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Abstract. In the age of information overload, collaborative filtering and
recommender systems have become essential tools for content discovery.
The advent of online social networks has added another approach to
recommendation whereby the social network itself is used as a source for
recommendations i.e. users are recommended items that are preferred by
their friends.
In this paper we develop a new model-based recommendation method
that merges collaborative and social approaches and utilizes implicit
feedback and the social graph data. Employing factor models, we repre-
sent each user profile as a mixture of his own and his friends’ profiles.
This assumes and exploits “homophily” in the social network, a phe-
nomenon that has been studied in the social sciences. We test our model
on the Epinions data and on the Tuenti Places Recommendation data, a
large-scale industry dataset, where it outperforms several state-of-the-art
methods.

1 Introduction

Online social networks (OSN) provide users with new forms of interaction that
currently shape the social lives of millions of people. The main ingredient of the
success of OSN’s is the ease with which friendships, groups and communities
arise. These groups often arise among like-minded users, i.e. users that share the
same interests. To explain our inexorable tendency to link up with one another
in ways that reinforce rather than test our preferences sociologists in the 1950s,
coined the term “homophily” a Greek word meaning love of the same.

Fundamental to online social networks and their commercial success is the
commercial exploitation of this phenomena. The principle of homophily is used
to recommend products and services through the social graph, i.e. if your friends
like an item it will be recommended to you. In effect, the social graph is used as
the recommendation engine. Leveraging the social graph to serve the user with
potentially useful services ( e.g. places, videos, coupons, etc.) can improve the
satisfaction the involvement and the time the user spends on the network. Most
recommendation algorithms work by modeling the bipartite graph of user-item
preferences. In effect, an implicit social network among users who share the same



taste is built and exploited. Methods based on this principle are often referred
to as Collaborative Filtering (CF) methods.

Notation Before going any further with CF some notations have to be intro-
duced. The data from which recommendations can be produced is typically de-
rived from interactions between users i ∈ U and items j ∈ M with a response
Yij ∈ Y. The data for n total users interacting with a collection of m items
can be thought of as a sparse n ×m so-called user-item matrix Y ∈ Y |U|×|M|
where |U| denotes the cardinal of set U . In this context, Yij = 1 indicates the
existence of an interaction (purchase, rating, etc.) between user i and item j. In
this sense, Yij = 0 is special since it does not indicate that a user dislikes an
item but rather that data is missing. We thus only have implicit information on
which items a user likes. To thus avoid an estimator that is overly optimistic
with regards to user preferences we need to take into account unobserved entries
(Yij = 0) as some form of negative feedback. Moreover from the social network
graph we know the set of friends Fi ⊂ U of user i.

A class of CF methods often used in recommender systems is memory or
similarity based methods [1] that work by computing similarity measures (e.g.
Pearson correlation) between users. Another common approach to collaborative
filtering and recommendation is to fit a factor model ( e.g. [2] ) to the data.
For example by extracting a feature vector Ui,Mj for each user and item in the
data set such that the inner product of these features minimizes an explicit or
implicit loss functional following a probabilistic approach). The underlying idea
behind these methods is that both user preferences and item properties can be
modeled by a number of latent factors.

The basic idea in matrix factorization approaches is to fit the original Y ma-
trix with a low rank approximation F = UM where matrix U contains the user
features and M the item features. More specifically, the goal is to find such an
approximation that minimizes the sum of the squared distances

∑
ij(Yij −Fij)2

between the known entries in Y and their predictions in F . Combining the two
approaches, i.e. direct recommendation over the social graph and recommenda-
tions using a collaborative filtering method can yield significant advantages both
in terms of the quality of the recommendations but also in terms of computa-
tional efficiency and speed.

In most recommendation domains the data come in the form of implicit
feedback (purchases, clicks, etc.) in contrast to explicit feedback such as ratings
where a user explicitly expresses his positive, neutral or negative attitude to-
wards an item. A key challenge in modeling implicit feedback data is defining
negative feedback, since in this case the observed data (user-item interactions)
can only be considered as a form of positive feedback. Moreover for non-observed
user − item interactions we cannot be certain if the user did not consider the
items or if the user considered the items and simply chose not to interact with
the items (reflecting a negative feedback). Hence we cannot ignore these entries
as this would lead to a model that would be overly optimistic with regard to
user preferences.



The Socially Enabled Collaborative Filtering model denoted as SECoFi in-
troduced here has several novel aspects:

– We develop a collaborative filtering model that also directly models the social
interactions and quantifies the influence/trust between each users based on
the implicit feedback data from the user and his friends.

– We develop a way to quantify and use this influence in the proposed col-
laborative filtering model, to our knowledge this is the first model to do so
without precomputing any affinity or similarity measures among users.

– SECoFi scales linearly to the number of user-item interactions and is tested
on a large-scale industry dataset with over 10M users where it outperforms
state-of-the-art socially enabled collaborative filtering methods.

– We extensively test SECoFi on two datasets (Tuenti, Epinions) and compare
it to three state-of-the-art socially-enabled collaborative filtering methods
and a matrix factorization method.

2 Socially Enabled Collaborative Filtering

The main idea behind factor models is to fit a model of a d dimensional latent
user U ∈ R|U|×d and item factors M ∈ Rd×|M| so that the scores between a
user and an item calculated by the inner product between the corresponding
rows of the user i and item j latent factor matrices Fij = UiMj can be used
to provide recommendations typically by displaying the top N scoring items to
the user. The latent factors U and M are typically computed by minimizing
some objective functions that either stem from regularized loss functions [3,4,5]
or are derived from probabilistic models [6]. In both cases the objectives are of
the form:

L(F, Y ) +Ω(F ) (1)

where L(F, Y ) is typically a loss function such as Frobenius norm of the error
‖F − Y ‖2F and Ω(F ) is a regularization term preventing from overfitting. A
typical choice is the Frobenius norm of the factors ‖M‖2F + ‖U‖2F [7].

2.1 Friends Influence

The key challenge of this work is to include the influence of the social graph
in a matrix factorization model. We choose to model the users preferences as
a mixture of his own and those of his friends. To this end we change the score
function to include the influence of the friendship network, and thus the score
function becomes:

Fij = UiMj +
∑
k∈Fi

αik
|Fi|

UkMj (2)

where αik is a weight parameter that encodes how much friend k influences user
i. This weight α takes value between 0 and 1.



As we presume “homophily” in the social network it is reasonable to assume
that some of the users latent preferences might not have been expressed in the
user-item data but could instead be encoded in the users friendship network.

Moreover the score function in Equation 2 encodes the fact that the user is
“influenced” by his friendship network and the weight αik quantifies the amount
of influence each individual friend k has on the user i. OSN users tend to have
dozens of friends and we can expect that the user might have similar preferences
to only a fraction of his friends. Moreover it should be noted that the influence is
not necessarily symmetric as a user might be “influenced” by a friend but might
not be exerting influence on his friend in the same manner.

Given this score function and the objective function in Equation 1, we can
devise an objective function with respect to the U , M factors and the influ-
ence weights αik. We define the matrix A such that Aik = αik,∀i,∀k ∈ Fi, 0
otherwise.

min
U,M,A

J =
∑

(i,j)∈Y

cij
(
UiMj +

∑
k∈Fi

αikUkMj

|Fi|
− Yij

)2
+ΩU,M,A (3)

where ΩU,M,A = λ1‖U‖2F + λ2‖M‖2F + λ3‖A‖2F is a regularizer term and cij is
a constant defined to give more weight to the loss function when dealing with
observed entries Yij = 1 than when Yij = 0.

2.2 Optimization

Although Equation 3 is not jointly convex in U , M , and A, it is still convex
in each of this factors whenever the remaining two are kept fixed. Since we
are dealing with implicit feedback data, we cannot give the same importance
to information we know to be true, (i.e. the user clicked/purchased an item
represented as a 1 in the Y matrix and thus showed and interest in it), and to
information we do not know the real meaning (i.e. the user had no interaction
with the item thus a 0 in the Y matrix and thus we are unsure about the
potential interest). Note that in contrast to factor models for explicit data (i.e.
ratings) where learning is performed only over the observed ratings in this case
we perform the optimization over the whole matrix Y including the unobserved
entries as a form of weak negative feedback.

We optimize the objective function in Equation 3 using the following block
Gauss-Seidel process: fixing alternatively two of the three parameters (U , M or
A), we update the third parameter. When two out of three parameters are fixed
the remaining problem is a basic and convex quadratic least-square minimization
that can be efficiently solved. So the optimization process consists in efficiently
updating, at each iteration, alternatively the user matrix U , the item matrix M
and the weight matrix A.

To get the proper updates for each of the three parameters (Ui, Mj and
αii′), we need to calculate the partial derivative of the objective in Formula 3
according to the corresponding factor matrices.



Update U To compute the update for the factor vector of a single user i, Ui,
we calculate ∂J

∂Ui
the derivative of the objective with respect to the users factors

and set it to 0. We can then analytically solve this expression with respect
to Ui. To formulate the update it is convenient to write the equations in a
matrix form. To this end we define a diagonal matrix Ci ∈ R|M|×|M| such that
Cijj = cij . cij encodes the confidence we have in each entry yij in the Y matrix,
i.e. observed entries clicks/purchases etc. get high confidence and thus a higher
weight cij = 1 + βyij where e.g. β = 20 while when yij = 0 i.e. no action has
been taken by user i on item j, yij = 0 and thus cij = 1.

Ui =

(
Yi•C

iMT − AiUMCiMT

|Fi|

)
(MCiMT + λ1I)−1 (4)

In this update rule, the real problem is not the inversion of the d× d (which is
in O(d3)) matrix but the computation of MCiMT (which seems to be at first
glance O(|M| × d2)). Note that MCiMT is an operation quadratic in |M| the
number of items. Computing this product is too expensive even for the smallest
datasets since it has to be done for each user. In the spirit of [8] we can replace
MCiMT by MMT + M(Ci − I)MT . Computing MMT is independent of the
user i and thus can be calculated once before each iteration (and not for each
user i), and by cleverly choosing cij , the product M(Ci−I)MT can be computed
efficiently. Since cij = 1+βyij , the diagonal terms of Ci− I will be zero for each
j where yij = 0. we can thus just compute MYi(C

i − I)YiM
T
Yi

, where Yi is the
set of items of user i. Because matrix Y is by it’s nature very sparse, we have
|Yi| � |M|. This leads to a computational complexity of O(|Yi| × d2) which is
linear in the number of items user i had interactions.

Update M To update matrix M , we use a matrix U ′ defined by U ′i = Ui +∑
k∈Fi

αikUk
|Fi|

for each user i. Using U ′ the loss function becomes:

L(U,M,A) =
∑
i,j

cij(U
′
iMj − Yij)2

The partial derivative calculation is pretty much straightforward and can be
easily written in a matrix notation if we use a diagonal matrix Cj , defined by
Cjii = cij

4. The update rule of Mj is as follows:

Mj = (U ′TCjU ′ + λ2I)−1U ′TCjY•j (5)

To compute the expensive product, we propose to reuse the trick described
above by writing it U ′TCjU ′ = U ′TU ′ + U ′TYj

(Cj − I)Yj
U ′Yj

, where Yj is the set

of the users that have purchased/consumed item j . Just like in the paragraph
concerning the update of U , we compute U ′TU ′ once before the iteration over
all items. The computational complexity of the update is U ′TYj

(Cj − I)YjU
′
Yj

is

O(|Yj | × d2).

4 Note that Cj ∈ R|U|×|U| while Ci ∈ R|M|×|M|



Update A One approach for updating A consists in working row by row, i.e.
update Ai• for each user i. Since Ai• has the same sparsity structure as the
adjacency matrix of the social graph we only need to compute the values AiFi .
By using the same procedure as above and setting the partial derivative of the
objective to 0 we get:

AiFi = (Yi•C
iMTUTFi

− UiMCiMTUTFi
)

(
UFi

MCiMTUTFi

|Fi|
+ λ3

)−1
(6)

Note again that the computational cost for calculating the product UiMCiMTUTFi
,

is limited since we can employ here the same trick we used in the update rules
for U and M . The main computational bottleneck is in the computation of the
inverse of the matrix which is of size |Fi|×|Fi|, implying a complexity in O(|Fi|3)
i.e. the computation scales cubically to the number of friends per user. Depend-
ing on the social network, if we have d� |Fi| for a significative fraction of users,
this update rule could be problematic.

Another approach for the update of α, is to compute them not in a user-
by-user fashion but relationship-by-relationship, i.e. update αii′ for given user
i and friend i′. By calculating the gradient and setting it to zero, we reach the
following update rule:

αii′ =

Yi• − UiM − ∑
k∈Fik 6=i′

αikUkM

|Fi|

CiMTUTi′

(
Ui′MCiMTUTi′

|Fi|
+ λ3

)−1
(7)

In this case, we just have to invert a scalar. And we can use the same trick as in
the update of U to compute the product MCiMT . This can indeed be rewritten
as MCiMT = MMT + MYi(C

i − I)YiM
T
Yi

, where Yi is the set of the items
liked/purchased by the user i.

Given that the complexity of computing Equation 7 is linear to the number
of friends of i, while the complexity of Equation 6 is polynomial to the number
of friends of i we choose to use 7. Finally note that the α parameters provide a
relative measure of the influence (or trust) of a given user on his friends.

Given the optimization procedures for U , M and A we iterativly update each
of the factor matrices by keeping the other two factor matrices fixed. We repeat
this procedure until convergence.

Prediction Using Equation 2 at prediction time can be slow since it requires
extensive memory access due to the need to retrieve the friends from the social
graph. To speedup the computation of the scores at prediction time we can
simply precompute the mixed user factors U ′i = Ui +

∑
k∈Fi

αik

|Fi|Uk. The score

computation then becomes Fij = U ′iMj .



3 Related Work

Much of the current work on OSN data and collaborative filtering models utilize
the social graph data in order to impose additional constrains on the modeling
process. Some methods [9,10,11] leverage the OSN graph information in factor
models by adding an additional term to the objective function of the matrix
factorization that penalizes the distance |Ui− 1

|Fi|
∑
k∈Fi

Uk|2 between the factors

of friends. This forces profiles among users that are friends to be similar. In [9]
a refinement to this approach was presented whereby the penalization of the
distance between friends was proportional to a Pearson correlation similarity

measure |Ui −
∑

k∈Fi
simikUk∑

k∈Fi
simik

|2computed on the items the users had consumed.

This enforced even greater similarity among friends that have consumed the
same items.

Another approach [12,13] that builds on [14] adds the OSN information by
minimizing a second binary loss function

∑
k∈Fi

L(Sik, UiUk), where S the ad-
jacency matrix of the graph, in the objective function that penalizes mistakes in
predicting friendship. These models also leverage side information (i.e. user, item
features) in the model. A similar method utilizing both a social regularization
and a social loss function approach was introduced in [15].

In [16] a trust ensemble model is introduced, the user is modeled as an
ensemble of his own and his friends preferences. While the functional form of this
model has similarities with the approach introduced in the current work there
are two crucial differences: 1) their method only deals with explicit feedback
data (ratings) while we focus on implicit feedback data which is the norm in
industry applications, 2) they precompute the weight of the influence or trust
of friends on the users based on the ratings, while in SECoFi the interaction
weights are computed in the model. This allows us to compute the interaction
weights even when the users do not actually share a common subset of items. We
demonstrate in the Experiments section that these are essential components
for the performance of the model.

The matrix factorization approach for implicit feedback data introduced in
[8] relies on using a least squares loss function and uses a trick that exploits the
sparse structure of the data (dominated by non-observed entries) to speed up the
optimization process. This approach though does not include any OSN informa-
tion. An approach that leverages the social network for apps recommendation
was introduced in [17]. Approaches such as [18] and [19] exploit geolocation in-
formation and context to recommend places to user. The focus of the current
work is on the OSN integration for place recommandation.

4 Experiments

Tuenti Places In the experiment section we use data from the places service
of the Tuenti OSN. Tuenti is Spain’s leading online Social Network in terms of
traffic. Over 80% of Spaniards aged 14-27 actively use the service and today



Table 1. Summary of the data used for the experiments

Users Places/Items Edges in SN

Tuenti 10M 100K 700M
Epinions 50K 140K 500K

counts more than 14M users and over a billion daily page views. Early 2010,
a feature was added to the Tuenti web platform whereby users could tell their
friends where they were, and which places they particularly enjoyed. These places
where added to the users profile.

The Data To test SECoFi, we used the Tuenti place-user interaction matrix, as
the matrix Y , that contains all the places the users have added to their profile.
We also used the social network F , i.e. the friendship matrix of Tuenti users.
The data contains about 10 million users and approximately 100,000 places.
Both of the matrices are very sparse, as each user has on average 4 places in
his profile and 60 friends. The social graph among the Tuenti users contains
approximately 700M edges that is each user has on average 70 friends. Note that
this is an industry-scale dataset where the user/places graph takes up 2GB of
storage space and the social graph data 22GB.

The Epinions data contains about 50k users and approximately 140,000 ar-
ticles. Here users form a social graph ( 500k edges) based on the trust they show
on each others reviews/ratings. Unlike the Tuenti data, the Epinions data is in
the form of ratings with values between 1 and 5. We replace the rating values by
1 to convert the data to implicit feedback (just like in the KDD cup challenge
2007 who-rated-what? ).

In contrast to the Tuenti data the relationships of the users are much more
well defined in the Epinions data in that they reflect trust in another users
opinion. Social relationships as the ones in the Tuenti data capture a much
wider range of relationships between users e.g. family relationships, neighbours,
classmates etc. which might not always translate into trust/influence.

Evaluation Protocol For the evaluation procedure we adopt a similar strategy
to [20]. We split the dataset into two parts, a training set to learn our model and a
test set for evaluation. The test set contains the last 25% of places or items added
to each users profile, and the training set contains all the remaining places/items
that where added in the users profile. For each user we draw randomly some
unobserved entries Yij = 0 assuming that these places/items are irrelevant to
the user. We use these randomly chosen unobserved entries for training some
of the methods in comparison (see Section 4). We used this protocol for both
datasets.

We trained the model to compute a score Fij for each user i place j in the test
set along with the randomly drawn irrelevant items and rank the items for each
user according to their scores. In recommendation algorithms we ultimately care



about the ranking of the items, we thus use ranking metrics for the evaluation.
A popular list-wise ranking measure for this type of data is the Mean Average
Precision metric (MAP) which is particularly well suited to recommendations
ranking since it puts an emphasis in getting the first items in the ranked list
right. MAP can be written as in equation 8.

MAP =
1

|U|

|U|∑
i=1

|M|∑
k=1

P (k)Yik

|Yi|
(8)

Where P (k) is the precision at the cut-off k. We also compute the RANK metric
described in [8] to evaluate the performance of the different models. In contrast
to the MAP metric, here smaller values indicate better performance. As we have
no rating data, the RANK metric can be written, as follows:

RANK =

∑
i,j

Yijrankij

|Y|
(9)

Where rankij is the percentile-ranking of the item j for a given user i.

Fig. 1. The MAP and RANK metrics with respect to the value of the coefficient β

beta

Methods in Comparison The first method we compare against is a matrix
factorization method based on alternating least squares optimization described
in [8]. This method is tailored to implicit feedback data, but does not take the



social graph into account. We can gauge based on the comparison with this
method how much the use of the social data improves the recommendation
performance. In the remaining we denote this method as iMF.

The second method we compare against is of [12], which takes advantage of
the social graph along with contextual information to perform their recommen-
dation. The resulting model is used to predict both items and friends for a given
user. As the focus here is on the social aspect we do not use any contextual
information but only the social graph. Thus adapting their objective function to
our evaluation environment we end up optimizing:

min
U,M

∑
(i,j)∈Y

L(UiMj , Yij) +
∑
i,i′∈Fi

L(UiU
T
i′ , Sij) +ΩU,M (10)

Where S represents the social graph (in which Sii′ is 1 if the users i and i′ are
friends, 0 otherwise), and where L and Ω are respectively the loss function and
the regularizer. The method was tested with several different loss function, we
picked the one that gave the best results, the logistic loss function and used
a simple l2-norm for the regularization term. Following [12] a stochastic gradi-
ent descent algorithm was used to optimize this objective. For the rest of the
experiment section, we will denote this method as LLA.

The third method we compare against was introduced in [9] and takes the
social data into account by penalizing the l2 distance between friends in the
objective function. Two ways are proposed to penalize the distance between
friends, we choose the one that gave them the best performance, i.e the one
denoted individual-based regularization. The objective function minimized in [9]
is the following:

min
U,M

∑
(i,j)∈Y

(UiMj − Yij)2 +
∑
i,i′∈Fi

sim(i, i′)‖Ui − Ui′‖2F + λ1‖U‖2 + λ2‖M‖2

Where sim(i, i′) is a similarity score between a user i and a user i′. This sim-
ilarity can be computed using vector space similarity or a Pearson correlation
coefficient. Also here a stochastic gradient descent algorithm is used to optimize
the objective function. In the remainder of this section we denote this method
as RSR.

The last method we compare against is the one described in [16]. The focus
of that work is on explicit feedback (ratings) and the social trust matrix A is
precomputed. The model is then trained by optimizing a simple loss among
the factors U and V , using a user-item rating dataset. We fit their method to
the implicit feedback problem by, precomputing and fixing the matrix A at the
beginning, and using the ponderation trick on the objective (with the use of the
coefficients cij) to make implicit feedback learning possible. We will denote this
method as Trust Ensemble. We also compare SECoFi to a baseline : the average
predictor, which will recommend the overall most popular places to each user.

Computational Complexity We first validate the efficiency of SECoFi by
measuring the time needed to execute one iteration of the SECoFi method using



a varying portion of the training data. We expect the method to show linear
scalability in terms of the users and the observed entries in the user/item dataset.
To this end we use the Epinions data and run one iteration of the algorithm for
each random data split. Those tests has been performed using a single Intel i5
core. The resulting timing information is displayed in Figure 2. Note the linear
growth in the running-time of the method given the different data splits.

Fig. 2. The running time of one iteration of SECoFi given different random data splits
20%, 40% etc. over the Epinions data.
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Results on the Tuenti Data We performed cross-validation for model se-
lection. We randomly initialize U and M drawing from a uniform distribution
between 0 and 1. For the initialization of the friendship weight αij , we found out
empirically that the best performance is achieved by initializing with αij = 1. We
also estimate that the optimal value of the parameter β (used in the coefficient
cij) is β = 30, according to the MAP and the RANK metrics (see Figure 1). We
used this value of β for all the experiments.

We validate the performance of SECoFi also over a range of values of the
number of factors d parameter (1, 5, 10, 15 and 20) on Tuenti. We repeated the
experiments several (10) times for each method and report the mean values of
the runs along with the standard deviations. We run experiments for different
values of d for each method, results are shown in Figure 3.

We observe that even for a small number of factors, SECoFi outperforms
the alternative social LLA and RSR enabled methods both in terms of MAP
and RANK (over 17% improvement for the MAP and over 14% for the RANK).
Moreover SECoFi is significantly better than iMF in terms of MAP, and for
higher values of d our method becomes statistically equivalent to iMF in terms
of RANK. Note that for recommendations where only a small number of items
k is shown to the user the importance of MAP is bigger then RANK since MAP
is a top-biased evaluation measure, i.e. placing items at the top of the list is
more important then lowering the overall ranking of the all the items. SECoFi



Fig. 3. The MAP and RANK metrics of the various methods on the Tuenti data
depending on the number of factors d.
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clearly outperforms in terms of MAP and RANK the Trust Ensemble method.
Surprisingly iMF seems to outperform the alternative socially-enabled LLA and
RSR methods in the comparison. One of the reason for this might be the strong
sparsity of the data which bodes well with methods that take all the non-observed
entries into account.

The relative performance between the methods does not depend strongly on
the number of latent variables used. Except for Trust Ensemble method which
was statistically equivalent to our method for small dimension, but we clearly
see the difference for bigger dimensions. Indeed, SECoFi outperforms Trust En-
semble as well in terms of MAP as of RANK for a number of factors d ≥ 10.
SECoFi outperforms the other methods for all the values of d we tested with.

We thus confirm that the relative performance of our model does not depend
on d for most of the alternative methods, we also observe that the relative perfor-
mance SECoFi method with regards to Trust Ensemble is enhanced with higher
numbers of factors. We also observe that the optimal regularization parameters
for SECoFi were always the same, independent of the value of d. This eases
the model selection process particularly compared to SGD based methods where
both a learning rate and a regularizer need to be tuned. Moreover it seems that
methods that are based on alternated least-square (ALS) optimization perform
better predictions than those that use SGD. Note that the SGD-based methods
subsample the unobserved entries to avoid biasing the estimator.



Experiments on the Epinions Data We repeat the experimental evaluation
of SECoFi on the publicly available Epinions5 dataset. We follow the same pro-
cedure as described for the Tuenti data, the experiment results for the different
methods on the Epinions data are shown in Figure 4.

Fig. 4. The MAP and RANK metrics of SECoFi and the remaining methods on the
Epinions dataset
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From the results we can draw similar conclusions to the experiments with the
Tuenti data: learning the friendship weights A during the optimization process
significantly improves the performance over methods that just use the social
network information as proposed by [16] without quantifying these relationships.
Note that SECoFi outperforms the second best method Trust Ensemble by 2.4%
in terms of MAP and by 4.1% in terms of RANK, while SECoFi outperforms
the remaining methods in comparison by more then 6% both in terms of MAP
and RANK. We observe that ALS based methods that take all the “unobserved
entries” of the data into account perform better then SGD-based approaches that
sample the space of “unobserved entries”. Moreover SECoFi performs relatively
well even utilizing a smaller numbers of factors d. This can be particularly useful
in recommendation engines that need to be compact in terms of memory usage
e.g. on a smartphone.

In Figure 5 we plot the distribution of the values of α for the two datasets.
Recall that the values of alpha encode the degree of influence or trust among

5 http://snap.stanford.edu/data/soc-Epinions1.html
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Fig. 5. Distribution of the values of α on Tuenti (a) and Epinions (b) datasets. The
distributions are bimodal.
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users. We observe that for both of the datasets there is a bimodal distribution.
For the Epinions dataset, most of the values are between 0 and 1 (99%) and 70%
of the values are around 1, signalling strong trust relationships among users.
For Tuenti, fewer values of α are around 1, and most of the values are close
to 0. While there is still some significant influence/trust among users it is less
prevalent than in the Epinions dataset. This reflects the nature of the data: in
the Epinions dataset the social network of the users is based on the trust that the
users put on each others opinions/ratings while the social relationships on the
Tuenti network are of much broader scope and can range from close friendships
to simple acquaintances, thus we also expect that a smaller fraction of these
relationships will reflect trust/influence. Note also that SECoFi outperforms the
competing methods to a higher degree on the Epinions data, another indication
that the social information in this dataset provides more information on the
preferences of the users.



Another important point is that SECoFi depends less on the “quality” of
the users Social Network. In fact iMF, which does not utilize OSN information,
is the best runner up in the experiments on the Tuenti dataset. This can be
attributed to the more relaxed definition of friends in a general purpose social
network such as Tuenti where we can expect that not all friends share the same
taste and preferences with the user. Alternative approches relying on a non-
adaptive contribution of friends (RSR, LLA) suffer more in this context, while
learning the weights α helps SECoFI to keep only the useful part of the users
social network with respect to the recommendations.

5 Conclusions

We presented a method minimizing a novel objective function that takes advan-
tage of the social graph data to perform personalized item recommendation on
implicit feedback data. SECoFi outperforms alternative state-of-the-art methods
in terms of ranking measures and also provides the added benefit of quantify-
ing the influence/trust relationships among users. The latter can be particularly
helpful when providing group recommendations e.g. when inviting a group of
users to an event etc. We can moreover use the computed αij values to perform
friend recommendation, by leveraging the fact that these values represent a mea-
sure of shared interest and taste among users which quantifies the “homophily”
effect.
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