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Abstract. Outlier detection aims at searching for a small set of objects
that are inconsistent or considerably deviating from other objects in a
dataset. Existing research focuses on outlier identification while omit-
ting the equally important problem of outlier interpretation. This paper
presents a novel method named LODI to address both problems at the
same time. In LODI, we develop an approach that explores the quadratic
entropy to adaptively select a set of neighboring instances, and a learning
method to seek an optimal subspace in which an outlier is maximally sep-
arated from its neighbors. We show that this learning task can be solved
via the matrix eigen-decomposition and its solution contains essential
information to reveal features that are most important to interpret the
exceptional properties of outliers. We demonstrate the appealing perfor-
mance of LODI via a number of synthetic and real world datasets and
compare its outlier detection rates against state-of-the-art algorithms.

1 Introduction
Data mining aims at searching for novel and actionable knowledge from data.
Mining techniques can generally be divided into four main categories: cluster-
ing, classification, frequent pattern mining and anomalies detection. Unlike the
first three main tasks whose objective is to find patterns that characterize for
majority data, the fourth one aims at finding patterns that only represent the
minority data. Such kind of patterns usually do not fit well to the mechanisms
that have generated the data and are often referred to as outliers, anomalies or
surprising patterns. Mining that sort of rare patterns therefore poses novel issues
and challenges. Yet, they are of interest and particularly important in a number
of real world applications ranging from bioinformatics [28], direct marketing [18],
to various types of fraud detection [4].

Outlying patterns may be divided into two types: global and local outliers.
A global outlier is an object which has a significantly large distance to its k-th
nearest neighbor (usually greater than a global threshold) whereas a local outlier
has a distance to its k-th neighbor that is large relatively to the average distance
of its neighbors to their own k-th nearest neighbors [6]. Although it is also
possible to create a ranking of global outliers (and select the top outliers), it is
noted in [6, 3] that the notion of local outliers remains more general than that of
global outliers and, usually, a global outlier is also a local one but not vice versa,
making the methods to discover local outliers typically more computationally
expensive. In this study, our objective is to focus on mining and interpreting
local outliers.

Although there is a large number of techniques for discovering global and
local anomalous patterns [29, 26], most attempts focus solely on the aspect of



2

outlier identification, ignoring the equally important problem of outlier interpre-
tation. For many application domains, especially those with data described by
a large number of features, the description/intepretation of outliers is essential.
As such, an outlier should be explained clearly and compactly, like a subset of
features, that shows its exceptionality. This knowledge obviously assists the user
to evaluate the validity of the uncovered outliers. More importantly, it offers
him/her a facility to gain insights into why an outlier is exceptionally different
from other regular objects. To our best knowledge, the study developed in [13] is
the only attempt that directly addresses this issue, yet for global outliers but not
for the more challenging patterns of local outliers (shortly reviewed in Section 2).

In this work, we introduce a novel approach that achieves both objectives
of local outlier detection and interpretation at the same time. We propose a
technique relying on the information theoretic measure of entropy to select an
appropriate set of neighboring objects of an outlier candidate. Unlike most exist-
ing methods which often select the k closest objects as neighbors, our proposed
technique goes further by requiring strong interconnections (or high entropy)
amongst all neighboring members. This helps to remove irrelevant objects that
can be nearby outliers or the objects coming from other distributions, and thus
ensures all remaining objects to be truly normal inliers generated by the same
distribution (illustrated via examples later). This characteristic is crucial since
the statistical properties of the neighborhood play an essential role in our ex-
planation of the outlierness. We then develop a method, whose solution firmly
relies on the matrix eigen-decomposition, to learn an optimal one-dimensional
subspace in which an outlier is most distinguishable from its neighboring set.
The basic idea behind this approach is to consider the local outlier detection
problem as a binary classification and thus ensure that a single dimension is
sufficient to discriminate an outlier from its vicinity. The induced dimension is
in essence a linear combination of the original features and thus contains all
intrinsic information to reveal which original features are the most important
to explain outliers. A visualization associated with the outlier interpretation is
provided for intuitive understanding. Our explanation form not only shows the
relevant features but also ranks objects according to their outlierness.

2 Related Work

Studies in outlier detection can generally be divided into two categories stem-
ming from: (i) statistics and (ii) data mining. In the statistical approach, most
methods assume that the observed data are governed by some statistical process
to which a standard probability distribution (e.g., Binomial, Gaussian, Poisson
etc.) with appropriate parameters can be fitted to. An object is identified as
an outlier based on how unlikely it could have been generated by that distri-
bution [2]. Data mining techniques, on the other hand, attempt to avoid model
assumptions; relying on the concepts of distance and density, as stated earlier.
For most distance-based methods [12, 27], two parameters called distance d and
data fraction p are required. Following that, an outlier has at least fraction p of
all instances farther than d from it [12]. As both d and p are parameters defined
over the entire data, methods based on distance can only find global outliers.
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Techniques relying on density, in contrast, attempt to seek local outliers, whose
outlying degrees (“local outlier factor”—LOF) are defined w.r.t. their neighbor-
hoods rather than the entire dataset [3, 6]. There are several recent studies that
attempt to find outliers in spaces with reduced dimensionality. Some of them
consider every single dimension [10] or every combination of two dimensions [7]
as the reduced dimensional subspaces, others [19, 11] go further in refining the
number of relevant subspaces. While the work in [19] makes assumptions that
outliers can only exist in subspaces with non-uniform distributions, the method
developed in [11] assumes that outliers only appear in subspaces showing high
dependencies amongst their related dimensions. These studies, exploring either
subspace projections [19, 11] or subspace samplings [18, 10, 7], appear to be ap-
propriate for the purpose of outlier interpretation. Nonetheless, as the outlier
score of an object is aggregated from multiple spaces, it remains unclear which
subspace should be selected to interpret its outlierness property. In addition, the
number of explored subspaces for every object should be large in order to obtain
good outlier ranking results. These techniques are hence closer to outlier ensem-
bles [25] rather than outlier interpretation. The recent SOD method [14] pursues
a slightly different approach in which it seeks an axis-parallel hyperplane (w.r.t.
an object) as one spanned by the attributes with the highest data variances.
The anomaly degree of the object is thus computed in the space orthogonal to
this hyperplane. This technique also adopts an approach based on the shared
neighbors between two objects to measure their similarity, which alleviates the
almost equi-distance effect among all instances in a high dimensional space and
thus can achieve better selection for neighboring sets. SOD was demonstrated to
be effective in uncovering outliers that deviate from the most variance attributes
yet it seems somewhat limited in searching outliers having extreme values in such
directions. A similar approach is adopted in [16] where the subspace can be ar-
bitrarily oriented (not only axis-parallel) and a form of outlier characterization
based on vector directions have been proposed. ABOD [15] pursues a different
approach where variance of angles among objects is taken into account to com-
pute outlierness, making the method suitable for high dimensional data. In terms
of outlier detection, we provide experimental comparisons with state-of-the-art
algorithms in Section 4.

3 Our Approach

In this work, we consider X = {x1,x2, . . . ,xN} a dataset of N instances and
each xi ∈ X is represented as a vector in a D-dimensional space. Each dimension
represents a feature f1 to fD. We aim for an algorithm that can rank the objects
in X w.r.t. their outlier degrees with the most outlying objects on the top.
Having been queried for M outliers in X , the algorithm returns the top M
outliers and for a threshold λ ∈ (0, 1) (to be clear in Section 3.3), each outlier

xi is associated with a small set of features {f (xi)
1 , . . . , f

(xi)
d }, d ≪ D explaining

why the object is exceptional. The value of d may vary across different outliers.

In addition, f
(xi)
1 , . . . , f

(xi)
d are also weighted according to the degree to which

they contribute to discriminate xi as an outlier.
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3.1 Neighboring Set Selection
Compared to global anomalous patterns, mining local outliers is generally harder
and more challenging since it has to further deal with the problem of locally dif-
ferent densities in the data distribution. An outlier is considered anomalous if its
density value is significantly different from the average density computed from
the neighboring objects. The anomalous property of an outlier is thus decided
by the local density distribution rather than the global knowledge derived from
the entire distribution. For most existing studies [3, 14], the set of k nearest
neighboring objects (kNNs) is used. Nonetheless, this approach has not been
thoroughly investigated and may be misleading for outlier explanation. The dif-
ficulty comes from the fact that identifying a proper value of k is not only a
non-trivial task [22, 3] but such a set of k closest neighbors might also contain
nearby outliers or inliers from several distributions, which both strongly affect
the statistical properties of the neighboring set. To give an illustration, we bor-
row a very popular data set from subspace clustering [23, 17] which includes four
clusters in a 3-dimensional space with 20 outliers randomly added as shown in
Figure 1(a). Each cluster is only visible in 2-dimensional subspace [17] and each
outlier is considered anomalous w.r.t. its closest cluster. Now taking the outlier
o1 as an example, regardless of how small k is selected, other nearby outliers
such as o2,o3 or o4 are included in its neighbors since they are amongst the
closest objects (see Figure 1(a)). On the other hand, increasing k to include
more inliers from the upper distribution can alleviate the effect of these outliers
on the o1’s anomalous property. Unfortunately, such a large setting also com-
prises instances from the lower right distribution as shown in Figure 1(b). To
cope with these issues, our objective is to ensure that all o1’s neighbors are truly
inliers coming from a single closest distribution and thus o1 can be considered
as its local outlier. Our proposed approach to handle this issue stems from the
well-studied concept of entropy in information theory. The technique is adaptive
by not fixing the number of neighboring inliers k. Instead, we only use k as a
lower bound to ensure that the number of final nearby inliers is no less than k.

In information theory, entropy is used to measure the uncertainty (or disor-
der) of a stochastic event. Following the definition by Shannon, the entropy of
that event is defined byH(X) = −

∫
p(x) log p(x)dx, of whichX is the stochastic

event or more specifically, a continuous random variable, and p(x) is its corre-
sponding probability distribution. If the entropy of X is large, its purity is low,
or equivalently, X’s uncertainty is high. Therefore, it is natural to exploit en-
tropy for our task of selecting neighboring inliers. Intuitively, for the entropy
computed with respect to this set, we would expect its value to be small in order
to infer that objects within the set are all similar (i.e., high purity) and thus
there is a high possibility that they are being generated from the same statis-
tical mechanism or distribution. Nonetheless, computing entropy in Shannon’s
definition is not an easy task since it requires p(x) to be known. We thus utilize
a more general form, the Renyi entropy [24], which enables a straightforward
computation. Mathematically, given α as an order, Renyi entropy is defined as:

HRα(X) =
1

1− α
log

∫
p(x)αdx, for α > 0, α ̸= 1. (1)
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Fig. 1. Neighbors selection: object under consideration is o1 and circle points are its
nearest neighbors (figures are best visualized in colors).

in which Shannon entropy is a special case when α is approaching 1 (i.e.,
limα→1 HRα(X) = H(X) [24]). However, in order to ensure the practical com-
putation and impose no assumption regarding the probability distribution p(x),
we select α = 2, yielding the quadratic form of entropy, and use the non-
parametric Parzen window technique to estimate p(x). More specifically, let us
denote R(o) = {x1,x2, . . . ,xs} as the initial set of nearest neighboring instances
closest to an outlier candidate o. Following the Parzen window technique, we ap-
proximate p(x) w.r.t. this set via the sum of kernels placed at each {xi}si=1 and
it follows that: p(x) = s−1

∑
i

G(x− xi, σ
2) (2)

where G(x − xi, σ
2) = (2πσ)−D/2 exp

{
− ||x−xi||2

2σ2

}
is the Gaussian in the D-

dimensional space used as the kernel function. In combination with setting α = 2,
this leads to a direct computation of the local quadratic Renyi entropy as follows:

QE(R(o)) = − ln

∫ (
1

s

s∑
i=1

G(x− xi, σ
2)

)1

s

s∑
j=1

G(x− xj , σ
2)


= − ln

1

s2

s∑
i

s∑
j

G(xi − xj , 2σ
2) (3)

Notice that, unlike Shannon entropy, the above computation removes bur-
den of the computation of the numerical integration due to the advantages of
the quadratic form and the convolution property of two Gaussian functions. Es-
sentially, the sum within the logarithm operation can be interpreted as the local
information potential. Each term in the summation satisfies the positivity and
increases as the distance between xi and xj decreases, very much analogous to
the potential energy between two physical particles. As such, our objective of
minimizing the entropy is equivalent to maximizing the information potential
within the neighboring set. The higher the information potential of the set is,
the more similar the elements within the set are.

Having the way to capture the local quadratic entropy, an appropriate set
of nearest neighbors can be selected adaptively as follows. We begin by setting
the number of initial nearest neighbors to s (in our experiments, a setting of
s = 2k often gives good results), and aim to find an optimal subset of no less
than k instances with maximum local information potential. Obviously, a naive
way to find such an optimal set may require computing all

∑s
i=k

(
s
i

)
possible

combinations, which is prohibitively expensive. We thus make use of an heuris-
tic approach to select such a subset. Specifically, removing an object from the
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neighboring set will lead to a decrement in the total information potential. Those
instances resulting in the most decrement are important ones whereas those caus-
ing least decrement tend to be irrelevant for the neighboring set. With the latter
objects, their potential energy is minor as they loosely interact with the rest
of neighboring objects and thus excluding them makes the neighboring set less
uncertain or more pure. These objects in fact can be either other outliers or part
of nearby distributions. Our method thus ranks the total information potential
left in the increasing order and removes objects behind the first significant gap
as long as the number of remaining instances is no less than k. A significant gap
is defined to have a value larger than the average gap.

For illustration, we plot in Figure 1(c) the total information potential left
(ordered increasingly) after excluding each of nearest neighboring objects rep-
resented in Figure 1(b). One may observe that there are two remarkably large
gaps in the plot (noted by the red vertical lines in Figure 1(c)), which indeed
reflect the nature of local distribution surrounding outlier o1. In particular, the
first large gap signifies the information decrement in removing instances from
the lower right distribution whereas the second one corresponds to the removal
of nearby outliers. By excluding these irrelevant objects from the set of o1’s
neighboring instances, the remaining ones are true inliers coming from the same
and closest distribution shown as blue points in Figure 1(d).

3.2 Anomaly Degree Computation

Given a way to compute the neighboring (or “reference”) set above, we develop
a method to calculate the anomaly degree for each object in the dataset X .
Essentially, directly computing that measure in the original multidimensional
data space is often less reliable since many features may not be relevant for
the task of identifying local outliers. We thus exploit an approach of a local
dimensionality reduction. For the remaining discussion, let us denote o as an
outlier candidate under consideration, R(o) as its neighboring inliers found by
the entropy-based technique presented in the previous section and R as the
matrix form of R(o). Each neighboring inlier xi ∈ R(o) corresponds to a column
in R and together with o, they are all vectors in the RD space.

Essentially, we view the local outlier detection as a binary classification prob-
lem in the sense that the outlier candidate o should be distinguished from its
neighbors R(o). By dimensionality reduction, this objective is equivalent to the
objective of learning an optimal subspace such that o is maximally separated
from every object in R(o). More specifically, o needs to be strongly deviating
from R(o) while at the same time R(o) shows high density or low variance in that
induced subspace. Following this approach, we denote the optimal 1-dimensional
subspace as w and in order to achieve our goal, data variance is obviously an
important statistical measure to explore. Toward this goal, we define the first
variance of all neighboring objects projected onto w as follows:

V ar(R(o)) = wT
(
R−ReeT /No

) (
R−ReeT /No

)T
w = wTAATw (4)

where A =
(
R−ReeT /No

)
, No is the number of neighboring instances in R(o)

and e is the vector with all entries equal to 1.
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Another important statistic in our approach is the distance between o and
every object in R(o). This resembles an average proximity in a hierarchical clus-
tering technique[9] where all pairwise data distances are taken into account.
Compared to the two extremes of using minimum or maximum distance, this
measure often shows better stability. We hence formulate their variance in the
projected dimension w as the following quantity:

D(o,R(o)) = wT
(∑

(o− xi)(o− xi)
T
)
w = wTBBTw, (5)

where xi ∈ R(o) and B is defined as the matrix whose each column corresponds
to a vector (o − xi). Intuitively, in order to achieve the goal of optimally dis-
tinguishing o from its neighboring reference inliers, we want to learn a direction
for w such that the variance of R(o) projected onto it is minimized whereas the
variance between o and R(o) also projected on that direction is maximized. One
possible way to do that is to form an objective function resembling Rayleigh’s
quotient which maximizes the ratio between D(o,R(o)) and R(o) as follows:

argmax
w

J(w) =
D(o,R(o))

V ar(R(o))
=

wTBBTw

wTAATw
. (6)

It is obvious that setting the derivative of J(w) w.r.t. w equal to 0 results
in (wTBBTw)AATw = (wTAATw)BBTw, which is in essence equivalent to
solving the following generalized eigensystem:

J(w)AATw = BBTw. (7)

In dealing with this objective function, note that AAT , though symmetric,
may not be full rank as the number of neighbors can be smaller than the number
of features. This matrix is thus not directly invertible. Moreover, the size ofAAT

can be large and quadratically proportional to the feature number which makes
its eigendecomposition computationally expensive. To alleviate this problem, we
propose to approximate A via its singular value decomposition and consequently
w can be computed using the pseudo inversion of AAT .

Specifically, since A in general is a rectangular matrix, it can be decomposed
into three matrices A = UΣVT of which U and V are matrices whose columns
are A’s left and right singular eigenvectors and Σ is the diagonal matrix of
its singular values. In essence, as our objective is to compute matrix inversion,
we remove singular values which are very close to 0 and approximate A by its
set of leading singular values and vectors. More concretely, we estimate A =∑

ℓ uℓσℓv
T
ℓ such that the sum over keeping singular values σℓ’s explains for

95% (as demonstrated in our experimental studies) of the total values in the
diagonal matrix Σ. Additionally, we compute U via the eigendecomposition of
ATA which has a lower dimensionality. Particularly, we can see that:

ATA = VΣ2VT . (8)

Then, taking the square of both sides and pre-multiplying with Σ−1VT and
post-multiplying with VΣ−1, we obtain:

Σ−1VTAT (AAT )AVΣ−1 = Σ2

UT (AAT )U = Σ2. (9)
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This implies that columns in U are the eigenvectors of AAT and they
can be computed via the eigenvectors of the smaller matrix ATA, i.e., U =
AVΣ−1. Thus, the final pseudo inversion (AAT )† can be simply approximated
by UΣ−2UT . Plugging this value into our objective function in Eq.(7), it is
straightforward to see that the optimal direction for w is the first eigenvector
of the matrix UΣ−2UTBBT of which J(w) achieves the maximum value as the
largest eigenvalue of this matrix.

Given the optimal direction w uncovered by the technique developed above,
the statistical distance between o and R(o) can be calculated in terms of the
standard deviation as follows:

AD(o) =max


√

(wTo−
∑

i
wTxi

No
)2

V ar(wTR(o))
,
√

V ar(wTR(o))

 (10)

where the second term in the max operation is added to ensure that the pro-
jection of o is not too close to the center of the projected neighboring instances
(calculated in the first term). Notice that unlike most techniques that find multi-
ple subspaces and have to deal with the problem of dimensionality bias [20], our
approach naturally avoids this issue since it learns a 1-dimensional subspace and
thus directly enables a comparison across objects. Therefore, with the objective
of generating an outlier ranking over all objects, the relative difference between
the statistical distance of an object o defined above and that of its neighboring
objects is used to define its local anomalous degree:

LAD(o) = AD(o)×
(∑

AD(xi)/No

)−1

. (11)

For this relative outlier measure, it is easy to see that if o is a regular object
embedded in a cluster, its local anomaly degree is close to 1 whereas if it is a
true outlier, the value will be greater than 1.

3.3 Outlier Interpretation

In interpreting the anomaly degree of an outlier, it is possible to rely on the
correlation between the projected data in w and those in each of the original
dimensions (i.e., R’s rows). Features with highest absolute values can be used
to interpret the anomaly degree of o since values of o and its referenced objects
on these features are correlated to those projected onto w. Nonetheless, this
approach requires computing correlations with respect to all original features. A
better and more direct approach is to exploit the optimal direction w directly.
Recall that the projection of R(o) over w is equivalent to the local linear combi-
nation of the original features. Consequently, coefficients within the eigenvector
w are truly the weights of the original features. The feature corresponding to
the largest absolute coefficient is the most important in determining o as an out-
lier. Analogously, the second important feature is the one corresponding to the
second w ’s largest absolute component and so on. In this way, we are not only
able to figure out which original features are crucial in distinguishing o but also
show how important they are via the weights of the corresponding components
in w.
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Generally, we can provide the user with a parameter λ, whose values are
between (0, 1), to control the number of features used to interpret the anomaly
degree. We select {fi}di=1 as the set of features that correspond to the top d

largest absolute coefficients in w and s.t.
∑d

i=1 |wi| ≥ λ ×
∑D

j=1 |wj |. The de-
gree of importance of each respective fi can be further computed as the ratio
|wi|/

∑D
j=1 |wj |. An object o therefore can be interpreted as an outlier in the

d-subspace {f1, ..., fd} with the corresponding feature importance degrees. An
illustration is given in Figure 1 where w is plotted as the green line whose
coefficients in the rightmost subgraph are (0.11, 4.63, 5.12) (or in terms of im-
portance degrees (0.03,0.46,0.51)) which obviously reveals {f2, f3} being two
important features to explain o1 as an outlier. Note that the corresponding val-
ues of w (green lines) in Figures 1(a) and (b) are respectively (6.12, 5.17, 0.59)
and (2.91, 4.72, 2.01), which tend to select {f1, f2} and {f1, f2, f3} as the sub-
spaces for o1 due to the influence of nearby irrelevant instances. The advantage
of our entropy-based neighbor selection is thus demonstrated here where only
the direction of w in Figures 1(d) is in parallel to the relevant subspace {f2, f3}
(compared to the slant lines of w shown in Figures 1(a) and (b)).

3.4 Algorithm Complexity
We name our algorithm LODI which stands for Local Outlier Detection with
Interpretation and its computation complexity is analyzed as follows. LODI
requires the calculation of the neighboring set as well as the local quadratic
Renyi entropy. Both these steps take O(DN logN) with the implementation of
the k−d tree data structure. The size of the matrix ATA is s × s and thus
its eigen-decomposition is O(Ds log s) using the Lanczos method [8]. Similarly,
computing the eigen-decomposition of UΣ−2UTBBT amounts to O(D2 logD).
We compute these steps for all instances to render the outlier ranking list so
these computations take O(DN(s log s + D logD)). The overall complexity is
thus at most O(DN(logN + s log s+D logD)).

4 Experimental Results

In this section, we provide experimental results on both synthetic and real-world
datasets. We compare LODI against the following algorithms: LOF (density-
based technique) [3], ABOD (angle-based) [15] and SOD (axis-parallel sub-
spaces) [14]. The last two algorithms are adapted from the ELKI package3 with
some small changes in their output formats. Unless specified differently, we use
k = 20 as the lower bound for the number of kNNs used in LODI. We also vary
the number of neighbors, like minPts in LOF or reference points in SOD, be-
tween 10 and 40 and report the best results. With SOD, we further set α = 0.8
as recommended by the authors [14].

4.1 Synthetic Data

Data Description We generate three synthetic datasets Syn1, Syn2 and Syn3,
each consists of 50K data instances generated from 10 normal distributions. For
each dimension ith of a normal distribution, the center µi is randomly selected

3 http://elki.dbs.ifi.lmu.de/
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Fig. 2. Feature visualization over 5 top ranking outliers found in Syn1, Syn2 and Syn3
datasets (x- and y-axis are respectively the features’ index and importance degree).

from {10, 20, 30, 40, 50} while variance σi is taken from either of two (consid-
erably different) values 10 and 100. Such a setting aims to ensure that if the
dimension ith of a distribution takes the large variance, its corresponding gener-
ated data will spread out in almost entire data space and thus an outlier close to
this distribution can be hard to uncover in the ith dimension due to the strongly
overlapping values projected onto this dimension. We set the percentage of the
large variance to 40%, 60% and 80%, respectively, to generate Syn1, Syn2 and
Syn3. For each dataset, we vary 1%, 2%, 5% and 10% of the whole data as the
number of randomly generated outliers within the range of the data space and
also vary the dimensionality of each dataset from 15 to 50.

Outlier Explanation In Figure 2, we provide a feature visualization of the 5
top-ranked outliers returned by our LODI algorithm on the three datasets. For
each graph in the figure, the x-axis shows the index of features while the y-axis
shows their degree of importance. For the purpose of visualization, we plot the
results where three datasets are generated with 5% outlier percentage and in 15
dimensions. The results for higher dimensionalities and other outlier percentages
are very similar to those plotted here and thus were omitted to save space (yet,
they are summarized in Table 1 and will be soon discussed). As observed from
these graphs, the number of relevant features used to explain the anomalous
property of each outlier is varied considerably across the three datasets. In Syn1
(Figure 2(a)), each identified outlier can be interpreted in a large number of di-
mensions since the percentage of the large variance used to generate this dataset
is small, only 40%. When increasing the percentage to 60% in Syn2 and to 80%
in Syn3 (Figures 2(b-c)), the number of relevant features reduces accordingly.
In Syn3 dataset, generally only 3 features are needed to interpret its outliers.
These results have been anticipated and quite intuitive since once the number
of dimensions with large variance increases, the dimensionality of the subspaces
in which an outlier can be found and explained will be narrowed down. This is
due to the wide overlapping of outliers and regular objects projected onto these
(large variance) dimensions.

For comparison against other techniques, we select the SOD algorithm. Recall
that SOD is not directly designed for outlier interpretation, yet its uncovered
axis-parallel subspaces might be used to select outliers’ relevant features. For
these experiments, we select Syn3 dataset and vary the outlier percentage from
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D15 D30 D50

Outlier % LODI SOD LODI SOD LODI SOD

1% 3.12±0.84 8.35±1.61 6.34±1.27 16.05±2.46 10.92±2.15 26.50±3.95
2% 3.20±0.72 8.40±1.68 6.41±1.14 16.13±2.56 11.03±2.07 27.57±4.15
5% 3.15±0.81 8.16±1.69 6.70±1.18 16.20±2.69 10.87±2.21 26.62±4.31
10% 3.14±0.96 7.84±1.85 6.42±1.23 15.87±3.05 11.08±2.31 25.87±4.81

Table 1. Average dimensionality of the subspaces selected for outlier explanation in
LODI and SOD in Syn3 dataset (values after ± are standard deviations).
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Fig. 3. Outlier detection rate of all algorithms on three synthetic datasets (D=50).

1% to 10%, and the data dimensionality from 15 to 50 features. Table 1 reports
the average subspace’s dimensionality of LODI and SOD computed from their
top ranking outliers. The first column shows the outlier percentages while D15,
D30 and D50 denote the data dimensionality. We set λ = 0.8 (see Section 3.3)
for LODI and α = 0.8 for SOD to ensure their good performance. As one can
observe, LODI tends to select subspaces with dimensionality close to the true
one whereas the dimensionality of the axis-parallel subspaces in SOD is often
higher. For example, at D15, LODI uses around 3 original features to explain
each outlier, which is quite consistent with the percentage of 80% of the large
variance while it is approximately 8 features for SOD. It can further be observed
that the number of relevant features uncovered by SOD also greatly varies, which
is indicated by the high standard deviation. Additionally, it tends to increase
as the percentage of outliers increases. In contrast, our method performs better
and the relevant subspace dimensionality is less sensitive to the variation of the
outlier percentages as well as to the number of original features.

Outlier Detection For comparison of outlier detection rates, we further include
the angle-based ABOD and the density-based LOF techniques. The receiver
operating characteristic (ROC) is used to evaluate the performance of all al-
gorithms. It was observed that all methods performed quite competitively in
the low dimensionality yet their performances were more divergent on higher
dimensional data. We hence report in Figure 3 the outlier detection rates of all
methods in D50, setting for all 3 datasets. As observed from these graphs, the
outlier detection performance of all algorithms is likely to be decreased as the the
large variance percentage used to generate the data increases. However, while the
detection rates decrease vastly for other methods, our technique LODI remains
stable from Syn1 to Syn2 dataset, and only slightly reduces in Syn3. Nonetheless,
its area under the ROC (AUC) is still around 96% for this dataset. Amongst
other techniques, the AUCs of LOF are the lowest. This could be explained
through its density-based approach which often makes LOF’s performance dete-
riorated in high dimensional data. The performances of both ABOD and SOD
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Fig. 4. Performance of LODI on Syn3 dataset with varying % outliers and threshold k
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Fig. 5. Performance of LODI on Syn3 dataset with varying % singular values.

are quite competitive yet their ROC curves are still lower than that of LODI
for all three examined datasets. In Figure 3, we also report the performance
of LODI not using the entropy-based approach in kNNs selection (denoted as
LODIw/o). Instead, k is varied from 10 to 40 and the best result is reported.
As seen in Figure 3, the AUC of LODIw/o in all cases are smaller than that of
LODI, which highlights the significance of the entropy-based approach for kNNs
selection. However, compared to other techniques, LODIw/o’s outlier detection
rate is still better, demonstrating the appealing approach of computing outlier
degrees in subspaces learnt from the objective function developed in Eq.(6).

Parameters Sensitivity To provide more insights into the performance of our
LODI technique, we further test its detection rates with various parameter set-
tings. In Figure 4(a), we plot its AUC performance on the Syn3 dataset when
the data dimensionality increases from D15 to D50 and the outlier percentage
varies from 1% to 10%. The lower threshold k for the neighboring set remains
at 20. One may see that LODI’s performance slightly deteriorates as the num-
ber of outliers generated in the dataset increases. This happens since once the
number of outliers increases, there are higher chances for them to be included in
other instances’ neighboring sets. Recall that LODI has alleviated this issue by
excluding those with low information potential via the use of quadratic entropy.
And in order to gain insights into this matter, we further test the case when
the lower threshold for the neighboring set is varied. Figures 4(b-c) show the
algorithm’s ROC curves when k is changed from 15 to 40 for two cases of D30
and D50. As expected, once k increases, LODI has more capability in exclud-
ing irrelevant instances from the neighboring sets and its overall performance
increases. As visualized from Figures 4(a-b), a general setting of k around 20
or 25 often leads to competitive results. We finally provide the impact of the
total number of singular values used in our matrix approximation. In Figure 5,
our algorithm’s ROC curves are plotted as the percentage of keeping singular
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Fig. 6. Feature visualization over 5 top outliers found in: Ionosphere data (a), Image
segmentation data (b) and Vowel data (c) (relevant features are shown with labels).

values is varied from 85%, 90%, 95% to 99%. We use Syn3 dataset for these
experiments with the data dimensionality at 30 and 50. It is clearly seen that
LODI performs better for higher percentages of singular values and in order to
keep it at high performance, this parameter should be set around 90% or 95%.

4.2 Real world Data
In this section, we provide the experimental results of all algorithms on three
real-world datasets selected from the UCI repository [1]. The first dataset is
the image segmentation data which includes 2 310 instances of outdoor images
{brickface, sky, foliage, cement, window, path, grass} classified into 7 classes.
Each instance is a 3× 3 region described by 19 attributes. However, we remove
three features 5,7 and 9 from this data as they are known to be repetitive with
the attributes 4,6 and 8 [1]. The second dataset is the vowel data consisting
of 990 instances and is described by 11 variables (low pass filtered signals), of
which the last one is the class label corresponding to 11 different English vowels
{hid, hId, hEd, hAd, hYd, had, hOd, hod, hUd, hud, hed}. The third dataset is
the ionosphere data containing 351 instances and being described by 32 features
(electromagnetic signals). Instead of randomly generating artificial outliers and
adding them to these datasets, it is more natural to directly downsample several
classes and treat them as hidden outliers (as suggested in [19, 11]). Specifically,
we keep instances from two randomly selected classes of segmentation data as
regular objects and downsample five remaining classes, each to 2 instances to
represent hidden outliers. Likewise with the vowel dataset, we keep one class of
regular objects and randomly sample 10 instances from the remaining classes
to represent outliers. With the 2-class ionosphere data, we select instances from
the second class as outliers since its number of objects is much lower than that
of the first class.

Unlike the synthetic data where we can manage the data distributions and
report the average subspace sizes for all outliers, it is harder to perform such
analysis for the real-world datasets since different outliers may have relevant
subspaces of different sizes. However, in an attempt to interpret the results of
LODI, we plot in Figures 6(a-c) the original features’ important degrees of 5
top-ranking outliers respectively selected from the ionosphere, image segmen-
tation and vowel datasets. Figure 6(a) reveals that, for each outlier, there are
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Fig. 7. Performance of all algorithms on three UCI real datasets.

only few features having high importance degrees and they can be selected as
the subspace to interpret the abnormal property of the outlier. However, as
this dataset has a large number of outliers, the subspaces do not have many
features in common. It is thus more interesting to observe the feature visualiza-
tion for the two other datasets. Looking at the the 5 top outliers of the image
segmentation dataset in Figure 6(b), one can see that out of 15 original fea-
tures, only a few are suitable to interpret the outliers. For example, the space
spanned by {row icd, exgreen, saturatioin, hue} attributes is suitable to inter-
pret the exceptional property of the first 3 outliers while the space spanned by
{exred, exgreen, saturatioin, hue} is appropriate to explain the last 2 outliers.
Taking a closer look, we find out that these two types of outliers are indeed
exceptional with respect to the 2 main distributions which correspond to the
outdoor imaging instances of 2 classes (number 3rd and 6th) in the segmen-
tation data. In the last dataset, vowel, shown in 6(c), few prominent features
stand out for outlier interpretation, yet the features vary across different out-
liers (using λ = 0.8). Nevertheless, a common and interesting point is that the
first attribute always has the highest value across all outliers, indicating it is
the most important feature. Recall that for this dataset, we keep instances from
only a single vowel (by random selection it is ”hYd”) as normal objects while
randomly downsample one from each of the remaining vowels as hidden outliers.
This might also justify the diversity of the other prominent features across the
5 outliers shown here.

We now compare the performance of LODI and the other algorithms through
their outlier detection rates. In Figure 7, we report the ROC curves of all al-
gorithms over the three datasets. As observed, LODI shows the best detection
performance compared to all three techniques. In the segmentation data, LOF
is less successful with its AUC value around 88% though we have tried to opti-
mize its parameter minPts. The detection rates of ABOD and SOD are quite
competitive and achieve 90% AUC which yet is still lower than LODI’s 94%.
Moreover, LODI is also likely to uncover all true outliers earlier than the other
techniques. As observed in Figure 7, its false positive rate is only at 24% when
all outliers are found compared to that of 43% for SOD or 60% for LOF. With
the vowel dataset, we observe a similar behavior. Nevertheless, in the ionosphere
where the number of outliers is considerably larger, none of the algorithms can
discover all outliers before their false positive rate reaches 100%. However, it is
seen that while both SOD and ABOD can uncover at most 70% of true outliers
when the false positive rate is at 20%, LODI retrieves 86% at the same level.
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Its overall area under the curve is 89% which is clearly better than the other
algorithms.

5 Conclusion
In this work, we developed the LODI algorithm to address outlier identification
and explanation at the same time. In achieving this twin-objective, our method
makes use of an approach firmly rooted from information theory to select appro-
priate sets of neighboring objects. We developed an objective function to learn
subspaces in which outliers are most separable from their nearby inliers. We
showed that the optimization problem can be optimally solved from the matrix
eigen-decomposition of which relevant features are obtained to understand ex-
ceptional properties of outliers. Our thorough evaluation on both synthetic and
real-world datasets demonstrated the appealing performance of LODI and its
interpretation form over outliers is intuitive and meaningful. Nonetheless, LODI
has some limitations. First, its computation is rather expensive (quadratic in the
dimensionality), making LODI less suitable for very large and high dimensional
datasets. In dealing with this issue, approaches based on features’ sampling [21]
seem to be potential; yet they also lead to some information loss. The challenge
is thus to compromise the trade-off between these two criteria. Second, LODI
made an assumption that an outlier can be linearly separated from inliers. This
assumption may not be practical if distributions of inliers exhibit non-convex
shapes. Though several learning techniques based on nonlinear dimensionality
reduction can be applied to uncover such outliers [5], this, however, still leaves
open to the difficult question of what can be an appropriate form to interpret
these ”nonlinear” outliers. We consider these challenges as the immediate issues
for our future work.
Acknowledgements: Part of this work has been supported by the Danish
Council for Independent Research - Technology and Production Sciences (FTP),
grant 10-081972.
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