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Abstract. The theory of relevance is an approach for redundancy avoid-
ance in labeled itemset mining. In this paper, we adapt this theory to the
setting of sequential patterns. While in the itemset setting it is suggestive
to use the closed patterns as representatives for the relevant patterns, we
argue that due to different properties of the space of sequential patterns,
it is preferable to use the minimal generator sequences as representa-
tives, instead of the closed sequences. Thereafter, we show that we can
efficiently compute the relevant sequences via the minimal generators in
the negatives. Unlike existing iterative or post-processing approaches for
pattern subset selection, our approach thus results both in a reduction
of the set of patterns and in a reduction of the search space – and hence
in lower computational costs.

1 Introduction

Sequential pattern mining is concerned with finding frequent subsequences in
sequence databases [1]. These subsequences, or sequential patterns, have many
real-world applications. For example, they can be used to characterize sequences
of credit card transactions having high fraud probability, or DNA subsequences
having particular properties.

Like most pattern mining tasks, sequential pattern mining suffers from the
problem that it mostly comes up with huge amounts of patterns. This problem is
well-know in the pattern mining community, and various approaches have been
proposed to cope with this issue (e.g. [2–5]).

In this paper, we take one particular approach, namely the theory of relevance
[6, 7], and adapt it to the case of sequential data. Originally, the theory of rele-
vance was developed in the setting of labeled itemset data, and assumes that one
is interested in characterizing a particular target class. The basic idea is related
to the concept of Pareto domination: remove all itemsets which are dominated
by some other itemset, meaning that the dominated itemset is strictly inferior
in characterizing the target class. More precisely, an itemset is considered as
dominated if there is another, dominating itemset which supports at least all
positives (i.e. target-class sequences) supported by the dominated itemset, but
no additional negative (i.e. non target-class sequences).

The theory of relevance not only reduces the size of the resulting set of item-
sets, but also allows for efficient algorithms. Unlike iterative or post-processing
approaches, the relevant itemsets can be collected by traversing, once only, a



small subset of all itemsets. The foundation for these algorithms is a set of
properties that relate the relevant itemsets to the itemsets that are closed in a
particular subset of the data, namely the positives.

label sequence
+ abc
+ acb
- b
- c

Fig. 1. In this sequence database, the
sequences a, ab and ac have the same
support set: while the first sequence is a
(minimal) generator, the other two se-
quences are closed. Applying the idea
of domination to this example, we see
that all sequences but the three above-
mentioned are dominated: for example,
the sequence b is dominated by a, be-
cause b supports a superset of the neg-
atives supported by a but the same set
of positives. In our approach, only the
minimal generator a will be kept.

The adaptation of the theory of
relevance to sequential data raises in-
teresting challenges. These are due
to the different characteristics of the
space of sequential patterns, com-
pared with the space of itemsets. One
well-known difference, illustrated in
Figure 1, is that the closed sequences
are no unique representatives of their
equivalence class. This is unlike in the
itemset setting, where the closed item-
sets are used as unique representa-
tives for the relevant itemsets [8]. The
different characteristics of sequential
patterns makes the use of closed (se-
quential) patterns much less sugges-
tive for this new setting. As we will
show, there are other important dif-
ferences (for example, the relevance
of a sequence cannot be checked by
considering its generalizations, unlike
in the setting of itemsets). Altogether,
we make the following contributions:

– We show that if the concept of domination is transfered from itemsets to
sequences, several important properties no longer hold. As a consequence,
the standard algorithmic approach cannot be applied to find the relevant
sequences (Section 4.2);

– We propose to use generators as representatives for the relevant sequences,
instead of closed sequences. Besides the obvious advantage of shorter descrip-
tions, this allows dealing efficiently with maximum pattern length constraints
(Section 4.3);

– We show that our new definition of relevance has the consequence that the
relevant sequences are a subset of the minimal generator sequences in the
negatives (Section 5.1);

– Subsequently, we describe how this connection can be turned into an efficient
algorithm (Section 5.2);

– Finally, we experimentally investigate the impact of our new relevance cri-
terion on the number of patterns and the computational costs (Section 6).

The rest of this paper is structured as follows: After discussing related work in
Section 2 and introducing our notation in Section 3, we present the contributions
listed above, before we conclude in Section 7.



2 Related Work

Sequential pattern mining was first considered by Agrawal and Srikant [1]. The
notions closed pattern, minimal generator pattern etc. have been transfered from
itemset data to the setting of sequences, and different algorithms have been
proposed to find the closed sequences [9, 10], respectively the minimal generator
sequences [11, 12].

While the use of closed patterns resp. minimal generators reduces the num-
ber of patterns, the outcome can still be huge. A variety of pattern selection
approaches have been proposed to cope with this issue. Most of these approaches
are either post-processing or iterative solutions. The post-processing approaches
expect, as input, a set of patterns, from which they choose a subset, typically in
a greedy fashion [2, 4]. The iterative approaches, on the other hand, run a new
search in every iteration; The different runs assess the pattern quality differently,
taking into account the set of patterns already collected [13–15, 5]. As all these
approaches rely, somehow, on an underlying mining algorithm, they are no alter-
native to our approach but could, instead, be combined with our approach: that
is, for labeled sequential data they could rely on our algorithm to enumerate the
candidate patterns.

Other approaches exist that reduce the set of patters by relying strongly on
the properties and operations that can be performed on itemset data [3, 16]. As
these operations are not directly applicable to sequences, there is no easy way
to transfer these approaches to the setting of sequential patterns (Note that the
theory of relevance considered here falls into this category of approaches).

Different approaches have been proposed to define a closure operator in a
sequential data setting. However, none of these approaches is directly applica-
ble to our setting, as they all consider different patterns families, which are only
connected via some post-processing to the (classical) sequential patterns we con-
sider. In particular, Garriga has proposed a new closure operator, which however
is not defined on individual sequential patterns, but on sets of sequential pat-
terns. While this approach allows for advanced summarization [17], it relies on
a classical closed sequential pattern miner to produce the patterns to be post-
processed respectively summarized. Räıssi et al. [18] presents a similar approach,
which also considers sets of sequences instead of individual sequences. Finally,
Tatti et al. [19] proposed a new notion of closedness, called i-closed. Unlike us,
they don’t consider sequence databases but consider the episode mining setting
(where frequency is defined in terms of sliding windows over a single sequence)
and consider patterns taking the form of directed acyclic graphs. Above all, the
computation of i-closed episodes is only the first step: the i-closed episodes are
a superset of the classical closed episodes, from which the closed episodes must
then be computed in a second step.

3 Preliminaries

In this section, we review the standard notions from itemset and sequential
pattern mining, which will then be used in the remainder of this paper.



3.1 Itemsets, Closed Patterns and Minimal Generators

As the theory of relevance has been defined in the scope of itemsets, we will first
review the notions from itemset and closed pattern mining [20].

Itemsets and Itemset Databases An itemset over an alphabet Σ is a subset of
Σ. A labeled dataset DB over an alphabet Σ is a collection of records (l, I),
where l is a label and I is an itemset. Given a database DB and an itemset P,
the support set of P in a dataset DB, denoted by DB[P], is defined as the set of
records r = (l, I) ∈ DB such that P is a subset of I. The support of an itemset
is the size of its support set.

Positives, Negatives, True Positives etc. In the rest of this paper we assume a
binary setting where the set of classes consists of “+” and “-”. We call the subset
of “+”-labeled records the positives. Similarly, we call the “-”-labeled records the
negatives. The term true positives, denoted by TP(DB,P), refers to the support
set of P in the positives. The false positives, FP(DB,P), are defined analogously
on the negatives.

Equivalence Classes, Closed Itemsets and Generators If two itemsets have the
same support set, then the two are said to be equivalent. The space of item-
sets can thus be partitioned into equivalence classes: all itemsets with the same
support set belong to the same equivalence class. Within an equivalence class,
there are two interesting subsets of itemsets: the minimal generators and the
closed itemsets. The minimal generators are the minimal members of an equiva-
lence class, meaning that any true generalization (i.e. sub-itemset) has a strictly
higher support in the dataset. The closed itemsets are their counterpart: they are
maximal members of the equivalence class, meaning that any true specialization
(i.e. super-itemset) has strictly lower support.

3.2 The Theory of Relevance

We will now turn to the theory of relevance [6–8].

Domination and Relevance The basic idea of the theory of relevance is to reduce
the number of itemsets by removing itemsets that are irrelevant for the purpose of
characterizing the target class, which by convention is the “+” class. An itemset
is considered to be irrelevant if there is another itemset, called the dominating
itemset, which allows characterizing the target class at least as good as the
former (dominated) itemset. Formally:

Definition 1. The itemset P dominates the itemset Pirr in dataset DB iff (i)
TP(DB,P) ⊇ TP(DB,Pirr) and (ii) FP(DB,P) ⊆ FP(DB,Pirr).

Note that it is possible that two itemsets dominate each other, however only in
the case that they belong to the same equivalence class. Given that for itemsets
there is exactly one closed itemset in every equivalence class, the closed itemsets
can be used as unique representatives. Garriga et al. [8] thus define the relevant
itemsets as follows:



Definition 2. Itemset P is relevant in database DB iff (i) P is closed and (ii)
there is no itemset having a different support set that dominates P (in DB).

The Connection to Closed-on-the-Positives Garriga et al. [8], have shown that
when searching for relevant itemsets, it is sufficient to consider only itemsets
that are closed on the positives, that is, itemsets that are closed in the subset of
the positively labeled records:

Proposition 1 ([8]) The space of relevant itemsets consists of all itemsets Prel

satisfying the following:

– Prel is closed on the positives, and
– there is no generalization P ( Prel closed on the positives such that |FP(DB,P)| =
|FP(DB,Prel)|.

The above proposition provides an elegant way to compute the relevant itemsets,
sketched in Algorithm 1.

Algorithm 1 CPOS Relevant Itemset Miner

Input : an itemset database DB
Output : the relevant itemsets in DB

1: collect all closed-on-the-positive itemsets (using some closed itemset mining algo-
rithm, e.g. [21]).

2: remove all itemsets having a (closed-on-the-positives) generalization with the same
negative support.

3.3 Sequences and Sequence Databases

We will now review the most important notions from sequence mining [1].

Sequences and Sequence Databases A sequence over a set of items Σ is a sequence
of items i1, . . . , il, ii ∈ Σ. The length of the sequence is the number of items in
the sequence. A sequence Sa = a1, . . . , an is said to be contained in another
Sb = b1, . . . bm, denoted by Sa v Sb, if ∃i1, . . . in such that 1 ≤ i1 < · · · < in ≤ m
and a1 = bi1 , . . . , an = bin . We also call Sa a generalization of Sb.

A sequence database SDB is a collection of labeled sequences. A labeled se-
quence is a tuple (l,S), where S is a sequence and l a label – i.e, “+” or “-”.
Again, we call the subset of “+”-labeled sequences the positives. Similarly we
call the “-”-labeled sequences the negatives.

The support set of a sequence S in a sequence database SDB, denoted by
SDB[S], consists of all labeled sequences in SDB that contain S. Here, a labeled
sequence (l,S) contains a sequence Sa iff Sa v S. Again, the term true posi-
tives, denoted by TP(SDB,S), refers to the support set of S in SDB’s positives.
FP(SDB,S) is defined analogously on the negatives. Finally, the support denotes
the size of the support set.



Patterns, Closed Patterns and Minimal Generators In the rest of this paper,
we will use the general term pattern to refer to either an itemset or a sequence.
In general, patterns have a support set (wrt. a given database), and moreover
there is a partial generalization order between patterns (defined via the subset
relation for itemsets, resp. the contained relation for sequences).

Based upon these generalized definitions of support set and generalization,
the terms closed and minimal generator from Section 3.1 can be carried over to
sequences, and can hence be applied to both types of patterns.

4 Relevant Sequences

We will now adapt the definition of relevance to sequential data. While is is
straightforward to transfer the concept of domination to sequential patterns,
defining relevance will raise subtle issues.

4.1 Domination between Sequences

Unlike the original definition (Definition 1), our definition of domination between
sequential patterns explicitly distinguishes between weak and strong domination.
This will be useful in situations where two different patterns dominate each other
circularly (in the original definition).

Definition 3. The sequence Sd weakly dominates the sequence S iff

– TP(SDB,Sd) ⊇ TP(SDB,S), and
– FP(SDB,Sd) ⊆ FP(SDB,S).

Moreover, Sd strongly dominates S iff Sd weakly dominates S and SDB[Sd] 6=
SDB[S].

4.2 Relevant Sequences: Problems and Differences to the Itemset
Setting

While we directly carried over the definition of domination to sequential pat-
terns, our proposed definition of relevant sequences will differ from the definition
used in the setting of itemsets. This is due do the fact that several properties
that hold in the space of itemsets do not transfer to the space of sequences.

One main issue is the choice of representatives for the patterns that are
not strongly dominated. In the itemset setting, Garriga et al. chose to use the
closed itemsets as representatives. In the itemset setting, this is very suggestive:
it provides unique representatives and allows for efficient computation. In this
section, we will argue that in the sequential setting, the use of closed patterns as
representatives is much less appealing. Beside the issue that there can be several
equivalent closed sequences (as illustrated in the introduction), the use of closed
patterns as representatives results in the following issues:



1. The computational approach proposed by Garriga et al. is not applicable,
because Proposition 1 does not carry over to sequential patterns;

2. The use of a length limit is problematic, resulting in counter-intuitive re-
sults and/or excessive computational costs. In practice, however, specifying
a limit for the length of the patterns to be considered is very useful: it allows
reducing the computational costs to a reasonable amount of time, and is
often more suitable than using a minimum support threshold.

We will now discuss these issues in detail.

Garriga’s Computational Approach is not applicable to Sequences
Proposition 1 is the foundation for many fast relevant itemset mining algorithms
[8, 22]. We will now show that it does not carry over to sequential patterns:

Proposition 2 There is a sequence database such that a closed-on-the-positives
sequence pattern S exists which is strongly dominated, yet not dominated by any
of its generalizations.

The correctness of the above proposition is shown by the example in Table 1.
Here, the sequence c is closed on the positives. It is, however, dominated, namely
by ab. Yet, c is not dominated by any generalization of itself.

label sequence

+ cab
+ abc
- c
- d

Table 1. Example: the closed sequence c is strongly dominated (e.g. by a), yet it is
not dominated by any generalization.

The above proposition shows that it is not sufficient to consider generaliza-
tions to verify the relevance of a sequence. While the above example alone shows
that Proposition 1 does not hold, we could still hope that testing for relevance
is possible by comparing only other patterns with same negative support (as in
Proposition 1). However, this also does not carry over:

Proposition 3 There is a sequence database such that a closed-on-the-positives
sequence S exists which is strongly dominated, yet it is not strongly dominated
by any sequence having the same negative support.

Again, this is illustrated by Example 1. c is closed on the positives and is
strongly dominated. However, all strongly dominating sequences (a, b, and ab)
have a different negative support.

The above two propositions show that the second step of Algorithm 1 cannot
be adapted to the sequential pattern setting: neither can relevance be tested by
considering only generalizations; nor is it possible to consider only patterns with
same negative support.



Problems with Length Limits We will now turn to the issues that arise
if a length limit is introduced and closed patterns are used as representatives
for the relevant sequences (Issue 2). Here, instead of considering the space of
all sequences, we are only concerned with the space of sequences satisfying the
length limit. We wish to remove all sequences that are strongly dominated, and
to keep only a set of representatives for the remaining sequences.

Again, the example from Table 1 illustrates the problems that arise if closed
patterns are used as representatives: assume that we are searching for relevant
sequences with a maximum length limit of 1. Then:

– c is dominated, namely by the patterns a, b and ab. It should thus not be in
the result set, because it is dominated by some pattern satisfying the length
limit.

– c is, however, not dominated by any closed pattern satisfying the length
limit (a and b are not closed). Checking domination would hence require a
computationally much more expensive approach, for example considering all
sequences up to the length limit, not only closed sequences.

– a should not be in the result because it is not closed; same for b. How-
ever, ab, which is closed and lies in the same equivalence class as the earlier
two sequences, has a too long description. The result is that there is no
representative in the result set for this equivalence class. This is somewhat
counter-intuitive.

While it might be possible to ensure efficient computation by using a different,
computationally-motivated definition of relevance wrt. a length limit, this is
likely to result in awkward and unintuitive results.

4.3 The Relevant Sequences

As we have seen in the previous section, the closed sequences are not a par-
ticularly suggestive set of representatives for the relevant sequences. Therefore,
we propose to use a different set of patterns as representatives: the minimal
generator sequences:

Definition 4. Given a sequence database SDB and a length limit L, the set of
relevant minimal generator sequences (wrt. SDB and L) consists of all sequences
S that satisfy the following:

1. S is a minimal generator in SDB of length ≤ L,
2. S is not strongly dominated (in SDB) by any other sequence of length ≤ L.

In the following, the database and length limit will be clear from the context,
so they will not be explicitly listed. Moreover, if no length limit is given, this
is handled as if L =∞. Finally, we will use the expression relevant sequence to
refer to an element of the set of relevant minimal generator sequences.

Using minimal generators as representatives has several advantages. First,
it produces shorter descriptions, which can be an important advantage if the



patterns are to be read and interpreted by human experts; second, it allows
for efficient computation via the minimal-generators-in-the-negatives, as we will
describe in Section 5; and finally it allows for maximum length constraints with
clear and simple semantics:

Proposition 4 Let SDB be a sequence database, L a positive integer and S
some sequence of length ≤ L. Then, there is a relevant sequence S∗ in SDB such
that S∗ is of length ≤ L and S∗ weakly dominates S.

Hence, for every sequence S satisfying the length limit there is a relevant
sequence as good as S in characterizing the target class.

Proof. Let SG be (one of the) minimal generator of S. Obviously, Sg weakly dom-
inates S and satisfies the length limit. If S is a relevant sequence, then S∗ = Sg

and we’re finished. Else, Sg must be strongly dominated. As strong domina-
tion is transitive, non-reflexive and the set of minimal generators satisfying the
length constraint is finite, there must be (at least one) minimal generator S∗

that (i) satisfies the length constraint, (ii) strongly dominates Sg and (iii) is not
dominated by any other minimal generator of length ≤ L.

It remains to show that this pattern S∗ dominates Sg and that it is a relevant
sequence. The first fact follows by transitivity of weak domination. Concerning
the second fact, S∗ is a minimal generator and satisfies the length constraint by
construction. It remains to show that it is not strongly dominated, which we
show by contradiction. Assume it is dominated by a sequence of length ≤ L,
then it would also be dominated by the minimal generators of that pattern.
Contradiction with (iii) above. �

5 Computing the Relevant Sequences

We will now present a new approach that allows computing the relevant se-
quences much more efficiently than by simply checking, for every pair of patterns,
the dominance criterion from Definition 3.

5.1 Relevant Sequences and Minimal Generators in the Negatives

This approach is based on the observation that the set of patterns not-strongly-
dominated is not only related to the closed-on-the-positives (as investigated by
Garriga et al.), but also to their counterpart: namely to the minimal generators
in the negatives.

Proposition 5 Let SDB be a sequence database and S some relevant sequence
in SDB. Then S is a minimal generator in SDB’s negatives.

Proof. By contradiction. Assume that S is a relevant sequence but is no minimal
generator in the negatives. The latter implies that there is a generalization S′

of S with same support in the negatives. Thus, we have that FP(SDB,S) ⊇



FP(SDB,S′). Just as in the case of classical itemsets, for sequential patterns
we have the property that the support is anti-monotonic. That is, the support
set of S′ in the positives is a superset of the support set of S in the positives.
Thus, we also have TP(SDB,S) ⊆ TP(SDB,S′). The above implies that S′

weakly dominates S. Moreover, by the assumption that S is a relevant sequence
together with Definition 4, we have that S is a minimal generator, hence S and S′

have different support sets. Hence, S′ strongly dominates S – which contradicts
the assumption that S is relevant. �

Please note that in the above proposition, unlike in the work of Garriga et
al. we consider a different pattern type (minimal generators instead of closed
patterns) but also a different subset of the data (negatives instead of positives).

label sequence

+ ab
+ abc
- abc
- ac
- c

(a) dataset

seq. dominated closed gen g-neg

a yes, by b y y y
b no - y y
c yes, by b y y -
ab no y - -
ac yes, by b y y -
bc yes, by b - y -
abc yes, by b y - -

(b) sequential patterns

Fig. 2. Subfigure 2(b) considers all sequential patterns occurring in the dataset in
Subfigure 2(a). As the 2nd column shows, all sequences but b and ab are strongly
dominated. These two patterns belong to the same equivalence class, with b being a
minimal generator (column “gen”) and ab a closed sequence (column “closed”). As
we opted for the minimal generators as representatives, we want to come up with b.
While this result can be computed using the minimal generators as candidates (column
“gen”), using the minimal generators in the negatives (column “g-neg”) is more efficient
as this yields a smaller candidate set.

We will now illustrate the above proposition and its implications using the
example in Figure 2. In this database, only the sequences b and ab are potentially
useful in characterizing the target class. All other sequential patterns are strongly
dominated, and should thus be removed as irrelevant. The two un-dominated
patterns b and ab are equivalent, hence we would be happy with just one of
these two as representative. More precisely, according to our new approach, we
would select b as representative, which is the (only) minimal generator. Now
Proposition 5 shows that to compute this result, it is sufficient to consider the
set of minimal generators in the negatives (i.e. a and b) as candidates, instead of
considering the whole set of minimal generators (which comprises 5 sequences).



5.2 Our Algorithm

The new relation stated in Proposition 5 suggests the following approach: first
compute the minimal generators in the negatives (using some standard min-
imal generator sequence miner, e.g. [11, 12]) and then remove the dominated
generators. So far, we have not considered the second step – the removal of
the dominated generators. The following proposition shows that it is possible
to decide whether a pattern is strongly dominated solely by considering the
minimal-generators-in-the-negatives:

Proposition 6 Let SDB be a sequence database, L a positive integer, and Sirr

some minimal generator of length ≤ L that is not relevant (wrt. SDB and L).
Then, there is a minimal-generator-in-negatives Sg of length ≤ L strongly dom-
inating Sirr.

Proof. Let Sd be one of the sequences strongly dominating Sirr and satisfying the
length limit. By Proposition 4, there is a relevant sequence Sg weakly dominating
Sd and satisfying the length limit. By Proposition 5, Sg is a minimal generator
in the negatives. Moreover, by transitivity Sg strongly dominates Sirr, which
completes the proof. �

Algorithm 2 Relevant Sequence Miner

Input : a sequence database SDB and optionally a length limit L
Output : the relevant sequences

1: Calculate the set GN of sequences that are minimal generator in the negatives and
have length ≤ L;

2: Group the candidate patterns GN into sets having same extension in SDB. Let G≡N
denote the resulting set of equivalence classes

3: sort the set G≡N by (i) descending positive support and (ii) in case of ties ascending
negative support

4: let R be an empty set of equivalence classes
5: for every class e in G≡N do
6: if e is not dominated by any class in R then
7: add e to R
8: end if
9: end for

10: return The set of minimal generators in R

The above Proposition, together with Proposition 5, is the foundation for
our algorithmic approach, sketched in Algorithm 2. In Line 1, the algorithm
can make use of any minimal generator sequence miner, e.g. [11, 12] to com-
pute the minimal-generators-in-the-negatives. The rest of the pseudo-code takes
care of filtering strongly dominated sequences from this candidate set. Instead



of the naive approach – comparing every pair of candidates, which would re-
sult in a quadratic number of comparisons – we use a slightly more efficient
solution. First, we group the candidate patterns (i.e. the minimal-generators-in-
the-negatives) into equivalence classes (Line 2). The reason is that the definition
of domination immediately carries over from patterns to equivalence classes and
it is thus sufficient to consider those instead of the individual patterns. The sec-
ond improvement is that we sort the candidates, resp. the equivalence classes, by
descending positive support and then, in case of ties, by ascending negative sup-
port. This step, done in Line 3, ensures that a pattern can only be dominated by
a predecessor in the sorted list. As a consequence, during the following iteration
over the candidates one only has to compare a candidate with the predecessors
in the sorted list which have been verified to be relevant. Hence, the number of
comparisons per candidate is limited by the number of relevant patterns.

5.3 Analysis of the new Algorithm

The correctness of our algorithm follows directly from Propositions 5 and 6. We
will now turn to its complexity: Let n denote the number of items, m the number
of sequences in the database, L the length limit, l the maximum length of the
sequences, |GN | the number of minimal generators in the negatives, |G≡N | the
equivalence classes including a minimal generator in the negatives, and |R≡| the
number of relevant equivalence classes. Then

1. The runtime of the first step in Algorithm 2 – computing the minimal gen-
erators – is O(nL ·m · l).

2. The grouping of the candidate sequences can be done using a hash function
mapping the support set to an integer. The runtime is then O(|GN | ·m · l).

3. The runtime for sorting is O(|G≡N | log(|G≡N |)).
4. The loop is executed |G≡N | times. The condition in the if requires to check each

equivalence class against at most |R≡| relevant patterns. Every comparison
can be done in O(m), assuming that hash-sets are used to check for inclusion
of a record. The total runtime is thus O(|G≡N | · |R≡| ·m).

Overall, the runtime for the computation of Algorithm 2 is hence

O(nL ·m · l + |GN | ·m · l + |G≡N | log(|G≡N |) + |G≡N | · |R≡| ·m).

As the number of minimal generators is typically much smaller than nL, the
overall runtime is typically dominated by the first summand – that is, the runtime
is dominated by the first step which computes the minimal generators in the
negatives. This will be confirmed by experiments presented in Section 6.

6 Experimental Evaluation

In this section, we experimentally evaluate the impact of our approach. As several
investigations have demonstrated that removing dominated patterns is beneficial
for classification purposes [6, 8, 23], we only investigate the effect on the size of
the result pattern set and on the computational costs.



6.1 Implementation and Setup

Our approach requires, as a building block, a minimal generator sequence miner.
To this end, we have used a (slightly modified) reimplementation of FEAT [11],
a state-of-the-art generator sequence mining algorithm. In particular, our imple-
mentation allows for maximum length constraints. This can easily be realized by
stopping the recursive traversal of the candidate space if a pattern violates the
length constraint.

dataset # seq. # pos. # items max. length
hill-valley 606 301 5 100
libras 360 192 979 89
person 273 198 116 8610
promoter 106 53 4 57
wlan 206 166 15 2920

Fig. 3. Datasets

We used five sequence
datasets in our evaluation.
The datasets ’hill-valley’, ’li-
bras’, ’person-activity’, and
’promoter’ are publicly avail-
able datasets from the UCI
repository [24]. The last dataset,
’wlan’, is from an ongoing
project and cannot be made
publicly available. Table 3
shows all datasets together
with their most important
statistics.

6.2 Results

We will now show how the concept of relevance affects the number of patterns
obtained. Figures 4(a) to 4(e) show, for different datasets and length limits, the
number of minimal generators (“Gen”), the number of minimal generators in
the negatives (“G-neg”) and of relevant sequences (“Rel”). In the experiments,
we also used a minimum support of 10%.

Reduction of the Pattern Set The figures show, first, that the concept of rel-
evance dramatically reduces the number of patterns. At higher length limits,
the reduction from all generator sequences (“Gen”) to the relevant sequences
(“Rel”) amounts to several orders of magnitude. The results are similar if the
size of the outcome is controlled using a support threshold instead of a length
limit. We show a corresponding plot for the ’hill-valley’ dataset in Figure 4(f),
where we additionally used a length limit of 10 (the result for other datasets
are similar and omitted for space reasons). This demonstrates the main benefit
of our relevance criterion for sequential patterns: it tremendously reduces the
number of sequential patterns.

Computational Speedup The second observation is that the computation via
the minimal-generators-in-the-negatives reduces the computational costs. Again,
this can be seen in Figure 4, which shows the reduction from generators (“Gen”)
to generators-in-the-negatives (“G-neg”). These numbers are less implementation-
dependent than the runtime, and hence a more convenient assessment of the



(a) ’hill-valley’ (b) ’libras’ (c) ’promoter’

(d) ’person activity’ (e) ’wlan’ (f) ’hill-valley (by support)’

Fig. 4. The relevance constraint tremendously reduces the number of patterns. More-
over, the generators-in-the-negatives approach significantly reduces the candidate set.

computational costs (for comparison, we also show the runtimes on a Core 2
Duo E8400 for the hill-valley dataset in Figure 5(a)). The experiments show
that while the reduction varies between the datasets, it can amount to an order
of magnitude.

We also compared the runtimes for the first and second step of our algorithm,
namely computing the generators-in-the-negatives and removing the dominated
candidates. The result is shown in Figure 5(b). It shows that for all datasets,
the computational costs are dominated by the candidate mining step. While the
table shows the values for a maximum length of 2 and a support threshold of
30%, the results are similar for other settings.

(a) runtime using the G-
neg instead of all generators

dataset share of 2nd step

hillValley 4.3 %
libras 1.6 %
personActivity 8.6 %
promoter 11.1 %
WLAN 0.3 %

(b) Share of the computational time
spent in the filtering step

Fig. 5. Runtime figures showing (a) that the generators-in-the-negatives approach re-
duces the computation time, and (b) that the overall costs are dominated by the
candidate mining step.



7 Conclusions

In this paper, we have adapted the idea of relevance [6] to sequential data. We
have shown that several important properties do not carry over from itemset to
sequence data. This makes the use of the closed-on-the-positives as representa-
tives less appealing, which motivated our proposal to use, instead, the minimal
generator sequences as representatives. Besides coming up with shorter descrip-
tions, this has the important advantage that it allows for a meaningful maximum
pattern length constraint, which can be very useful in practical applications.

Subsequently, we have presented a computational approach for mining the
relevant sequences. Our approach is based on the relation between relevant se-
quences and minimal generators in the negatives. This relation is kind of the
counterpart to the relation between relevant itemsets and closed itemsets in the
positives, discovered by Garriga et al. [8].

In the experimental section, we have shown that the concept of relevance
results in a tremendous reduction of the number of patterns, and that the
generators-in-the-negatives approach reduces the computational costs. Our ap-
proach thus improves upon the use of all sequence generators in a similar way
as Garriga’s approach exceeds over the use of all closed itemsets. For sequence
data, computing the minimal generators is, in general, not more demanding than
computing closed patterns. Thus, our algorithm would also be a good choice as
underlying miner in post-processing [2, 4] or iterative approaches [13–15, 5].

There are several lines in which our research can be extended. For one, it
could be adapted to sequences of itemsets, as opposed to the sequences of items
considered here. For another, the relation between minimal generators in the
negatives and relevant patterns also holds in the case of itemsets. It might be
exploited to design algorithms for mining relevant minimal-length itemsets. This
would result in shorter itemsets, which is an important advantage if the itemsets
are to be read and interpreted by human experts. Another interesting question
would be whether the approaches proposing closure operators on patterns taking
the form of sets of sequences [17, 18] could be combined with the concept of
relevance. Finally, it would be interesting to investigate whether the notion of
relevance can be further relaxed, following the ideas of [25, 26].
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