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Abstract. In this paper, we introduce a new problem, called Top-k SAT, that
consists in enumerating the Top-k models of a propositional formula. A Top-k
model is defined as a model with less than k models preferred to it with respect
to a preference relation. We show that Top-k SAT generalizes two well-known
problems: the partial Max-SAT problem and the problem of computing minimal
models. Moreover, we propose a general algorithm for Top-k SAT. Then, we give
the first application of our declarative framework in data mining, namely, the
problem of enumerating the Top-k frequent closed itemsets of length at least min
(FCIMk

min). Finally, to show the nice declarative aspects of our framework, we
encode several other variants of FCIMk

min into the Top-k SAT problem.
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1 Introduction

The problem of mining frequent itemsets is well-known and essential in data mining,
knowledge discovery and data analysis. It has applications in various fields and becomes
fundamental for data analysis as datasets and datastores are becoming very large. Since
the first article of Agrawal [1] on association rules and itemset mining, the huge num-
ber of works, challenges, datasets and projects show the actual interest in this problem
(see [2] for a recent survey of works addressing this problem). Important progress has
been achieved for data mining and knowledge discovery in terms of implementations,
platforms, libraries, etc. As pointed out in [2], several works deal with designing highly
scalable data mining algorithms for large scale datasets. An important problem of item-
set mining and data mining problems, in general, concerns the huge size of the output,
from which it is difficult for the user to retrieve relevant informations. Consequently,
for practical data mining, it is important to reduce the size of the output, by exploiting
the structure of the itemsets data. Computing for example, closed, maximal, condensed,
discriminative itemset patterns are some of the well-known and useful techniques. Most
of the works on itemset mining require the specification of a minimum support thresh-
old �. This constraint allows the user to control at least to some extent the size of the
output by mining only itemsets covering at least � transactions. However, in practice,
it is difficult for users to provide an appropriate threshold. As pointed out in [3], a too
small threshold may lead to the generation of a huge number of itemsets, whereas a too



high value of the threshold may result in no answer. In [3], based on a total ranking be-
tween patterns, the authors propose to mine the n most interesting itemsets of arbitrary
length. In [4], the proposed task consists in mining Top-k frequent closed itemsets of
length greater than a given lower bound min, where k is the desired number of frequent
closed itemsets to be mined, and min is the minimal length of each itemset. The au-
thors demonstrate that setting the minimal length of the itemsets to be mined is much
easier than setting the usual frequency threshold. Since the introduction of Top-k min-
ing, several research works investigated its use in graph mining (e.g. [5, 6]) and other
datamining tasks (e.g. [7, 8]). This new framework can be seen as a nice way to mine the
k preferred patterns according to some specific constraints or measures. Starting from
this observation, our goal in this paper is to define a general logic based framework for
enumerating the Top-k preferred patterns according to a predefined preference relation.

The notion of preference has a central role in several disciplines such as econ-
omy, operations research and decision theory in general. Preferences are relevant for
the design of intelligent systems that support decisions. Modeling and reasoning with
preferences play an increasing role in Artificial Intelligence (AI) and its related fields
such as nonmonotonic reasoning, planning, diagnosis, configuration, constraint pro-
gramming and other areas in knowledge representation and reasoning. For example, in
nonmonotonic reasoning the introduction of preferential semantics by Shoham [9] gives
an unifying framework where nonmonotonic logic is reduced to a standard logic with
a preference relation (order) on the models of that standard logic. Several models for
representing and reasoning about preferences have been proposed. For example, soft
constraints [10] are one of the most general way to deal with quantitative preferences,
while CP-net (Conditional Preferences networks) [11] is most convenient for qualitative
preferences. There is a huge literature on preferences (see [12–14] for a survey at least
from the AI perspective). In this paper we focus on qualitative preferences defined by
a preference relation on the models of a propositional formula. Preferences in propo-
sitional satisfiability (SAT) has not received a lot of attention. In [15], a new approach
for solving satisfiability problems in the presence of qualitative preferences on literals
(defined as partial ordered set) is proposed. The authors particularly show how DPLL
procedure can be easily adapted for computing optimal models induced by the partial
order. The issue of computing optimal models using DPLL has also been investigated
in SAT [16].
paper we propose a new framework, where the user is able to control through a param-
eter k the output by searching only for the top-k preferred models.

The contribution of this paper is twofold. Firstly, we propose a generic framework
for dealing with qualitative preferences in propositional satisfiability. Our qualitative
preferences are defined using a reflexive and transitive relation (preorder) over the mod-
els of a propositional formula. Such preference relation on models is first used to in-
troduce a new problem, called Top-k SAT, defined as the problem of enumerating the
Top-k models of a propositional formula. Here a Top-k model is defined as a model
with no more than k-1 models preferred to it with respect to the considered preference
relation. Then, we show that Top-k SAT generalizes the two well-known problems, the
partial Max-SAT problem and the problem of generating minimal models. We also de-
fine a particular preference relation that allows us to introduce a general algorithm for



computing the Top-k models.
Secondly, we introduce the first application of our declarative framework to data

mining. More precisely, we consider the problem of mining Top-k frequent closed item-
sets of minimum length min [17]. In this problem, the minimum support threshold usu-
ally used in frequent itemset mining is not known, while the minimum length can be set
to 0 if one is interested in itemsets of arbitrary length. In itemset mining, the notion of
Top-k frequent itemsets is introduced as an alternative to finding the appropriate value
for the minimum support threshold. It is also an elegant way to control the size of the
output. Consequently, itemset mining is clearly a nice application of our new defined
Top-k SAT problem. In this paper, we provide a SAT encoding and we show that com-
puting the Top-k closed itemsets of length at least min corresponds to computing the
Top-k models of the obtained propositional formula. Finally, to show the nice declar-
ative aspects of our framework, we encode several other variants of this data mining
problem as Top-k SAT problems. Finally, preliminary experiments on some datasets
show the feasibility of our proposed approach.

2 Preliminary Definitions and Notations

In this section, we describe the Boolean satisfiability problem (SAT) and some neces-
sary notations. We consider the conjunctive normal form (CNF) representation for the
propositional formulas. A CNF formula � is a conjunction of clauses, where a clause is
a disjunction of literals. A literal is a positive (p) or negated (¬p) propositional variable.
The two literals p and ¬p are called complementary. A CNF formula can also be seen
as a set of clauses, and a clause as a set of literals. Let us recall that any propositional
formula can be translated to CNF using linear Tseitin’s encoding [18]. We denote by
Var(�) the set of propositional variables occuring in �.

An interpretation M of a propositional formula � is a function which associates a
value M(p) 2 {0, 1} (0 corresponds to false and 1 to true) to the variables p in a set V

such that Var(�) ✓ V . A model of a formula � is an interpretation M that satisfies the
formula. The SAT problem consists in deciding if a given CNF formula admits a model
or not.

We denote by l̄ the complementary literal of l. More precisely, if l = p then l̄ is ¬p

and if l = ¬p then l̄ is p. For a set of literals L, L̄ is defined as {l̄ | l 2 L}. Moreover,
we denote by M (M is an interpretation over Var(�)) the clause

W
p2Var(�) s(p),

where s(p) = p if M(p) = 0, ¬p otherwise. Let � be a CNF formula and M an inter-
pretation over Var(�). We denote by M(�) the set of clauses satisfied by M. Let us
now consider a set X of propositional variables such that X ✓ Var(�). We denote by
M \ X the set of variables {p 2 X|M(p) = 1}. Moreover, we denote by M|X the
restriction of the model M to X .

3 Preferences and Top-k Models

Let � be a propositional formula and ⇤� the set of all its models. A preference relation
⌫ over ⇤� is a reflexive and transitive binary relation (a preorder). The statement M ⌫



M0 means that M is at least as preferred as M0. We denote by P (�,M,⌫) the subset
of ⇤� defined as follows:

P (�,M,⌫) = {M0 2 ⇤� | M0 �M}

where M0 �M means that M0 ⌫M holds but M ⌫M0 does not. It corresponds to
all models that are strictly preferred to M.

We now introduce an equivalence relation ⇡X over P (�,M,⌫), where X is a set
of propositional variables. It is defined as follows:

M0 ⇡X M00 iff M0 \X = M00 \X

Thus, the set P (�,M,⌫) can be partitioned into a set of equivalence classes by ⇡X ,
denoted by [P (�,M,⌫)]X . In our context, this equivalence relation is used to take
into consideration only a subset of propositional variables. For instance, we introduce
new variables in Tseitin’s translation [18] of propositional formula to CNF, and such
variables are not important in the case of some preference relations.

Definition 1 (Top-k Model). Let � be a propositional formula, M a model of �, ⌫ a

preference relation over the models of � and X a set of propositional variables. M is

a Top-k model w.r.t. ⌫ and X iff |[P (�,M,⌫)]X |  k � 1.

Let us note that the number of the Top-k models of a formula is not necessarily equal
to k. Indeed, it can be strictly greater or smaller than k. For instance, if a formula is
unsatisfiable, then it does not have a Top-k model for any k � 1. Furthermore, if the
considered preference relation is a total order, then the number of Top-k models is al-
ways smaller than or equal to k.

It is easy to see that we have the following monotonicity property: if M is a Top-k
model and M0 ⌫M, then M0 is also a Top-k model.

Top-k SAT problem. Let � be propositional formula, ⌫ a preference relation over
the models of �, X a set of propositional variables and k a strictly positive integer. The
Top-k SAT problem consists in computing a set L of Top-k models of � with respect to
⌫ and X satisfying the two following properties:

1. for all M Top-k model, there exists M0 2 L such that M ⇡X M0; and
2. for all M and M0 in L, if M 6= M0 then M 6⇡X M0.

The two previous properties come from the fact that we are only interested in the truth
values of the variables in X . Indeed, the first property means that, for all Top-k model,
there is a model in L equivalent to it with respect to⇡X . Moreover, the second property
means that L does not contain two equivalent Top-k models.

In the following definition, we introduce a particular type of preference relations, called
�-preference relation, that allows us to introduce a general algorithm for computing
Top-k models.



Definition 2. Let � be a formula and ⌫ a preference relation on the models of �.

Then ⌫ is a �-preference relation, if there exists a polytime function f⌫ from Boolean

interpretations to the set of CNF formulae such that, for all M model of � and for all

M0
Boolean interpretation, M0

is a model of � ^ f⌫(M) iff M0
is a model of � and

M 6�M0
.

Note that, given a model M of a CNF formula �, f⌫(M) is a formula such that when
added to � together with M, the models of the resulting formula are different from
M and they are at least as preferred as M. Intuitively, this can be seen as a way to
introduce a lower bound during the enumeration process. From now, we only consider
�-preference relations.

3.1 Top-k SAT and Partial MAX-SAT

In this section, we show that the Top-k SAT problem generalizes the Partial MAX-
SAT problem (e.g. [19]). In Partial MAX-SAT each clause is either relaxable (soft) or
non-relaxable (hard). The objective is to find an interpretation that satisfies all the hard
clauses together with the maximum number of soft clauses. The MAX-SAT problem is
a particular case of Partial MAX-SAT where all the clauses are relaxable.

Let � = �h ^ �s be a partial MAX-SAT instance such that �h is the hard part and �s

the soft part. The relation denoted by⌫�s corresponds to preference relation defined as
follows: for all M and M0 models of �h defined over Var(�h ^ �s), M ⌫�s M0 if
and only if |M(�s)| � |M0(�s)|.

Note that ⌫�s is a �-preference relation. Indeed, we can define f⌫�s
as follows:

f⌫�s
(M) = (

^

C2�s

pC $ C) ^
X

C2�s

pC � |M(�s)|

where pC for C 2 �s are fresh propositional variables.
The Top-1 models of �h with respect to ⌫�s and Var(�) correspond to the set of

all solutions of � in Partial Max-SAT. Naturally, they are the most preferred models
with respect to ⌫�s , and that means they satisfy �h and satisfy the maximum number
of clauses in �s. Thus, the Top-k SAT problem can be seen as a generalization of Partial
MAX-SAT.

The formula f⌫�s
(M) involves the well-known cardinality constraint (0/1 linear in-

equality). Several polynomial encodings of this kind of constraints into a CNF formula
have been proposed in the literature. The first linear encoding of general linear inequal-
ities to CNF has been proposed by Warners [20]. Recently, efficient encodings of the
cardinality constraint to CNF have been proposed, most of them try to improve the
efficiency of constraint propagation (e.g. [21, 22]).

3.2 Top-k SAT and X-minimal Model Generation Problem

Let M and M0 be two Boolean interpretations and X a set of propositional variables.
Then, M is said to be smaller than M0 with respect to X , written M �X M0, if



Algorithm 1: Top-k
Input: a CNF formula �, a preorder relation⌫, an integer k � 1, and a set X of Boolean variables
Output: A set of Top-k models L

1 �0  �;
2 L ;; /

*

Set of all Top-k models

*

/

3 while (solve(�0)) do /

*

M is a model of �0
*

/

4 if (9M0 2 L.M ⇡X M0 & M �M0) then
5 replace(M,M0,L);
6 else if (8M0 2 L.M 6⇡X M0 & |preferred(M,L)| < k) then
7 S  min top(k,L);
8 add(M,L);
9 remove(k,L);

10 S  min top(k,L) \ S;
11 �0  �0 ^

V
M02S f⌫(M0);

12 else
13 �0  �0 ^ f⌫(M)

14 �0  �0 ^M;
15 return L;

M \ X ✓ M0 \ X . We now consider �X as a preference relation, i.e., M �X M0

means that M is at least as preferred as M0.

We now show that �X is a �-preference relation. We can define f�X as follows:

f�X (M) = (
_

p2M\X

p) _
^

p02X\M

p

0

Absolutely, M0 is a model of a formula �^M^f�X (M) if and only if M0 is a model
of �, M0 6= M, and either M0 \ X = M \ X or (M \ X)\(M0 \ X) 6= ;. The
two previous statements mean that M 6�X M0. In fact, if M0 satisfies

V
p02X\M p

0,
then M0\X ✓M\X holds. Otherwise, M0 satisfies

W
p2M\X p and that means that

(M\X)\(M0\X) 6= ;. This latter statement expresses that either M0\X ⇢M\X

or M and M0 are incomparable with respect to �X .
Let � be a propositional formula, X a set of propositional variables and M a model

of �. ThenM is said to be an X-minimal model of � if there is no model strictly smaller
than M with respect to �X . In [23], it was shown that finding an X-minimal model is
P

NP [O(log(n))]-hard, where n is the number of propositional variables.
The set of all X-minimal models corresponds to the set of all top-1 models with

respect to �X and Var(�). Indeed, if M is a top-1 model, then there is no model
M0 such that M0 �X M, and that means that M is an X-minimal model. In this
context, let us note that computing the set of Top-k models for k � 1 can be seen as a
generalization of X-minimal model generation problem.

3.3 An Algorithm for Top-k SAT

In this section, we describe our algorithm for computing Top-k models in the case of
the �-preference relations (Algorithm 1). The basic idea is simply to use the formula
f⌫(M) associated to a model M to obtain models that are at least as preferred as M.



This algorithm takes as input a CNF formula �, a preference relation ⌫, a strictly posi-
tive integer k, and a set X of propositional variables allowing to define the equivalence
relation ⇡X . It has as output a set L of Top-k models of � satisfying the two properties
given in the definition of the Top-k SAT problem.

Algorithm Description In the while-loop, we use lower bounds for finding optimal
models. These lower bounds are obtained by using the fact that the preorder relation
considered is a �-preference relation. In each step, the lower bound is integrated by
using the formula: ^

M02S

f⌫(M0)

– Lines 4 – 5. Let us first mention that the procedure replace(M,M0
,L) re-

places M0 with M in L. We apply this replacement because there exists a model
M0 in L which is equivalent to M0 and M allows to have a better bound.

– Lines 6 – 11. In the case where M is not equivalent to any model in L and the
number of models in L preferred to it is strictly less than k (|preferred(M,L)|
< k), we add M to L (add(M,L)). Note that S contains first the models of L
before adding M that have exactly k�1 models preferred to them in this set. After
adding M to L, we remove from L the models that are not Top-k, i.e., they have
more than k � 1 models in L that are strictly preferred to them (remove(k,L)).
Next, we modify the content of S. Note that the elements of S before adding M are
used as bounds in the previous step. Hence, in order to avoid adding the same bound
several times, the new content of S corresponds to the models inL that have exactly
k � 1 models preferred to them in L (min top(k,L)) deprived of the elements of
the previous content of S. In line 11, we integrate lower bounds in �

0 by using
the elements of S. Indeed, for all model M of a formula �

0 ^
V
M02S f⌫(M0),

M0 6�M holds, for any M0 2 S.
– Lines 12 – 13. In the case whereM is not a Top-k model, we integrate its associated

lower bound.
– Line 14. This instruction enables us to avoid finding the same model in two differ-

ent steps of the while-loop.

Proposition 1. Algorithm 1 (Top-k) is correct.

Proof. The proof of the partial correctness is based on the definition of the �-preference
relation. Indeed, the function f⌫ allows us to exploit bounds to systematically improve
the preference level of the models. As the number of models is bounded, adding the
negation of the found model at each iteration leads to an unsatisfiable formula. Conse-
quently the algorithm terminates.

As explained in the algorithm description, we use lower bounds for finding optimal
models. These bounds are obtained by using the function f⌫.

4 Total Preference Relation

We here provide a second algorithm for computing Top-k models in the case of the total
�-preference relations (Algorithm 2). Let us recall that a �-preference relation⌫ is total



if, for all models M and M0, we have M ⌫M0 or M0 ⌫M.

Our algorithm in this case is given in Algorithm 2:

– Lines 3 – 8. In this part, we compute a set L of k different models of � such that,
for all M,M0 2 L with M 6= M0, we have M 6⇡X M0. Indeed, if M is a model
of � and M0 is a model of � ^M1

|X ^ · · · ^Mn
|X ^M|X , then it is trivial that

M 6⇡X M0.

– Line 9. Note that the set min(L) corresponds to the greatest subset of L satisfy-
ing the following property: for all M 2 min(L), there is no model in L which is
strictly less preferred than M. The assignment in this line allows us to have only
models that are at least as preferred as an element of min(L). Indeed, we do not
need to consider the models that are less preferred than the elements of min(L)
because it is clear that they are not Top-k models. Note that all the elements of
min(L) are equivalent with respect to the equivalence relation ⇡ induced by ⌫,
since this preorder relation is total.

– Line 10 – 21. This while-loop is similar to that in Algorithm 1 (Top-k). We only
remove the condition |preferred(M,L)| < k and replace min top(k,L) with
min(L). In fact, since the preference relation⌫ is a total preorder, it is obvious that
we have |preferred(M,L)| < k because of the lower bounds added previously.
Moreover, as ⌫ is total, the set of removed models by remove(k,L) (Line 16) is
either the empty set or min(L).

Proposition 2. Algorithm 2 (Top-k

T
) is correct.

Correctness of this algorithm is obtained from that of the algorithm Top-k and the fact
that the considered �-preference relation is total.

5 An Application of Top-k SAT in Data Mining

The problem of mining frequent itemsets is well-known and essential in data mining [1],
knowledge discovery and data analysis. Note that several data mining tasks are closely
related to the itemset mining problem such as the ones of association rule mining, fre-
quent pattern mining in sequence data, data clustering, etc. Recently, De Raedt et al. in
[24, 25] proposed the first constraint programming (CP) based data mining framework
for itemset mining. This new framework offers a declarative and flexible representation
model. It allows data mining problems to benefit from several generic and efficient CP
solving techniques. This first study leads to the first CP approach for itemset mining
displaying nice declarative opportunities.

In itemset mining problem, the notion of Top-k frequent itemsets is introduced as an
alternative to finding the appropriate value for the minimum support threshold. In this
section, we propose a SAT-based encoding for enumerating all closed itemsets. Then we
use this encoding in the Top-k SAT problem for computing all Top-k frequent closed
itemsets.



Algorithm 2: Top-kT

Input: a CNF formula �, a total preorder relation⌫, an integer k � 1,and a set X of Boolean variables
Output: the set of all Top-k models L

1 �0  �;
2 L ;; /

*

Set of all Top-k models

*

/

3 for (i 0 to k � 1) do
4 if (solve(�0)) then
5 add(M,L); /

*

M is a model of �0
*

/

6 �0  �0 ^M|X ;
7 else
8 return L;
9 �0  � ^

V
M2LM ^

V
M02min(L) f⌫(M0);

10 while (solve(�0)) do /

*

M is a model of �0
*

/

11 if (9M0 2 L.M ⇡X M0 & M �M0) then
12 replace(M,M0,L);
13 else if (8M0 2 L.M 6⇡X M0) then
14 S  min(L);
15 add(M,L);
16 remove(k,L);
17 S  min(L) \ S;
18 �0  �0 ^

V
M02S f⌫(M0);

19 else
20 �0  �0 ^ f⌫(M)

21 �0  �0 ^M;
22 return L;

5.1 Problem Statement

Let I be a set of items. A transaction is a couple (tid, I) where tid is the transac-

tion identifier and I is an itemset, i.e., I ✓ I. A transaction database is a finite set of
transactions over I where, for all two different transactions, they do not have the same
transaction identifier. We say that a transaction (tid, I) supports an itemset J if J ✓ I .

The cover of an itemset I in a transaction database D is the set of transaction iden-
tifiers in D supporting I: C(I,D) = {tid | (tid, J) 2 D, I ✓ J}. The support of an
itemset I in D is defined by: S(I,D) =| C(I,D) |. Moreover, the frequency of I in D
is defined by: F(I,D) = S(I,D)

|D| .

For instance, consider the following transaction database D:

tid itemset
1 a, b, c, d

2 a, b, e, f

3 a, b, c, m

4 a, c, d, f, j

5 j, l

6 d

7 d, j

In this database, we have S({a, b, c},D) = |{1, 3}| = 2 and F({a, b},D) = 3
7 .



Let D be a transaction database over I and � a minimum support threshold. The fre-

quent itemset mining problem consists in computing the following set:

FIM(D, �) = {I ✓ I | S(I,D) � �}

Definition 3 (Closed Itemset). Let D be a transaction database (over I) and I an

itemset (I ✓ I) such that S(I,D) � 1. I is closed if for all itemset J such that I ⇢ J ,

S(J,D) < S(I,D).
One can easily see that all frequent itemsets can be obtained from the closed frequent
itemsets by computing their subsets. Since the number of closed frequent itemsets is
smaller than or equal to the number of frequent itemsets, enumerating all closed item-
sets allows us to reduce the size of the output.

In this work, we mainly consider the problem of mining Top-k frequent closed item-
sets of minimum length min. In this problem, we consider that the minimum support
threshold � is not known.
Definition 4 (FCIMk

min). Let k and min be strictly positive integers. The problem

of mining Top-k frequent closed itemsets consists in computing all closed itemsets of

length at least min such that, for each one, there exist no more than k � 1 closed

itemsets of length at least min with supports greater than its support.

5.2 SAT-based Encoding for FCIMk

min

We now propose a Boolean encoding of FCIMk
min. Let I be a set of items, D =

{(0, ti), . . . , (n � 1, tn�1)} a transaction database over I, and k and min are strictly
positive integers. We associate to each item a appearing in D a Boolean variable pa.
Such Boolean variables encode the candidate itemset I ✓ I, i.e., pa = true iff a 2 I .
Moreover, for all i 2 {0, . . . , n � 1}, we associate to the i-th transaction a Boolean
variable bi.

We first propose a constraint allowing to consider only the itemsets of length at least
min. It corresponds to a cardinality constraint:

X

a2I
pa � min (1)

We now introduce a constraint allowing to capture all the transactions where the candi-
date itemset does not appear:

n�1̂

i=0

(bi $
_

a2I\ti

pa) (2)

This constraint means that bi is true if and only if the candidate itemset is not in ti.

By the following constraint, we force the candidate itemset to be closed:

^

a2I
(
n�1̂

i=0

bi ! a 2 ti) ! pa (3)



Intuitively, this formula means that if S(I) = S(I [ {a}) then a 2 I holds. Thus, it
allows us to obtain models that correspond to closed itemsets.

In this context, computing the Top-k closed itemsets of length at least min corresponds
to computing the Top-k models of (1), (2) and (3) with respect to⌫B and X = {pa|a 2
I}, where B = {b0, . . . , bn�1} and⌫B is defined as follows: M ⌫B M0 if and only if
|M(B)|  |M0(B)|. This preorder relation is a �-preference relation. Indeed, one can
define f⌫B as follows:

f⌫B (M) = (
n�1X

i=0

bi  |M(B)|)

Naturally, this formula allows us to have models corresponding to closed itemsets with
supports greater or equal to the support of the closed itemset obtained from M.

5.3 Some Variants of FCIMk

min

In this section, our goal is to illustrate the nice declarative aspects of our proposed
framework. To this end, we simply consider slight variations of the problem, and show
that their encodings can be obtained by simple modifications.

Variant 1 (FCIMk

max

) In this variant, we consider the problem of mining Top-k
closed itemsets of length at most max. Our encoding in this case is obtained by adding
to (2) and (3) the following constraint:

X

a2I
pa  max (4)

In this case, we use the �-preference relation ⌫B defined previously.

Variant 2 (FCIMk

�

) Let us now propose an encoding of the problem of mining Top-
k closed itemsets of supports at least � (minimal support threshold). In this context, a
Top-k closed itemset is a closed itemset such that, for each one, there exist no more
than k - 1 closed itemsets of length greater than its length. Our encoding in this case is
obtained by adding to (2) and (3) the following constraint:

nX

i=0

bi � � (5)

The preference relation used in this case is ⌫I defined as follows: M ⌫I M0 if and
only if |M(I)| � |M0(I)|. It is a �-preference relation because f⌫I can be defined as
follows:

f⌫I (M) =
X

a2I

pa � |M(I)|



Variant 3 (FMIMk

�

) We consider here a variant of the problem of mining maximal
frequent itemsets. It consists in enumerating Top-k maximal itemsets of supports at
least � and for each one, there exist no more than k - 1 maximal itemsets of length
greater than its length. Our encoding of this problem consists of (2) and (5). We use in
this case the �-preference relation ⌫I .

6 Experiments

This section evaluates the performance of our Algorithm for Top-k SAT empirically.
The primary goal is to assess the declarativity and the effectiveness of our proposed
framework. For this purpose, we consider the problem FCIMk

min of computing the
Top-k frequent closed itemsets of minimum length min described above.
For our experiments, we implemented the Algorithm 1 (Top-k) on the top of the state-
of-the-art SAT solver MiniSAT 2.2 1. In our SAT encoding of FCIMk

min, we used the
sorting networks, one of the state-of-the-art encoding of the cardinality constraint (0/1
linear inequality) to CNF proposed in [26].

We considered a variety of datasets taken from the FIMI repository 2 and CP4IM 3.
All the experiments were done on Intel Xeon quad-core machines with 32GB of RAM
running at 2.66 Ghz. For each instance, we used a timeout of 4 hours of CPU time.
The table 1 details the characteristics of the different transaction databases (D). The first
column mentions the name of the considered instance. In the second and third column,
we give the size of D in terms of number of transactions (#trans) and number of items
(#items) respectively. The fourth column shows the density (dens) of the transaction
database, defined as the percentage of 1’s in D. The panel of datasets ranges from
sparse (e.g. mushroom) to dense ones (e.g. Hepatitis). Finally, in the two last columns,
we give the size of the CNF encoding (#vars, #clauses) of FCIMk

min. As we can see,
our proposed encoding leads to CNF formula of reasonable size. The maximum size is
obtained for the instance connect (67 815 variables and 5 877 720 clauses).

In order to analyze the behavior of our Top-k algorithm on FCIMk
min, we con-

ducted two kind of experiments. In the first one, we set the minimum length min of
the itemsets to 1, while the value of k is varied from 1 to 10000. In the second experi-
ment, we fix the parameter k to 10, and we vary the minimal length min from 1 to the
maximum size of the transactions.

Results for a representative set of datasets are shown in Figure 1 (log scale). The
other instances present similar behavior. As expected, the CPU time needed for com-
puting the Top-k models increase with k. For the connect dataset, our algorithm fails to
compute the Top-k models for higher value of k > 1000 in the time limit of 4 hours.
This figure clearly shows that finding the Top-k models (the most interesting ones) can
be computed efficiently for small values of k. For example, on all datasets the top-10
models are computed in less than 100 seconds of CPU time. When a given instance
contains a huge number of frequent closed itemsests, the Top-k problem offers an alter-
native to the user to control the size of the output and to get the most preferred models.

1 MiniSAT: http://minisat.se/
2 FIMI: http://fimi.ua.ac.be/data/
3 CP4IM: http://dtai.cs.kuleuven.be/CP4IM/datasets/



Table 1. Characteristics of the datasets

instance #trans #items dens(%) #vars #clauses
zoo-1 101 36 44 173 2196
Hepatitis 137 68 50 273 4934
Lymph 148 68 40 284 6355
audiology 216 148 45 508 17575
Heart-cleveland 296 95 47 486 15289
Primary-tumor 336 31 48 398 5777
Vote 435 48 33 531 14454
Soybean 650 50 32 730 22153
Australian-credit 653 125 41 901 48573
Anneal 812 93 45 990 39157
Tic-tac-toe 958 27 33 1012 18259
german-credit 1000 112 34 1220 73223
Kr-vs-kp 3196 73 49 3342 121597
Hypothyroid 3247 88 49 3419 143043
chess 3196 75 49 3346 124797
splice-1 3190 287 21 3764 727897
mushroom 8124 119 18 8348 747635
connect 67558 129 33 67815 5877720

In Figure 2, we show the results obtained on the hardest instance from Table 1. On
splice-1, the algorithm fails to solve the problem under the time limit for k > 20.
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Fig. 1. FCIMk
1 results for different values of k

In our second experiment, our goal is to show the behavior of our algorithm when
varying the minimum length. In Figure 3, we give the results obtained on the three
representative datasets (mushroom, connect and chess) when k is fixed to 10 and min

is varied from 1 to the maximum size of the transactions. The problem is easy at both the
under-constrained (small values of min - many Top-k models) and the over-constrained
(high values of min - small number of Top-k models) regions. For the connect dataset,
the algorithm fails to solve the problem for min > 15 under the time limit. For all the
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other datasets, the different curves present a pick of difficulty for medium values of the
minimal length of the itemsets.
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7 Conclusion and Perspectives

In this paper, we introduce a new problem, called Top-k SAT, defined as the problem of
enumerating the Top-k models of a propositional formula. A Top-k model is a model
having no more than k-1 models preferred to it with respect to the considered preference



relation. We also show that Top-k SAT generalizes the two well-known problems: the
partial Max-SAT problem and the problem of computing minimal models. A general
algorithm for this problem is proposed and evaluated on the problem of enumerating
top-k frequent closed itemsets of length at least min.

While our new problem of computing the Top-k preferred models in Boolean satis-
fiability is flexible and declarative, there are a number of questions that deserve further
research efforts. One direction is the study of (preferred/Top-k) model enumeration al-
gorithm so as to achieve a further speedup of the runtime. This fundamental problem
has not received a lot of attention in the SAT community, except some interesting works
on enumerating minimal/preferred models.
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