
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Performance analysis in ODT  [H. Kargupta] 

(286)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

ODT- resource constraint [H. Kargupta] 

In resource constrained environments it is often necessary to 
keep track of the amount of memory used to store the 
ensemble.  
The current implementation storing a node data structure in a 
tree requires approximately 1 KB of memory. 
Consider an ensemble of 20 trees. If the average number of 
nodes in the trees in the Bagging ensemble is 7, then we are 
required to store 140 KB of data.   
Orthogonal decision trees on the other hand are smaller in size, 
with less redundancy. In the experiments they typically have a 
complexity of 3 nodes. This means that to store only 60 KB of 
Data are required 
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TCR [H. Kargupta] 

• Tree Complexity Ratio (TCR): total number of nodes in the 
ODT versus the total number of nodes in the Bagging 
ensemble 
• It may be noted that in resource constrained environments 
one can opt for meaningful trees of smaller size and 
comparable accuracy as opposed to larger ensembles with a 
slightly better accuracy 

(288)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

ODT error in classification [H. Kargupta] 
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Response time comparison [H. Kargupta] 

on a pocket PC using a Bagging ensemble and an equivalent 
orthogonal decision tree ensemble 
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Presentation Outline 

 Block 1: Introduction 
 Block 2: Supervised learning on streams  

 Block 3: Unsupervised learning on streams 
 Block 4: Mining evolving social data  
Block 5: Mining under resource constraints 

  Introduction 
  Approaches: Classification, Clustering and Association 

Block 6: Conclusions and Outlook 

(Ernestina Menasalvas) 
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Gaber- AOG (Algorithm Output Granularity) 

Adapting the algorithm output according to: 
   resource availability and  
  data stream generation/input rate. 

 The AOG approach is based on the following axioms: 
1. The algorithm output rate (AR) is function in a data rate (DR), 

  AR = f(DR). 

2. The time needed to fill the available memory by the algorithm 
results (TM) is function  in (AR) 

  TM = f(AR). 

3. The algorithm accuracy (AC) is function in (TM) 
  AC = f(TM). 
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Gaber-AOG  (cont) 

Main idea: 
change the threshold value that in 
turn changes the algorithm rate 
according to three factors: 
1. History of data rate to algorithm 
rate ratio. 
2. Remaining time. 
3. Remaining memory. 

Target: 
 to keep the balance between the 
algorithm rate and data rate from 
one side and the remaining time 
and remaining memory from the 
other side. 
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Gaber-AOG  (cont.) 

  three-stage,  
  resource-aware  
  distance-based mining data streams approach 

(294)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

The process of mining the data stream (Gaber) 

1.  Determine the frequency of adaptation and mining. 
2.  According to the data rate, calculate the algorithm output 

rate and the algorithm threshold. 
3.  Mine the incoming stream using the calculated algorithm 

threshold. 
4.  Adjust the threshold after a time frame to adapt with the 

change in the data rate using linear regression 
5.  Repeat steps 3 and 4 till the algorithm lasts the time interval 

threshold. 
6.  Perform knowledge integration of the results 
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AOG based algorithms 

•  LightWeight Clustering (LWC): the threshold is used to 
specify the minimum distance between the cluster center 
and the data element/record; 

•  LightWeight Classification (LWClass): In addition of using the 
threshold in specifying the distance, the class label is 
checked. If the class label of the stored items and the new 
item that are similar (within the accepted distance) is the 
same, the weight of the stored item is increased along with 
the weighted average of the other attributes, otherwise the 
weight is decreased and the new item is ignored; 

•  LightWeight Frequent patterns (LWF): the threshold is used 
to determine the number of counters for the heavy hitters. 
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LWC[gaber] 

incrementally add new 
data elements to 
existing clusters 
according 
to an adaptive 
threshold value 

distance between the 
new data point and all 
existing cluster centers > 
than the current 
threshold value, 
then create a new cluster 
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Lwclass 
[gaber] 

determining the 
number of instances 
according to the 
available space in 
the main memory 

searches for the 
nearest instance 
already stored in 
the main memory 
according to a pre-
specified distance 
threshold 

If the class label is 
the same, it 
increases the 
weight for this 
instance by one 

decrements the weight by one.  
If the weight becomes zero, this element 
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LWF 
[gaber] 

number of freq. 
items 
according to the 
available 
memory 
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Resource aware architecture [gaber] 
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Comparison of K-means and LWC [gaber] 

• LWC outperforms K-means 
even with the fine threshold 
that leads to creating large 
number of clusters 
• The generated centers for both 
algorithms are very close and 
have the same trend 
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Scalability test of LWC [Gaber] 

• the unpredictability of the number of passes needed by K-means leads 
to fluctuating running time with similar data set sizes 
• Experiment with an increase in the dataset sizes to show stability in 
the AOG overhead.  
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Granularity-based Approach [Gaber] 

Combining the three possible granularity-based adaptation, 
namely: 
1.  AIG: Algorithm Input Granularity 
2.  AOG: Algorithm Output Granularity 
3.  APG: Algorithm Processing Granularity 
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Granularity based algorithms [Gaber] 

Clusterers: 
   Light-Weight Clustering 
  RA-Cluster 
   DRA-Cluster 
  RA-VFKM 

Change Detection: 
  CHANGE-DETECT 

Classifiers: 
   Light-Weight Class (LWClass) 
  RA-Class 
  DRA-Class 

Time Series Analysers: 
  RA-SAX 

Frequent Items and 
Associations: 

  LWF (Light-Weight 
Frequent Items) 

  HiCoRE (Highly 
Correlated Energy-
Efficient Rules) 
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Gaber. Resource aware-Clustering 

enables resource-awareness in streaming computation  
using algorithm granularity settings changes the resource 
consumption patterns periodically.  
framework is applied to a novel threshold-based 
microclustering algorithm to test its validity and feasibility. 
 RA-Cluster.  

  the first stream clustering algorithm that can adapt to the 
changing availability of different resources.  

  The experimental results showed the applicability of the 
framework and the algorithm in terms of resource-awareness 
and accuracy 
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Algorithm settings 

  Input granularity (AIG): 
•  sampling, load shedding, and creating data synopsis techniques.  

  Algorithm Output Granularity AOG : 
•  number of knowledge structures created or level of output 

granularity.  

  Algorithm Processing Granularity APG: changing the processing 
settings of the algorithm to consume smaller amount of 
resources according to consumption measures over the last 
frame : 

•  error rate of approximation algorithms. 
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Algorithm settings : 

Algorithm Input Granularity (AIG):  
  Sampling:  is the process of statistically choose some data 

records to be processed. 
  Load shedding: represenst the process of dropping a chunk of 

data records from being processed. This could be an appropriate 
technique to stop the processing to enable some optimization 
process to be done during this time. It is considered to be a direct 
solution if there is a burst in data streams. We can shed the load 
and continue the processing after the burst. 

  Creating data synopsis: summarizing or compressing the 
incoming data on the fly before it is being processed: 

•   Wavelets  

•  simple statistical summarization techniques 
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Algorithm settings (II) 

Algorithm Output Granularity (AOG):  
  number of knowledge structures:  

•  number of clusters or rules.  

  The output size could be changed also using level of output 
granularity which means the less detailed output, the higher the 
granularity and vice versa. 

Algorithm Processing Granularity (APG):  
  Randomization and approximation techniques 

The process of enabling resource awareness should be very 
lightweight in order to be feasible in a streaming environment 
characterized by its scarcity of resources 
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System architecture [Gaber] 

(309)  (c) Gama, Menasalvas, Spiliopoulou, Vakali – Barcelona, 24th Sept. 2010 

RA-cluster algorithm  

RA-Cluster:combines resource-awareness, adaptation and real-
time all in a holistic approach.  
Process: 
1.  starts with using an initial threshold to run the algorithm and 
after a fixed time frame the resource consumption patterns of 
the CPU, memory, and battery given that we run in a resource 
constrained environment is assessed . 
2. According to the above assessment, the algorithm settings 
are changed to cope with the data rate.  
RA-Cluster is an incremental online micro-clustering algorithm 
that has all the required parameters to enable resource-
awareness 
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[Gaber] 
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Some results [Gaber] 
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AG main lacks [Gaber] 

AG model has proven its applicability to change the resource 
consumption, but: 

  The bounds over the AG settings have no guarantee over the 
quality of the output. quality relies on other interleaving factors 
such as data distribution and the running mining technique. 

   changes in the AG settings are not quality-aware. the algorithm 
changes according only to the availability of computational 
resources.  

  loss in accuracy :in some cases, we can gain the same accuracy 
using less resources. 

  The AG settings do not take into consideration the interaction 
among the different settings. Addressing this issue can optimize 
the use of resources. 
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Quality assurance (Gaber, Franke, Karnstedt) 

Generic 3 layer model for quality guaranteed resource-aware 
(QGRA) data mining on data streams.  

applicable to a wide variety of stream mining techniques. 

The model bridges the gap between quality aware mining and 
general resource-adaptivity by monitoring the resource 
consumption. 
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Quality model 

To control the adaptation the algorithm uses: 
1. Function to determine the algorithmic parameters from the 
assessed resources.  
2. Function to determine the output quality based on the chosen 
algorithmic parameters.  
3. Functions to compute lower bounds for the algorithmic 
parameters in order to maintain the quality of the output.  
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Different quality measures [Gaber, Franke, Karnstedt] 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The three layers [Gaber, Franke, Karnstedt] 
1.  resource monitoring: works over 

dynamic time intervals. dynamic 
time window that  changes 
according to the criticality of the 
available computational 
resources.  

2.  real-time quality assessment. 
Able to provide information 
about the quality of the output 
given the availability of 
resources. Also provides the 
system with information about 
preserving computational 
resources while maintaining the 
same quality 

3.  (AGS) component:feeds the 
mining algorithms with input, 
output and processing settings 
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QRSA algorithm • resource monitoring component  
• dynamically provided resource limits,   
• If any adaptation is necessary, a new set of 
parameters is determined 
refine these parameters.  
• analyze the set of parameters suggested by the 
resource adaptation as additional input. 
• Only if the parameters modified like this still meet 
the resource limits  they are 

•  parameters are checked  again. 

•  the resulting qualities and parameters are stored  

• if no adaptation takes place, parameters for time t
+1 are set to those from time t in order to build the 
timelined sets (line 12). 
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Requirements of the algorithms 

  parameters must exist in the algorithm. a strong correlation 
between the adaption factors and the algorithm’s resource 
requirements helps estimating the quality of the output. 

  the algorithm must show homogeneous behavior 
  stream with homogeneus properties maintained 
  Able to establish a partitioning into independent sections in the 

mining result. Thus different values of the adaption factors only 
have “local” effects in the mining results.  

  possible to query each of these independent sections separately. 
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End of Block 5 

Thank you! 

Questions? 
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Outlook I 

Learning on complex stream data 
  multiple, interrelated and interdependent streams 
  Data that involve static objects & streams feeding them 
  Probabilistic models and tensor-based learning 
  Object profiling: 

A model for all data or a model for each object (or both) ? 

Challenges of new applications 
  Data from mobile devices 
  Data from devices that are available irregularly 
  Learning using limited computational resources 
  Learning under time constraints 
  Capturing context 

Multiple sensors 
Communities 

Customers, 
Users, Patients 
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Outlook II - Old challenges, not yet solved 

  Dealing with time: Multi-horizon and multi-granularity analysis 
  Scalability for large data volumes 

•  Decrease complexity 

•  Increase parallelism 

  Robustness, esp. if the learners are complex 
  Learning for online or realtime applications 
  Visualization 

  Evaluation: Measures & Benchmarks 

Visualization of WHAT ? 
The streams, the objects, the models 

Visualization for WHOM? 
The expert, the data owner, the decision-maker, the casual observer 

MapReduce 
Clouds 
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Outlook II – Old challenges,not yet solved 

Supervised learning for evolving data 
  Dealing with emerging and evolving concepts 
  Delayed labeling 
  Label availability 
  Cost-benefit trade-off of the model update 
  Change description 
  Predicting re-occurring contexts 
  Multi-label prediction 
  Reliability and uncertainty 
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Outlook II – Old challenges,not yet solved 

Unsupervised learning for evolving data 
  Dealing with emerging and evolving concepts 
  Waiving the assumptions about the data generating process 

(or verifying them) 
  Change description 
  Setting up the learner: 

• What is the influence of parameter x, 
given that there is no ground truth in the data? 

•  If Gibbs sampling, then on what sample? 

  Evaluation  
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Outlook – Challenges, amplified by evolving social data 

Community identification in evolving social data 
  Exploitation of evolving communities 

  Visualization of community evolution 
•  Human-friendly 

•  Demonstrating the role of communities and the impact of change 
in a comprehensible way 

•  Application-specific 

  Supporting online applications 

Event prediction 

Trend identification 

Opinion mining 

Recommendation engines 
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Thank you very much! 
                                      QUESTIONS 


