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Abstract. Planning for multiple agents under uncertainty is often based
on decentralized partially observable Markov decision processes (Dec-
POMDPs), but current methods must de-emphasize long-term effects of
actions by a discount factor. In tasks like wireless networking, agents
are evaluated by average performance over time, both short and long-
term effects of actions are crucial, and discounting based solutions can
perform poorly. We show that under a common set of conditions expec-
tation maximization (EM) for average reward Dec-POMDPs is stuck in
a local optimum. We introduce a new average reward EM method; it
outperforms a state of the art discounted-reward Dec-POMDP method
in experiments.
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1 Introduction

Optimizing the behavior of several agents like robots [25, 22] or wireless devices
[7, 18] is a crucial and hard problem, especially hard in an uncertain world where
agents act using only noisy observations about the world and other agents. A de-
centralized partially observable Markov decision process (Dec-POMDP) can de-
scribe the optimal solution. Each agent gets observations on its own and decides
its next action to optimize a shared goal. To plan actions, an agent must consider
possible action-observation sequences of all agents, thus Dec-POMDP planning
is computationally hard: finite-horizon Dec-POMDPs are NEXP-complete (dou-
bly exponential), infinite-horizon Dec-POMDPs are undecidable [6].

In a Dec-POMDP, agents get a joint reward at each time step based on their
actions and the world state. Finite-horizon Dec-POMDPs [22, 14, 23] maximize
the sum of rewards over a fixed number of time steps and discounted infinite-
horizon Dec-POMDPs [2, 10, 17] maximize the sum of discounted rewards over an
infinite horizon; these objectives emphasize rewards closer to the first time steps,
i.e., short-term effects of actions. However, in many Dec-POMDP problems it is
natural to maximize average reward over an infinite horizon. In wireless networks
[7] usual objectives are average throughput (average amount of transmitted data,
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infinitely far into the future) or average delay (average time a data packet must
wait). Such objectives emphasize short and long-term effects of actions equally.
Usefulness of average rewards has been shown in robotics [25] and reinforcement
learning [13]. Moreover, in finite-horizon and discounted reward methods the
solution may depend heavily on the distribution for the first time step (initial
belief), which may need to be designed by a domain expert. In many infinite-
horizon problems a good initial belief depends on the optimal policy and vice
versa (in wireless networks the amount of data in transmit buffers of devices
depends on policy efficiency). In contrast, in an average-reward Dec-POMDP
the solution does not depend on the initial belief, under certain conditions (see
Section 3.1).

Optimizing average reward has been used in partially observable Markov deci-
sion processes (POMDPs) for one agent, and for special-case multiple agent prob-
lems, but solutions for generic multiple agent problems have not been given. In-
teraction of agents is essential e.g. in wireless network channel access [18]. We in-
troduce a solution for multiple agents with partial observability: a Dec-POMDP
method that optimizes average reward by a modified expectation-maximization
(EM) algorithm. To our knowledge this is the first general Dec-POMDP method
for optimizing average reward.

2 Related Work

We discuss related work on average reward Markov decision processes (MDPs),
partially observable MDPs (POMDPs), and decentralized MDPs (Dec-MDPs).
A fully observable POMDP or a single agent Dec-MDP is an MDP, a single
agent Dec-POMDP is a POMDP, and a jointly fully observable Dec-POMDP is
a Dec-MDP. The Dec-POMDP is the most general of these models. We know
of previous work on average reward MDPs [13, 21], average reward POMDPs [1,
29, 12], discounted reward POMDPs [20, 8, 2, 17], transition and observation in-
dependent average reward Dec-MDPs [19], finite-horizon Dec-POMDPs [22, 14,
23], and discounted-reward Dec-POMDPs [24, 5, 4, 3, 2, 10, 17], but not on gen-
eral average reward Dec-POMDPs. For average reward MDPs, policy iteration,
value iteration, linear programming [21] and model-free methods [13] exist. Ma-
hadevan et al. [13] showed average reward outperformed discounted reward in
MDPs where an agent chose small short-term or large long-term rewards. Meth-
ods exist for average reward POMDPs : Li et al. [12] find memoryless policies,
Yu et al. [29] use lower bound approximations, and Aberdeen [1] improves a
finite state controller by gradient methods. For decentralized problems, Petrik
et al. [19] show transition&observation independent average reward Dec-MDPs
are NP-complete, and use bi-linear programming. Yagan et al. [28] minimize
average cost in a transition&observation independent special-case Dec-POMDP
where agents don’t affect or sense the world state seen by other agents. In gen-
eral Dec-POMDPs agents affect each other in complex ways. To our knowledge
there is no research on general average reward Dec-POMDPs, but research on
finite-horizon [22, 14, 23] and discounted reward Dec-POMDPs [24, 5, 4, 3, 2, 10,
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17] exists. Kakade et al. [9] showed MDP average reward could be approximated
by discounting with large discount factor, but in our experiments real average
reward optimization outperformed discounting.

3 Dec-POMDP

A Dec-POMDP is a solution to multi-agent planning under uncertainty about
the world and other agents. It is defined by a set of N agents, the set of actions
A, the set of states S, the set of observations O, the observation probability
P (o|s′,a), the state transition probability P (s′|s,a), and real valued immediate
reward function R(s,a). Here o denotes the observations o1, . . . , oN and a the
actions a1, . . . , aN of all agents. In each time step, the world starts from state s,
each agent i takes action ai, and the world transitions to the next state s′ with
probability P (s′|s,a). Agents then make their observations o with probability
P (o|s′,a) and the action-observation cycle begins again. An agent does not sense
actions, states or observations of other agents, so computational complexity of
planning is high. In each time step the agents get immediate reward R(s,a)
depending on their actions a and the world state s. The finite-horizon objective
is to maximize reward E[

∑T

t=0 Rt(s,a)|π] where T is the horizon, π is the policy
(consisting of the individual policies of all agents), and Rt(s,a)|π is the reward
at time step t following π. In the discounted reward case, expected discounted
reward over an infinite-horizon E[

∑∞
t=0 γ

tRt(s,a)|π] is maximized, with discount
factor 0 < γ < 1. With discounting, reward decreases geometrically with the
horizon. Both finite-horizon and discounted reward objectives need an initial
state probability distribution b0(s) called the initial belief.

Finite state controllers (FSCs) have been used as policy in POMDP [20,
8, 2, 17] and infinite-horizon discounted reward Dec-POMDP [24, 5, 4, 3, 2, 10,
17] methods. The FSC of agent i consists of a set {qi} of FSC states qi, an
action probability distribution P (ai|qi), and FSC state transition probability
P (q′i|qi, oi). For simplicity, similar to the approach in [2], an agent starts in state
qi = 1. In each time step, agent i in state qi takes action ai with probability

P
(i)
aq = P (ai|qi). The world transitions to a new world state, the agent gets ob-

servation oi about the world, and moves to a new FSC state q′i with probability

P
(i)
q′qo = P (q′i|qi, oi).

3.1 Average Reward Dec-POMDP

Intuitively average reward Dec-POMDPs optimize the policy to maximize aver-
age reward over an infinite horizon. Formally, they must maximize Raverage =

E
[

limT→∞
1
T

∑T−1
t=0 Rt(s,a)|π

]

. Unlike finite-horizon and discounted reward ob-
jectives, Raverage does not need a parameter controlling effective planning hori-
zon and depending on the underlying Markov chain does not need an initial
belief. In Dec-POMDPs, an agent needs the full observation history to make
optimal decisions [6]. As average reward Dec-POMDPs run the policy for arbi-
trarily long times, we use FSCs as policies taking a fixed amount of memory.
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For a set of FSCs (one per agent), the world state s and the FSC states qi
together form a state of a Markov chain as follows: given the current state
(s, q), where q = q1, . . . , qN , the probability for the next time step state

(s′, q′) is Ps′q′sq = P (s′, q′|s, q) =
∑

a,o P (o|s′,a)P (s′|s,a)
∏

i

(

P
(i)
aq P

(i)
q′qo

)

.

With initial belief b0(s) the initial probability distribution over (s, q) is
P0(s, q) = b0(s)

∏

i P (qi) and Pt(s, q) is the initial distribution projected t
time steps into the future. The expected immediate reward for Pt(s, q) is
∑

s,q,a Pt(s, q)R(s,a)
∏

i P
(i)
aq . The optimization objective is then

RFSCs = limT→∞
1
T

∑T−1
t=0

∑

s,q,a

(

Pt(s, q)R(s,a)
∏

i P
(i)
aq

)

. Average reward Dec-
POMDP problems can be grouped by properties of the above-described Markov
chain. We consider fully stochastic policies, like FSCs with nonzero action and
transition probabilities; the properties below don’t depend on the policy as long
as it is fully stochastic. Useful Markov chain classes (similar to [21]) are Recur-
rent - all states reachable from all states; Periodic - the greatest common divisor
of the return time of one or more states is greater than one; Aperiodic - no state
is periodic; Unichain - one set of recurrent states and a set of zero or more
transient states; and Multichain - two or more closed irreducible sets of recur-
rent states and zero or more transient states. We focus on aperiodic problems.
When the Markov chain is aperiodic, Pt(s, q) converges to a stationary limit-
ing distribution P∗(s, q) = limt→∞ Pt(s, q). Since rewards are bounded, RFSCs

becomes
RFSCs,aperiodic =

∑

s,q,a

P∗(s, q)R(s,a)
∏

i

P (i)
aq . (1)

For multichain Markov chains, the limiting distribution depends on initial belief:
if e.g. a robot can enter one of two hallways but cannot switch later, its start
position affects the limiting distribution. For unichain Markov chains the limiting
distribution does not depend on initial belief. Average reward unichain models
are of practical interest: in a wireless network case, agents’ transmission buffer
sizes are the world state and transmission policies must be optimized to keep
buffers as empty as possible; the reward is the negative sum of buffer sizes and the
initial belief is the distribution over buffer sizes. Generally initial belief influences
the best achieved policy so the belief should be optimized with the policy, but
for unichain Markov chains we need not optimize initial belief since the optimal
policy always yields the optimal limiting distribution.

4 Expectation-Maximization Planning

Expectation-maximization (EM) has been used to optimize finite state con-
trollers (FSCs) for discounted reward in MDPs and POMDPs [27], Dec-POMDPs
[10, 17], and factored Dec-POMDPs [16]. In EM the idea is to scale rewards into
probabilities and, by inference, find FSC parameters maximizing the reward like-
lihood. EM has been extended to problems with huge [16] and continuous [27]
state spaces.We now introduce an average reward EM method for aperi-

odic Dec-POMDPs. (For experiments, we introduce a nonlinear programming
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based alternative in the Appendix.) We first use a traditional EM approach and
show the result is stuck in a local optimum under certain conditions (see Section
4.1 for more details); we then use it as a foundation for a modified approach and
introduce a practical EM method that yields good results.

An EM approach scales the real valued reward function into a binary reward
variable r. Denote with R̂sa = R̂(r = 1|s,a) the conditional probability for
r to be one given actions a and state s. R̂sa is computed by scaling the real
valued reward function using the minimum Rmin and maximum Rmax rewards:
R̂sa = (R(s,a)−Rmin)/(Rmax−Rmin). In average reward Dec-POMDPs, FSC
parameters θ are optimized to maximize average reward over time, scaled as
above into a likelihood of a binary reward:

P (r = 1|θ) = lim
TM→∞

TM−1
∑

T=0

1

TM

∑

s,q,a

R̂saPT (s, q)
∏

i

P (i)
aq , (2)

where the horizon TM is taken to the limit. It can be shown (2) corresponds
to the original average reward objective (1); moreover the continuous expected
average reward R(θ) can be extracted from the likelihood of the binary reward
as R(θ) = P (r = 1|θ)(Rmax − Rmin) + Rmin. Each EM iteration consists of
an E- and M-step: the E-step computes alpha and beta messages with old FSC
parameters to compute the log likelihood function, and the M-step finds new
FSC parameters that maximize the log likelihood.

E-step. Based on the current policy parameters θ, the E-step computes alpha
αsq
t and beta βsq

t messages:

αsq
0 = P0(s, q) , αs′q′

t =
∑

s,q

Ps′q′sqα
sq
t−1 , (3)

βs,q
0 =

∑

a

R̂sa

∏

i

P (i)
aq , βsq

t+1 =
∑

s′,q′

Ps′q′sqβ
s′q′

t . (4)

M-step. Let Lt denote a sequence of world states and FSC state, observation,
and action variables of all agents from time t = 0 to T , so that

LT = {(st, q1,t, . . . , qN,t, o1,t, . . . , oN,t, a1,t, . . . , aN,t)}
T
t=0 . Moreover, use P

(t)
os′sa

to denote P (ot+1, st+1|st,at) and R̂
(t)
sa to denote R̂(rt = 1|st,at), and for agent

i denote P (ai,t|qi,t) with P
(i,t)
aq and P (qi,t+1|qi,t, oi,t+1) with P

(i,t)
q′qo . Denote the

set of current FSC parameters (action and transition probabilities) by θ and

the set of new parameters by θ́. In the M-step, EM maximizes the expected log
likelihood Q(θ, θ́) denoted here with Q with respect to the new FSC parameters

θ́:

Q = lim
TM→∞

TM−1
∑

T=0

∑

LT

P r,LT ,T
θ,TM

logP r,LT ,T

θ́,TM

, (5)
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where

logP r,LT ,T

θ́,TM

= logP (r = 1, LT , T |θ́, TM ) = log R̂(T )
sa + logP (s0, q0)

+

T
∑

t=1

logP
(t−1)
os′sa +

∑

i

(

T
∑

t=0

log Ṕ (i,t)
aq +

T
∑

t=1

log Ṕ
(i,t−1)
q′qo )− logTM (6)

is the log-probability to receive binary reward r = 1 after the latent sequence
of actions and states LT . (6) shows that the new FSC probabilities of agent i

(action probability Ṕ
(i,t)
aq and FSC transition probability Ṕ

(i,t−1)
q′qo ) do not depend

on the new distributions of other agents. For brevity, denote sets of sum indices
as V6=i = {s, qj 6=i, aj 6=i} and W6=i = {s, qj 6=i, aj 6=i, s

′,o, q′}.

We now construct Q̃i, the part of Q affecting the new action probability Ṕ
(i)
aq

for agent i. We use Ṕ
(i,t)
aq to denote Ṕ

(i)
aq at time step t and use

P (r = 1, ai,t = ai, qi,t = qi|T, θ) =
∑

W6=i
αsq
t Pos′saP

(i)
q′qo

∏

j 6=i P
(j)
aq P

(j)
q′qoβ

s′q′

T−t−1

to denote the probability of a binary reward r = 1 at time T , when at t ≤ T agent

i takes action ai and the FSC state is qi. Since
∑

LT
P r,LT ,T
θ,TM

∑T

t=0 log Ṕ
(i,t)
aq =

∑T

t=0

∑

ai,qi
P (r = 1, ai,t = ai, qi,t = qi|T, θ) log Ṕ

(i)
aq , inserting (6) into (5) yields

Q̃i = lim
TM→∞

TM−1
∑

T=0

T
∑

t=0

∑

W6=i

αsq
t

TM

Pos′saP
(i)
q′qo

(

∏

j 6=i

P (j)
aq P

(j)
q′qo

)

βs′q′

T−t−1 log Ṕ
(i)
aq . (7)

In (7), breaking the sum over t into t = T and t = 0, . . . , T − 1 yields

Q̃i =
∑

ai,qi
P

(i)
aq log Ṕ

(i)
aq limTM→∞

∑TM−1
T=0

[

∑

V6=i

R̂sa

TM

(
∏

j 6=i P
(j)
aq

)

αsq
T +

∑T−1
t=0

∑

W6=i

α
sq
t

TM
Pos′saP

(i)
q′qo

(
∏

j 6=i P
(j)
aq P

(j)
q′qo

)

βs′q′

T−t−1

]

.

Because Ṕ
(i)
aq is normalized over ai, maximizing Q̃i with respect to Ṕ

(i)
aq yields

Ṕ
(i)
aq = P

(i)
aq limTM→∞

1
Cqi

∑TM−1
T=0

[

∑

V6=i
R̂sa

∏

j 6=i P
(j)
aq αsq

T

+
∑T−1

t=0

∑

W6=i
αsq
t Pos′saP

(i)
q′qo

∏

j 6=i P
(j)
aq P

(j)
q′qoβ

s′q′

T−t−1

]

,

where Cqi is a normalizing constant.
Similarly to [26, 10], we separate sums over alpha and beta messages using

limTM→∞

∑TM−1
T=0

∑T−1
t=0

α
sq
t β

s′q′

T−t−1

TM
= limTM→∞

∑TM−1
t=0 αsq

t

∑TM−1
τ=0

βs′q′

τ

TM
, where

τ = T − t− 1. The action probability update becomes

Ṕ (i)
aq = P (i)

aq lim
Tα,Tβ→∞

1

Cqi

[

∑

V6=i

R̂sa

(

∏

j 6=i

P (j)
aq

)

Tα−1
∑

T=0

αsq
T +

∑

W6=i

Tα−1
∑

t=0

αsq
t Pos′saP

(i)
q′qo

(

∏

j 6=i

P (j)
aq P

(j)
q′qo

)

Tβ−1
∑

τ=0

βs′q′

τ

]

, (8)

where we have used alpha and beta horizons, Tα and Tβ, in place of TM , to be
used in later discussions.
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4.1 Analysis: Stuck in a Local Optimum

We now prove that the action probability update of the traditional EM approach
is stuck in a local optimum under certain conditions. The proof that the FSC
transition probability updates are stuck is similar and is omitted.

The proof requires stochastic FSCs and that each closed irreducible state set
has at least one state with a non-zero reward probability. These conditions are
common. Firstly, the policy is usually stochastic, because a deterministic pol-
icy is always stuck, even in discounted POMDPs/Dec-POMDPs, because of the
multiplicative nature of EM parameter updates. Secondly, the reward probability
condition is common. If all sets of irreducible states have zero reward probabil-
ity, then only transient states have non-zero reward probability. Therefore, the
reward probability approaches zero at distant time steps and the need for taking
long-term effects of actions into account, the motivation behind average reward,
disappears. There may be multichain problems where some of the irreducible
closed state sets have, and others do not have, non-zero reward probabilities.
We are not aware of such problems, but this may need further investigation.

Note that the proof applies also to average reward POMDPs. The proof for
POMDPs is obtained by just setting the number of agents to one. We do not
claim the proof to hold in problems without stochastic controllers (e.g. it is
possible to use EM in MDPs so that the action probability depends directly on
the world state). In particular, we assume in the proof that

∑

s α
sq
∗ > 0 for all

q, which is true for stochastic controllers.
Preliminary. Recall that αt = {αsq

t } is a projection of the initial belief for
t steps following the current policy. To measure difference between a probability
distribution and the limiting distribution, we use the total variation distance
DTV [11], defined as the largest absolute difference of the probability of the
same state in two distributions. The distance between distribution αt at time
step t and the limiting distribution α∗ is DTV (αt, α∗) = maxs,q |α

sq
t − αsq

∗ |. In
aperiodic Markov chains, total variation distance decreases exponentially3 with
time t:

DTV (αt, α∗) ≤ Cǫǫ
t; 0 < ǫ < 1 , (9)

where Cǫ > 0 and ǫ are constants. In unichains the limiting distribution is
unique, but in multichains it depends on the starting distribution. We will not
denote the dependence on the starting distribution explicitly but we refer to it
when necessary.

Theorem 1 In unichain and multichain aperiodic Dec-POMDPs, the EM ac-
tion probability update never changes finite state controller (FSC) parameter
values, when each closed irreducible state set has at least one state for which a
non-zero reward probability exists, and when the FSC policy is fully stochastic.

3 Theorem 4.9 in [11] shows this for aperiodic irreducible Markov chains. It is straight-
forward to modify the proof of the theorem to also apply to aperiodic unichains and
multichains, which may have transient states in addition to irreducible communi-
cating classes of states: the equilibrium distribution π in [11] is just replaced with a
limiting distribution, which has a zero probability for each transient state.
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Proof. We write (8) as Ṕ
(i)
aq = P

(i)
aq

[

H
(i)
aq +J

(i)
aq

]

, whereH
(i)
aq is the expected sum of

reward probabilities gained over all time in situations where agent i was in state

qi and took action ai, scaled by a normalization term, and J
(i)
aq is the expected

sum of reward probabilities over the future from such situations, again scaled

by the normalization term. We have H
(i)
aq = limTα,Tβ→∞

1
Cqi

H̃
(i)
aq and J

(i)
aq =

limTα,Tβ→∞
1

Cqi

J̃
(i)
aq where Cqi =

∑

ai
P

(i)
aq (H̃

(i)
aq + J̃

(i)
aq ) is the normalization

term, and we denoted H̃
(i)
aq =

∑

V6=i
R̂sa

∏

j 6=i P
(j)
aq

∑Tα−1
T=0 αsq

T and also denoted

J̃
(i)
aq =

∑

qj 6=i,aj 6=i,s,s′,q′

∑Tα−1
t=0 αsq

t P
(i)
s′q′aisq

∑Tβ−1
τ=0 βs′q′

τ . The term P
(i)
s′q′sqai

=
∑

o,aj 6=i
Pos′saP

(i)
q′qo

∏

j 6=i P
(j)
aq P

(j)
q′qo is the probability that the world and agents

will transition to states (s′, q′) given their current states (s, qj 6=i) and a specific

action ai and controller state qi of the ith agent. For convenience, define Ĵ
(i)
aq as

Ĵ (i)
aq = lim

Tα,Tβ→∞

TαTβ

Ĉqi

∑

sτ ,aτ ,qτ

R̂sτaτ
αsτ ,qτ
∗

∏

j

P (j)
aτ qτ

= lim
Tα,Tβ→∞

TαTβ

Ĉqi

· const ,

here Ĉqi =
∑

ai
TαTβ

∑

sτ ,aτ ,qτ
R̂sτaτ

αsτ ,qτ
∗

∏

j P
(j)
aτqτ is another normalizing

term. We now prove that J
(i)
aq = Ĵ

(i)
aq and H

(i)
aq = 0. We will then show Ĵ

(i)
aq

converges to a constant and that the action update is thus stuck.

To prove J
(i)
aq = Ĵ

(i)
aq we show that |J

(i)
aq − Ĵ

(i)
aq | = 0. Expand the recursive

form of beta messages as

βs,q
τ =

∑

sτ ,qτ ,aτ

P (sτ , qτ |s0 = s, q0 = q)R̂sτaτ

∏

j

P (j)
aτqτ

,

where P sτ ,qτ
s,q = P (sτ , qτ |s0 = s, q0 = q) is the probability to arrive at world

and controller states sτ , qτ in τ steps when starting from s, q. Use the expanded

form to compute an upper bound on |J
(i)
aq − Ĵ

(i)
aq |:

∣

∣

∣
lim

Tα,Tβ→∞

[ 1

Cqi

∑

qj 6=i,aj 6=i

s,s′,q′

Tα−1
∑

t=0

αsq
t P

(i)
s′q′aisq

Tβ−1
∑

τ=0

βs′q′

τ −
TαTβ

Ĉqi

∑

sτ ,aτ ,qτ

(

R̂sτaτ
αsτ ,qτ
∗

∏

j

P (j)
aτ qτ

)]∣

∣

∣
≤

∣

∣

∣
lim

Tα,Tβ→∞
Tα

[ 1

Cqi

∑

qj 6=i,aj 6=i

s,s′,q′

αsq
∗ P

(i)
s′q′aisq

Tβ−1
∑

τ=0

∑

sτ ,qτ ,aτ

P sτ ,qτ

s′,q′ R̂sτaτ

∏

j

P (j)
aτ qτ

−
1

Ĉqi

Tβ−1
∑

τ=0

∑

sτ ,aτ ,qτ

R̂sτaτ
αsτ ,qτ
∗

∏

j

P (j)
aτqτ

]∣

∣

∣

≤ lim
Tα,Tβ→∞

[

Tβ−1
∑

τ=0

∑

sτ ,aτ

R̂sτaτ
P

(i)
aτ qτTα

min(Cqi , Ĉqi )

∣

∣

∣

∑

qj 6=i,aj 6=i

s,s′,q′

αsq
∗ P

(i)
s′q′aisq

P sτ ,qτ

s′,q′ − αsτqτ
∗

∣

∣

∣

]

≤ lim
Tα,Tβ→∞

Tα

min(Cqi , Ĉqi)

Tβ−1
∑

τ=0

Cǫǫ
τ = lim

Tα,Tβ→∞

Tα

min(Cqi , Ĉqi)

Cǫ

1− ǫ
= 0 . (10)
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The last equality follows because min(Cqi , Ĉqi) approaches infinity quadrati-
cally: omitting all nonessential notation, Cqi contains a double sum over terms

αsq
t βs′q′

τ , from t = 0 to Tα−1 and from τ = 0 to Tβ−1. Since the FSCs are fully
stochastic, for each q the marginal limit probability is nonzero and thus one state
(s, q) must have nonzero limit probability αsq

∗ (and probability close to the limit
for an infinite number of terms), i.e. it is a recurrent state. By assumption (see
theorem) one recurrent state must have nonzero reward; such states are visited
an infinite number of times, thus the double sum grows faster than TαTβ · const

for some constant. Ĉqi has similar terms and also grows quadratically.

The first inequality in (10) comes from exponential decrease of DTV (αt, α∗)
4.

In the second inequality we bounded terms P
(j)
aτqτ by 1 for j 6= i. The third in-

equality follows from using (9) to upper bound the term
∣

∣

∣

∑

qj 6=i,aj 6=i,s,s′,q′ α
sq
∗ P

(i)
s′q′aisq

P (sτ , qτ |s0 = s′, q0 = q
′) − αsτqτ

∗

∣

∣

∣
. To apply (9),

αsq
∗ P

(i)
s′q′aisq

P (sτ , qτ |s0 = s′, q0 = q
′) must converge in the limit τ → ∞ to

αsτqτ
∗ , we show this. Define P0(s

′, q′|ai, qi) =
∑

qj 6=i,aj 6=i,s
αsq
∗ P

(i)
s′q′aisq

and

Pτ (sτ , qτ |ai, qi) =
∑

s′,q′ P (sτ , qτ |s0 = s′, q0 = q
′)P0(s

′, q′|ai, qi).

In a unichain, the starting distribution does not affect the limiting distri-
bution. Hence, limτ→∞ Pτ (sτ , qτ |ai, qi) = αsτqτ

∗ . In a multichain the limiting
distribution depends on the starting distribution, however, in αsq

∗ and thus in
P0(s

′, q′|ai, qi), all transient Markov chain states have zero probability (easy to
verify from the definition of a transient state) and the probability mass is dis-
tributed among closed irreducible classes in the exactly same proportion as in
αsτqτ
∗ . Further forward projection of the Markov chain does not change this prob-

ability mass distribution (as the irreducible classes are closed), thus, similarly
to the unichain case, the Markov chain starting from P0(s

′, q′|ai, qi) converges

to αsτqτ
∗ . Next, we show that H

(i)
aq is zero.

We have H
(i)
aq = limTα,Tβ→∞

Tα

Cqi

∑

V6=i
R̂sa

∏

j 6=i P
(j)
aq

1
Tα

∑Tα−1
T=0 αsq

T =

limTα,Tβ→∞
1

Cqi

Tα

∑

V6=i
R̂sa

∏

j 6=i P
(j)
aq αs,q

∗ , because limTα→∞
1
Tα

∑Tα−1
T=0 αsq

T =

limTα→∞
1
Tα

Tαα
sq
∗ = αsq

∗ . Because Tα

Cqi

becomes zero in the limit, by the same

argument as Tα

min(Cqi
,Ĉqi

)
becomes zero in (10), and because other terms are finite

in the limit, H
(i)
aq is zero. Since H

(i)
aq is zero and J

(i)
aq converges to a constant, the

probability update multiplies all action probabilities by the same constant; this

concludes the proof and Ṕ
(i)
aq = P

(i)
aq · const .

Theorem 1 may be surprising as the discounted reward EM methods [26, 10, 16]
improve the policy in each EM iteration so that the discounted reward never
decreases. Getting stuck is a consequence of the average reward setting, where
the entire future must be fully taken into account. We next give a practical EM
approach for average reward Dec-POMDPs that allows policy improvement.

4 See http://users.ics.aalto.fi/jpajarin/avgrew/supplement.pdf for details.
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4.2 A Practical EM Method

The average reward EM described above is always stuck in a local optimum.
To force a change to FSC parameters in the M-step, one could try to use fixed
instead of infinite horizons. Fixing a horizon induces an approximation error to
parameter updates that decreases with a larger horizon. Discounted reward EM
methods effectively fix both Tα and Tβ to the same horizon by using discounted
rewards. This has at least three drawbacks in average reward problems: 1) an
initial belief is needed in optimization, 2) discounting rewards increases approxi-
mation error compared to uniform rewards, 3) limiting both Tα and Tβ increases
approximation error more than limiting only one of them.

We now give update rules with an infinite Tα, and propose to set only Tβ

to a fixed value which is doubled during optimization whenever the current
policy value would decrease. This has several advantages. By not limiting Tα

we do not need an initial belief in unichain problems and can compute the
sum of alpha messages efficiently as detailed later in this Section. Furthermore,
the approach allows to reduce the approximation error in parameter updates
until the policy value increases. The adaptation of Tβ is necessary not only
because we know a priori that a too low Tβ may not always yield increased
value, but also because the approximation error that a specific Tβ causes is
problem dependent: the mixing rate of the Dec-POMDP determines how fast a
distribution converges to the stationary distribution and this in turn determines
how high the approximation error for a certain Tβ is. In short, this kind of
approach is necessary to adapt Tβ to the specific Dec-POMDP problem.

Since limTα→∞
1
Tα

∑Tα−1
t=0 αsq

t = limTα→∞ αsq
Tα

= αsq
∗ , the action probabil-

ity update is derived from (8) and becomes Ṕ
(i)
aq =

P
(i)
aq

Cqi

∑

s,qj 6=i

αsq
∗

∑

aj 6=i

[

R̂sa

∏

j 6=i

P (j)
aq +

∑

s′,o,q′

Pos′saP
(i)
q′qo

(

∏

j 6=i

P (j)
aq P

(j)
q′qo

)

Tβ
∑

τ=0

βs′q′

τ

]

.

(11)
The transition probability update is derived similarly to the action prob-

ability update resulting in

Ṕ
(i)
q′qo =

P
(i)
q′qo

C
(i)
oq

∑

s,qj 6=i,a,s′,oj 6=i,q
′
j 6=i

[

αsq
∗ Pos′saP

(i)
aq

∏

j 6=i

(

P (j)
aq P

(j)
q′qo

)

Tβ
∑

τ=0

βs′q′

τ

]

. (12)

We propose the practical EM algorithm as follows: set Tβ to an initial value
(we use 32), then apply E- and M-steps in turn until the policy value does not
increase or until any other stopping criterion is satisfied.

In the E-step the algorithm computes beta messages up to the horizon Tβ

using (4) and the limiting distribution αsq
∗ for alpha messages either projecting

until convergence using (3) or by solving a system of linear equations. Because the
EM algorithm gradually improves the policy, the limiting distribution from the
previous EM iteration is likely close to the new limiting distribution. An efficient
unichain implementation thus starts projecting from the limiting distribution of
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the previous EM iteration (in multichain problems projecting must start from
the initial belief). This saves much computation: for example, in the “long fire
fighting” experiment, iteration 1 needed 5000 projections, next iterations only
3-100 projections.

In the M-step the algorithm computes new FSC action and transition prob-
abilities by (11) and (12). After the M-step the algorithm checks whether the
value of a policy decreased: if it did, the algorithm multiplies Tβ by 2 and recom-
putes the beta messages and performs the M-step again, until the value does not
decrease (for Tβ → ∞ this would yield the original EM we derived; we limit Tβ

to a maximum of 32768). In the experiments, Tβ needed duplication only rarely.
Our practical EM is better than naive bounding/discounting both alpha and

beta. We efficiently compute exact infinite-horizon alphas, using the limiting
distribution from the previous iteration as the start of propagation, whereas
discounted EM would need to choose a discount factor and propagate alpha to
large horizons. Our EM is intuitive and easy to implement.

5 Experiments

We evaluate the average reward on two different sets of benchmark problems.
The first set consists of benchmark problems, used previously for evaluating
discounted reward Dec-POMDP methods [10, 3, 2, 16]. The second set consists
of two new average reward benchmark problems, which emphasize long-term
effects of actions.

For all problems, we compare the new expectation maximization (EM) aver-
age reward DEC-POMDP method (denoted “AvgEM”) of Section 4.2, against
a baseline and loose upper bounds of performance. We use a uniformly random
policy as baseline. For (loose) upper bounds we compute the optimal solution to
the average reward MDP underlying the DEC-POMDP with linear programming
[21]; this upper bound corresponds to agents that have full knowledge of the en-
vironment and each other. We also show AvgEM outperforms an alternative new
non-linear programming approach (denoted “AvgNLP”) which we introduce in
the Appendix. We compare AvgEM with a state of the art discounted reward
EM (denoted “DiscEM”) method [10] on different discount factors 0.9, 0.99, and
0.999; we show that AvgEM outperforms DiscEM in average reward problems
and has equal or better performance in benchmark problems from the discounted
reward literature. Optimization of a controller using the EM methods, optimiza-
tion of the random baseline, and optimization of the MDP upper bound were
run in Matlab on a single processor core. Methods were stopped if the change in
the policy value between iterations was under a small threshold. EM methods
had a time limit of one hour. Non-linear programs were solved with the SNOPT
solver on the publicly available NEOS server.

Benchmark problems from the discounted reward literature. The first six prob-
lems in Table 1 (denoted “Disc. Prob.“) have been used to evaluate discounted
reward methods [17], but as we evaluate methods by average reward, the earlier
evaluations based on discounted reward are not directly comparable. The prob-
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lems are: DecTiger (2,3,2), Recycling robots (4,3,2), 2x2 Grid meeting (16,5,2),
Wireless network (64,2,6), Box pushing (100,4,5), and Mars rovers (256,6,8),
where for each problem we list (number of states, number of actions, number
of observations). For each problem AvgEM, AvgNLP, and DiscEM optimized
different size FSCs in parallel over 10 random FSC initializations. Table 1 shows
also the average reward for the random policy and for the MDP upper bound.
AvgEM performs well, in “recycling robots” it is even close to the full-knowledge
upper bound. AvgEM outperforms AvgNLP and performs as well as “DiscEM
0.9”. “DiscEM 0.9” outperforms “DiscEM 0.99” and “DiscEM 0.999” demon-
strating that, in these problems, good results are already obtained with a small
discount factor. Next, we will discuss two new average reward problems with
long-term effects of actions.

Wireless network with overhead (|S| = 64, |Ai| = 2, |Oi| = 6). In the wireless
networking problem, [16] two wireless agents try to keep their transmit buffers,
modeled with four states, as empty as possible. Each buffer gets data from a two-
state source model. Buffer fullness is modeled as few states at rough intervals;
insertions/transmissions have a probability to change the buffer state. If both
agents transmit simultaneously both transmissions fail and data is not removed
from the buffers. The world state is the cross product of the transmit buffers and
source models, in total 64 states. In [16] the objective corresponded to minimizing
delay. In the new problem, successful transmissions are rewarded, corresponding
to maximizing throughput. In real wireless networks, decisions are made at 10
microsecond intervals; to reflect this, we multiplied the probability to transition
from one buffer state to another and the probability to insert data into a buffer
with 0.01. As overhead from packet headers etc. is proportionally smaller for
larger packets, the new wireless problem allows transmission of more data, when
the buffer is fuller: for buffer size x, y = 2x/(x + 1) data units are transmitted
(probability to change buffer state is proportional to y).

Long fire fight (|S| = 27, |Ai| = 2, |Oi| = 2). In the fire fighting problem
[15] two robots try to extinguish three houses and receive negative reward for
higher house fire levels (see [15] for details). In the new long fire fighting version
a house can also start burning on its own with probability 0.1. To make a single
Dec-POMDP time step correspond to a shorter time in the real application, we
multiplied all transition probabilities between fire levels with 0.01. In this version
a fire takes longer to put out, and it takes longer for fire levels to increase.

Table 1 shows results for the wireless network with overhead (denoted “Long
Wirel.“) and the long fire fight (denoted “Long FF”) problems (FSC size was
fixed to 3). In both problems AvgEM converged rapidly and got highest average
reward. Figure 1 shows convergence of the EM methods. Results for the dis-
counted method DiscEM agree with the observations in Section 4.2 about the
negative effect of discounting alpha and beta messages. DiscEM converges with a
low discount factor 0.9 to suboptimal solutions and with a large 0.999 factor too
slowly. Interestingly, in fire fighting “DiscEM 0.9” convergences to a bad local
optimum where both agents only try to extinguish the middle house, showing
the necessity of adapting optimization parameters to the specific Dec-POMDP
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problem. In fact, for most EM iterations AvgEM held parameter Tβ (see Section
4.2) between 32 and 512 in “wireless network with overhead” and at 32 in “long
fire fight”.

Table 1. Expected average reward of a uniformly random policy (“Random”), a MDP
based upper bound (“MDP”), the average reward nonlinear programming method
(“AvgNLP”), the discounted expectation maximization method (“DiscEM”) for dis-
count factors 0.9, 0.99, and 0.999, and the average reward expectation maximization
method (“AvgEM”) in benchmark problems used in discounted method research [10,
3, 2, 16] (“Disc. Prob.”) and in new average reward benchmarks (“Avg. Prob.”). A re-
sult is bolded, when the 95% confidence interval of the best result contains the result
or vice versa. AvgEM outperforms AvgNLP, performs as well or better as DiscEM in
discounted reward problems, and outperforms DiscEM in the average reward problems.

Disc. Prob. Random MDP AvgNLP DiscEM 0.9 DiscEM 0.99 DiscEM 0.999 AvgEM

DecTiger −46.22 20.00 −2.00 −1.375 −1.80 −2.19 −1.79

Rec. robots 0.45 3.27 1.24 3.08 3.08 2.59 3.08

2x2 Grid 0.25 1.00 0.28 0.80 0.83 0.56 0.75

Wireless −3.04 −1.46 −3.00 −1.96 −2.07 −2.86 −2.05

Box pushing −1.37 20.35 −0.19 3.69 3.45 0.28 3.75

Mars rovers −1.21 2.88 1.05 1.77 0.80 −0.315 1.55

Avg. Prob. Random MDP AvgNLP DiscEM 0.9 DiscEM 0.99 DiscEM 0.999 AvgEM

Long Wirel. 0.0063 0.0099 0.0089 0.0081 0.0085 0.0066 0.0093

Long FF −1.85 −0.20 −3.00 −4.00 −1.095 −1.44 −0.91

6 Conclusions

Average reward is a useful criterion for planning under uncertainty with multi-
ple agents; it has real-life importance in wireless networks and other domains.
We showed that traditional expectation maximization is stuck in average re-
ward Dec-POMDPs (and POMDPs) under certain conditions and provided a
new EM based method for average reward Dec-POMDPs. Our new EM method
yields good performance, outperforming a state of the art discounted reward
EM method in average reward problems. We also introduced two average re-
ward benchmark problems, long fire fighting and wireless network with overhead.
To our knowledge this is the first general Dec-POMDP method for

optimizing average reward.
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Appendix: Non-linear Programming for Average Reward

Dec-POMDPs

A non-linear programming (NLP) approach has been used in recent discounted
reward POMDP and Dec-POMDP research [2]. To study whether a NLP ap-
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Table 2. Non-linear program for an aperiodic unichain average reward Dec-POMDP.
The program maximizes the immediate reward of the limiting distribution P∗(s,q),
which corresponds to maximizing the average reward. The program solves for the FSC
parameters P

(i)

q′qo
and P

(i)
aq of each agent i.

Variables: P∗(s, q) and for each agent i: P
(i)
q′qo

, P
(i)
aq

Optimization goal: Maximize
∑

s,a
Rsa

∑
q
P∗(s, q)

∏
i
P

(i)
aq

Subject to the following constraints:

P∗(s
′, q′)−

∑
s,q

Ps′q′sqP∗(s, q) = 0 ,
∑

s,q
P∗(s, q) = 1 , P∗(s,q) ≥ 0 ∀s ∀q

∑
ai

P
(i)
aq = 1 ∀qi , P

(i)
aq ≥ 0 ∀qi ∀ai ,

∑
qi

′ P
(i)
q′qo

= 1 ∀qi ∀oi, P
(i)
q′qo

≥ 0 ∀qi ∀oi ∀q
′

i

proach is suitable for average reward cases, we introduce a new NLP based
method as an alternative to the expectation-maximization approach that we
recommend. We do not claim that the method below is the only possible NLP
approach to average reward Dec-POMDPs, but to our knowledge no other NLP
methods for average reward Dec-POMDPs have been presented so far, therefore
we use our method below as a first proxy.

Motivated by the linear programming solution for average reward MDPs [21]
we use the same basic idea that the limiting distribution remains the same over
successive time steps. Note that the discounted reward NLP approach in [2] uses
the Bellman equation to recursively define the optimal value function over world
and FSC states, but the approach requires a discount factor and is not directly
applicable to average reward problems. Instead we use the limiting distribution
as the basis for optimization.

Table 2 shows the non-linear program for solving aperiodic unichain aver-
age reward Dec-POMDPs. In Table 2 we have kept the notation for probability
distributions used throughout the paper, one may use functions instead of dis-
tributions for notational purposes. We now discuss the program from top to
bottom. Variables: The limiting distribution P∗(s, q) and the FSC parameters

of each agent i, P
(i)
q′qo and P

(i)
aq , are the variables to solve for. Optimization

goal: The optimization goal of the non-linear program is to maximize the aver-

age reward
∑

s,a Rsa

∑

q
P∗(s, q)

∏

i P
(i)
aq . First constraint: The first constraint

P∗(s
′, q′)−

∑

s,q Ps′q′sqP∗(s, q) = 0 forces P∗(s, q) to be a limiting distribution.
Other constraints: The remaining constraints force the probability distribu-
tions to be positive and to sum to one. In the experiments non-linear programs
were solved with the SNOPT solver on the publicly available NEOS server.


