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Abstract. In various applications (e.g., automatic image tagging), im-
age classification is typically treated as a multi-label learning problem,
where each image can belong to multiple classes (labels). In this paper,
we describe a novel strategy for multi-label image classification: instead
of representing each image in one single feature space, we utilize a set
of labeled image blocks (each with a single label) to represent an image
in multi-feature spaces. This strategy is different from multi-instance
multi-label learning, in which we model the relationship between image
blocks and labels explicitly. Furthermore, instead of assigning labels to
image blocks, we apply multi-class AdaBoost to learn a probability of a
block belonging to a certain label. We then develop a Markov random
field-based model to integrate the block information for final multi-label
classification. To evaluate the performance, we compare the proposed
method to six state-of-art multi-label algorithms on a real world data
set collected on the internet. The result shows that our method outper-
forms other methods in several evaluation indicators, including Hamming
loss, ranking-loss, macro-averaging F1, micro-averaging F1 and so on.

Keywords: Image classification, Multi-label learning, Markov random
field

1 Introduction

With the rapid development of multimedia applications, the number of images
in personal collection, public data sets, and web is growing. It is estimated that
every minute around 3000 images are uploaded to Flickr. In 2010, the number of
images Flickr hosted had exceeded five billion. The increasingly growing number
of images presents significant challenges in organizing and indexing images. In
addition to scene analysis [3, 31, 34, 35, 37], image retrieval [4, 19, 26], content-
sensitive image filtering [6], and image representation [18], extensive attention
has been drawn to automatic management of images. Automatic image tagging,
for example, is a process to assign multiple keywords to a digital image. It is
typically transformed as a multi-class or multi-label learning problem. In multi-
class learning (MCL) [1, 2, 5, 8], an image is assigned with one and only one label
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from a set of predefined categories, while in multi-label learning (MLL), an image
is assigned with one or more labels from a predefined label set. In this paper, we
focus on MLL in real-world application.

One of the commonly-used MLL methods is called problem transformation,
which transforms a multi-label learning problem into multiple binary learning
problems using a strategy called binary relevance (BR) [15, 27]. A BR-based
learning model typically constructs a binary classifier for each label using re-
grouped data sets. While it is simple to implement, a BR-based method neglects
label dependency, which is crucial in image classification. For example, an im-
age labeled with beach may also be labeled with sea, while an image labeled
with mountain is unlikely labeled with indoor. More sophisticated algorithms
are advanced to address the label dependency [11, 12, 29, 31]. However, in most
of the existing methods, an image with multiple labels is represented by one
feature vector, while these labels are from different sub-regions in image respon-
sible for different labels. To solve the ambiguity between image regions and la-
bels, multi-instance learning (MIL) methods are developed in MLL methods. In
multi-instance learning including multi-instance multi-label learning (MIMLL),
an image is transformed into a bag of instances. The bag is positive, if at least one
instance in the bag is positive and negative otherwise. MIL [30, 32] attempted
to model the relationship between each sub-region in image with an associated
label. To extract the sub-region, techniques from image segmentation is applied.
However, image segmentation is an open problem in image processing, which
will make MIL computationally expensive. Also the accuracy of segmentation
interferes the performance of MIL.

In this paper, we propose a multi-space learning (MSL) method using Ad-
aboost and Markov random field to transform MLL tasks into MCL problems.
We utilize normalized real-value outputs from one-against-all multi-class Ad-
aBoost to represent the association between a block (instead of a bag or the
entire image) and a potential label. The normalized real-valued output will also
represent a contribution of a block in an entire image with a label. This step
will solve the ambiguity between instances and labels, since the labels in multi-
class classification share no intersection in labeling examples. This will solve the
ambiguity of labeling an image. Then, we use Markov Random Fields (MRF)
models to integrate label sets for an image. Compared to MIMLL, MRF-based
integration is a more advanced way to integrate the results from blocks rather
than the hard logic provided from MIL. In image classification, that different
labels describes different regions is the major reason for labeling ambiguity. In
our framework, we follow the characteristics in image classification to transform
MLL task into MCL problem. The key contributions of this paper are highlighted
as follows:

(1) We propose an algorithm for multi-space learning which explicitly models
the relationship between each image block and labels.

(2) We derive a MRF-based model to integrate the results from every block in
an image. Instead of predefining values for parameters, the values of parameters
in MRF and integration thresholds are obtained via training images.
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The rest of the paper is organized as follows. In Section 2, we will describe
the proposed method with multi-space learning and MRF-based integration.
In Section 3, we will discuss our data set including all the image descriptors
we have used and the final statistics. This is followed by experiment results of
performance comparison. Finally, we will conclude and discuss about our future
work in Section 5.

2 Methodology

The system overview is showed in Figure 1. In this framework, we convert train-
ing images and testing images into multi-space representations with overlapped
blocks of fixed size. We utilize a set of single-labeled training blocks with the
same fixed size to train a one-against-all multi-class AdaBoost classifier. The
classifier is used to calculate the real-valued outputs related to the association
between block and labels for training images and testing images. A Markov ran-
dom field model is used to integrate these real-valued outputs. Via thresholds
estimation from the integration results of training images, testing images are
predicted label by label. We will discuss feature extraction in Section 3. In the

Fig. 1. The Framework of Our Algorithm

framework, we use a multi-space representation to extract blocks from every
image. The blocks are fixed-sized and overlapped. From training images, we can
create a set of training blocks. The set of training blocks are denoted as Btrn,
which contains image blocks labeled with one and only one label from a finite
label set of L with q semantic labels and a newly introduced label called back-
ground to filter out non-object blocks. The set of training images Itrn is labeled
with the same label set L and Itst denotes the testing images. Therefore, for
labeled training blocks, we have q + 1 categories, i. e.,

Btrn = {(b1, yb1), . . . , (bN , ybN
)},∀bi,ybi

∈ L∗,
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where L∗ = {L, background}. For training and testing images, we have the fol-
lowing representations as Itrn = {(X1, Y1), . . . , (Xn, Yn)},∀i, Yi ⊆ L, Itst =
{T1, . . . , Tm}. In multi-space representation, we have the following definitions.

Let Xi = {b
(i)
(1,1), . . . ,b

(i)
(j,k), . . . ,b

(i)
(ri,ci)

}, where b
(i)
(j,k) denotes the image block in

j-th row and k-th column in the i-th training image, and ri and ci denote the row
and column numbers of blocks contained in Xi. For testing images, we have the

same representation as Ti = {t
(i)
(1,1), . . . , t

(i)
(j,k), . . . , t

(i)
(ri,ci)

}, where t
(i)
(j,k) denotes

the image block in j-th row and k-th column in the i-th testing image, and ri and
ci denote the row and column numbers of blocks contained in Ti. It should be
noted that the extracted blocks Btrn is not necessarily contained in the union
set of multi-space representations of training images, which is Btrn *

⋃
iXi.

Training image is blocked via multi-space representation. The blocks in train-
ing images are fixed, once the image is given. However, training blocks in Btrn

are extracted in training images at random positions where an object locates.
Figure 1 shows an multi-space representation, the rectangle size is 75*100 pixels.
The overlapping along the x axis is 25 pixels, and 40 pixels along the y axis. The
blocks are extracted with sequence. Thus, it efficiently records the content and
spatial information of an individual image. Features are extracted upon every
block in the image. It should be noted that given the size of the image, the
number and the location of blocks can be calculated.

In our framework, we train a multi-class classifier mapping every block in
Btrn to a label in L∗. In the experiment, we use multi-class AdaBoost [38] with
one-against-all strategy and one dimensional decision stumps as weak learners
denoted as hil(b), i = 1, . . . ,M ; l ∈ L∗, where i is the index of different weak
learners, l is the index of different labels, and M is the iteration number of
AdaBoost. Accordingly, The weight for its corresponding weak learner is denoted
as αil , i = 1, . . . ,M ; l ∈ L∗ The AdaBoost we used follows Algorithm 1 in [38].
The only difference is we record normalized real-valued outputs instead of direct
labels to block b. In the step of multi-class AdaBoost, for an assigned label l, all
the image blocks in Btrn labeled with l are considered as positive examples; while
remaining image blocks in Btrn are considered as negative examples. To describe
the normalized real-valued outputs, we firstly introduce a boolean expression
operator as JπK for a boolean statement π. If π is true, JπK = 1; otherwise,
JπK = 0. Then the normalized real-valued output fl(b) for an image block b in
Itrn and Itst given an assigned label l is as follows:

fl(b) =

∑M

i=1 α
i
l · Jh

i
l(b) = lK

∑
k∈L∗

∑M

i′=1 α
i′

l · Jh
i′

l (b) = lK
. (1)

All these normalized outputs viewed as block-label association for image
blocks in Itrn are kept in parameter estimation for MRF-based integration, which
will be discussed in the next part.
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Algorithm 1. Estimation of 2-node Potentials

1:For l = 1 to |L|:
2: Initialize nl = 0;
3: Initialize JH,l and JV,l with 10*10 zero metrices.

4: For Xi ∈ Itrn and l ∈ Yi
5: nl ← nl + 1;
6: Initialize CH,l,Xi

and CV,l,Xi
with two 10*10

zeros matrices;

7: For (b
(j,k)
i ,b

(j,k+1)
i ) ∈ Xi and k + 1 6 ci

8: x = Q(fl(b
(i)
(j,k)));

9: y = Q(fl(b
(i)
(j,k+1)));

10: CH,l,Xi
(x, y)← CH,l,Xi

(x, y) + 1.
11: End

12: JH,l,Xi
(x, y) =

CH,l,Xi

ri·(ci−1) ;

13: For (b
(j,k)
i ,b

(j+1,k)
i ) ∈ Xi and j + 1 6 ri

14: x = Q(fl(b
(i)
(j,k)));

15: y = Q(fl(b
(i)
(j+1,k)));

16: CV,l,Xi
(x, y)← CV,l,Xi

(x, y) + 1.
17: End

18: JV,l,Xi
(x, y) =

CV,l,Xi

(ri−1)·ci
;

19: JH,l ← JH,l + JH,l,Xi
;

18: JV,l ← JV,l + JV,l,Xi
;

20: End

21: JH, l←
JH,l

nl
;

22: JV, l←
JV,l

nl
.

23:End

Outputs: JH,l and JV,l.
Our method fully utilizes the normalized outputs from the multi-class Ad-

aBoost classifier to build up Markov random field models for MLL. We derive a
MRF model for information integration as follows. For an assigned label l ∈ L,
our goal is to maximize the likelihood defined as P (Xi|l), which is proportional
to a Gibbs distribution as follows [14], P (Xi|l) ∝ e−U(Xi|l), where U(Xi|l) is
called energy function. The energy function takes the following form [14],

U(Xi|l) =
∑

b
(i)

(j,k)

(V 1
l (b

(i)
(j,k)) +

∑

b
(i)

(j′,k′)
∈N(b

(i)

(j,k)
)

V 2
l (b

(i)
(j,k),b

(i)
(j′,k′))). (2)

Note that V 1
l (b

(i)
(j,k)) and V 2

l (b
(i)
(j,k),b

(i)
(j′,k′)) are potentials for one block and two

adjacent blocks in MRFs horizontally or vertically, given a label l. We introduce
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the following definition, V 1
l (b

(i)
(j,k)) = −fl(b

(i)
(j,k)) where fl(b

(i)
(j,k)) represents the

contribution of each block belonging to a certain label. When the contribution
is increasing, the energy function is decreasing. Thus, we introduce the format
of one-block potential as in Formula (2).

To formulate the potentials of two blocks V 2
l (b

(i)
(j,k),b

(i)
(j′,k′)), we firstly quan-

tize the normalized real-valued outputs from multi-class AdaBoost with function
Q, where b denotes a image block.

As 0 6 fl(b) 6 1,

Q(fl(b)) = p, if
p− 1

10
6 flb <

p

10
,

Q(fl(b)) = 10, if flb = 10.

(3)

After quantization, given a label l, we count the different combinations of the ten
levels horizontally and vertically upon a training image. Thus, we get two count
matrices denoted as CH,l,Xi

and CV,l,Xi
. The two matrices are normalized by

the numbers of the two-adjacent blocks horizontally and vertically. JH,l,Xi
and

JV,l,Xi
denote the normalized count matrices. Finally, the averages of JH,l,Xi

and
JV,l,Xi

over all positive images labeled with l is created as JH,l and JV,l called
joint contribution matrices of two adjacent blocks horizontally and vertically.

After parameter estimation for potentials of two blocks, JH,l and JV,l are

outputs as a codebook to extend V 2
l (b

(i)
(j,k),b

(i)
(j′,k′)) defined as follows, x =

Q(fl(b
(i)
(j,k))), y = Q(fl(b

(i)
(j′,k′))), and if the two blocks are located in horizontal

direction,

V 2
l (b

(i)
(j,k),b

(i)
(j′,k′)) = −

λ

|N(b
(i)
(j,k))|

JH,l(x, y);

otherwise,

V 2
l (b

(i)
(j,k),b

(i)
(j′,k′)) = −

λ

|N(b
(i)
(j,k))|

JV,l(x, y), (4)

where N(b
(i)
(j,k)) denotes the neighbors of block b

(i)
(j,k) and λ denotes a parameter

to rate the different contribution on one-block potential and two-block potentials.
The integration results are calculated to predict label sets via thresholds to test-
ing images. For the convenience of numerical calculation, we derive the following
formula for normalized integration by block number ni. As the number of blocks

will lead bias to the integration results IntglXi =
ln(e−U(Xi|l))

ni
= −U(Xi|l)

ni
. This

formula is expanded with the following forms:Intg1
l (Xi) =

∑
b

(i)

(j,k)
∈Xi

fl(b
(i)
(j,k),

Intg2
l (Xi) =

∑
b

(i)

(j,k)
∈Xi

∑
b

(i)

(j′,k′)
∈N(b

(i)

(j,k)
)

λ·Jl(b
(i)

(j,k)
,b

(i)

(j′,k′)
)

|N(b
(i)

(j,k)
)|

, and

Intgl(Xi) =
Intg1

l (Xi)+Intg
2
l (Xi)

ni
, where Jl(b

(i)
(j,k),b

(i)
(j′,k′)) denotes joint contribu-

tion obtained by Algorithm 1. Whether to use horizontal or vertical direction
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depends on the locations of b
(i)
(j,k) and b

(i)
(j′,k′). With the integration results got

from Itrn, the threshold for predicting assigned label l is estimated in maximiz-
ing F1 measurement in Itrn. An image will be predicted as a positive image for l,
when the integration result is above the threshold. Otherwise, the image is pre-
dicted as a negative image for l. Integration results are used to predict label sets
for testing images via thresholding. Since we want to evaluate the performance
from ranking-based criteria in multi-label classification, we use the integration
result subtracted by threshold given a label l. The thresholds are considered as
zero-baselines for prediction.

3 Database

We collect 4100 images from the internet and label them with building, car, dog,
human, mountain, and water, according to their contents. The resolution of all
the images is controlled under 800*600.

In feature extraction, we use 13 different descriptors to represent the images.
They focus on different characteristics on the images, such as color, texture,
edges, contour and frequency information. They also showed different advan-
tages to describe local details or global features in images. Table 2 describes the
feature sets we have used. In the proposed algorithm, we extract features upon
every fixed size block. The dimensionality of features on a block is 2684. In ex-
periment comparison, six MLL algorithms are used. Features for entire images
are extracted with the same 13 feature sets. The dimensionality for an entire
image is 2629.

Table 1. Sample Numbers per Label Set

Label Train/Test Label Train/Test

b 250/125 b+h 167/83
c 250/125 c+h 167/83
d 250/125 d+h 167/83
h 250/125 m+w 167/83
m 250/125 b+c+h 133/67
w 250/125 b+m+w 133/67
b+c 167/83 d+h+w 133/67

Among 4100 images, 2734 images are selected randomly for training and
the remaining 1366 images are used for testing (2/3 for training and 1/3 for
testing). In our algorithm, the training blocks is normalized according to sample
mean and variance of every dimension. These sample means and variances are
recorded to normalize the image blocks in both training and test images. The
similar normalization strategy is used to normalize the data set used in multi-
label classification for comparison experiment.

Label-Cardinality and Label-Density [27] are used commonly in multi-label

data,Label − Cardinality =
∑n

i=1 |Yi|

n
, Label − Density =

∑n
i=1 |Yi|

n·q , where n
denotes the sample size of training set, and q denotes the predefined label set
size. For MLL problem in our database, Label-Cardinality in our database is
1.5973, and Label-Density is 0.2662. In Table 1, we use b, c, d, h, m, and w
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Table 2. Feature Set Description

Features Description Parameter(s)
Value

Block-wise color moment [24] Mean, standard deviation and
skewness of HSV

—–

RGB histogram [23] 64-bin normalized histogram of
RGB

bin-num = 64

HSV histogram [23] 64-bin normalized histogram of
HSV

bin-num = 64

color correlogram [10]
Co-occurrence of pixels with a given dist=1 or 3
distance and color level color-level=64

edge distribution histogram [13]

global-bin=1
local-bin=25

Global, local and semi-label edge horizon-bin=5
distribution with five filters vertical-bin=5

center-bin=1

Gabor wavelet transformation [17]

Uh = 0.4
Gabor wavelet Ul = 0.05
transformation for texture K = 6

S = 4

LBP [[20], [36]] Local descriptor of binary patterns Default parameter
values

LPQ [21] Local descriptor of phase quantiza-
tion

Default parameter
values

moment invariants [7] Shape descriptor —–

Tamura texture feature [25] Global descriptor of coarseness,
contrast, and directionality

—–

Haralick Texture Feature [9] Please refer to [9] —–

SIFT[16]
Scale-invariant numspatialbins=4
feature transform numorientbins=12

GFD [28]
Generic Fourier max-rad=4
descriptor max-ang=15
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for short to represents building, car, dog, human, mountain, and water. From
the training images, we generate 3000 sample blocks for training for every label
including background. These image blocks are used to train the AdaBoost model.

4 Experiment

In this section, we evaluate the proposed multi-space learning on the database.
We compare our algorithm with six state-of-art MLL algorithms, namely Ad-
aBoost.MH [22] which combines MCL with label ranking, back-propagation (BP)
for MLL (BP-MLL) [33] which modifies the error term of traditional BP, instance
differentiation (INSDIF) [35] which converts MLL into MIML upon differences
between an image from different label centroids, binary relevance SVM with lin-
ear kernel (LBRSVM), multi-label kNN (ML-KNN) [34] which combines MAP
principle with kNN, SVM with low-dimensional shared space named as MLLS
[11].

In the experiment, we assign 100 as maximum number of iterations for BP-
MLL, AdaBoost.MH, and also multi-class AdaBoost. Other parameters are ob-
tained via 3-fold cross-validation. The criteria of optimization in cross-validation
is F1-measure. We use three different aspects of criteria for evaluation, namely,
example-based, ranking-based and label-based criteria, including hamming loss,
one-error, coverage, ranking loss, average precision, together with micro-averaging
and macro-averaging recall, precision and F1.

Let H be a learned classifier, f denote the real-valued function associated
with H, and T = {t1, t2, . . . , tm} be the testing data set. Yi is the true label
for ti. The definitions for example-based and ranking-based criteria are listed as
follows:

hloss(H) =

∑m

i=1 |H(ti)∆Yi|

mq
, 1− err(f) =

Jargmaxy∈Lfy(ti) /∈ YiK

m
, (5)

cov(f) =

∑m

i=1 maxy∈Yi
rankf (ti, Yi)

m
− 1, (6)

rloss(f) =

∑m

i=1 |Si|

m
, Si = {(y1, y2)|fyi

(ti) 6 fy2(ti), (y1, y2) ∈ Yi × Ȳi}, (7)

avgprec(f) =
1

m

m∑

i=1

1

|Yi|

∑

y∈Yi

|S′
i|

rankf (ti, y)
, (8)

S′
i = {y

′ ∈ Yi|rankf (ti, y
′) 6 rankf (ti, y)}. (9)

TPl, FNl, and FPl denote true positive rate, false negative rate, and false posi-
tive rate for label l. Thus, micro-averaging and macro-averaging recall, precision,
and F1 are defined in the following way.

micro-rec =

∑q

l=1 TPl∑q

l=1(TPl + FNl)
, micro-prec =

∑q

l=1 TPl∑q

l=1(TPl + FPl)
, (10)
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macro-rec =
1

q

q∑

i=1

TPl
TPl + FNl

, macro-prec =
1

q

q∑

i=1

TPl
TPl + FPl

, (11)

micro-F1 = 2·
micro-rec×micro-prec

micro-rec+micro-prec
, macro-F1 = 2·

macro-rec×macro-prec

macro-rec+macro-prec
.

(12)
Table 3 and Table 4 show the comparison results. (-) means the smaller the
value is, the better the performance is; while (+) means the opposite. As can
be seen, the proposed MSL algorithm outperforms the other six algorithms in
several important criteria, including hamming loss, one-error, coverage, ranking
loss, average precision, micro-averaging F1 and macro-averaging F1.

For multi-label classification, not only the prediction with higher accuracy is
important, but also the ranking on the association between examples and labels
is vital. As other than thresholding, label ranking is another popular integration
strategy for prediction on multi-label data. Label-based criteria are borrowed
from the field of information retrieval, which reflect classifier performance ex-
cluding the imbalance factor from learning domain. The label-based criteria are
recall and precision. F1 measure shows the balance between recall and precision.
F1 is highly related to two factors. The first one is the absolute value of either
recall or precision. The second one is the difference between recall and preci-
sion. High-value of F1 means the values of precision and recall are both high.
Multi-label classification utilizes F1 as a crucial evaluation criterion via differ-
ent averaging strategies. Among them, micro-averaging and macro-averaging are
two common ones. The former describes the performance based on equal power
of every example, while the latter focuses on the equal power of every label to
generate F1 measure.

Table 3. Performance on Hamming loss, One-error, Coverage, Ranking loss, and Av-
erage precision

Hamming Loss One-Error Coverage Ranking Loss Average Precision
(-) (-) (-) (-) (+)

AdaBoost.MH 21.18 33.82 1.49 16.46 75.98
BP-MLL 27.45 23.72 1.68 23.26 73.48
INSDIF 17.18 24.31 1.23 11.61 83.48
LBRSVM 18.95 26.13 1.31 12.95 81.78
ML-KNN 16.34 24.45 1.25 12.04 83.77
MLLS 24.91 22.41 1.23 11.38 84.48
MSL 13.68 10.83 1.04 7.16 91.03

In addition to the evaluation showed above in Table 3 and Table 4, we change
the threshold values for prediction to draw precision-recall curves in Figure 2
and Figure 3. The micro-averaging and macro-averaging precision-recall curves
basically show how sensitive a classifier would be interfered by threshold change.
In summary, the larger the area under precision-recall curve (AUPRC) is, the
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Table 4. Performance on micro-averaging and macro-averaging recall, precision and
F1

macro-rec macro-prec macro-F1 micro-rec micro-prec macro-F1
(+) (+) (+) (+) (+) (+)

AdaBoost.MH 57.01 75.18 64.84 60.61 60.16 60.38
BP-MLL 77.63 48.51 59.71 78.52 49.04 60.37
INSDIF 60.65 75.93 67.43 62.21 69.96 65.86
LBRSVM 62.84 73.56 67.78 64.32 64.46 64.39
ML-KNN 61.67 72.95 66.84 62.91 72.19 67.22
MLLS 90.41 53.01 66.82 89.61 51.87 65.71
MSL 77.01 72.26 74.56 77.65 72.81 75.15

better the classifier is. The better here means more robust with the threshold
change. Overall, MSL method yields superior performance compared to the other
six MLL algorithms.

Fig. 2. micro-averaging precision-recall
curve

Fig. 3. macro-averaging precision-recall
curve

5 Conclusion

In this paper, we present an algorithm using training blocks extracted in training
images and image multi-space representations to generate a multi-space learning
method, which utilizes a multi-class AdaBoost to train a multi-class classifier. In
this sense, we try to transform image classification from a multi-label learning
problem to a multi-class learning problem. In addition to that, rather than us-
ing a predefined logic to integrate results from regions in multi-instance learning,
we derive a Markov random field model to integrate the normalized real-valued
outputs from AdaBoost. MRF-based multi-space learning maintains the con-
tent and spatial information in images. Hence, MRF-based integration is a more
advanced method to integrate results from different regions. Our algorithm is ex-



12 Lecture Notes in Computer Science: Authors’ Instructions

perimentally evaluated through a multi-label image database and proven highly
effective for image classification.
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