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Abstract. Parallel coordinate descent algorithms emerge with the grow-
ing demand of large-scale optimization. In general, previous algorithms
are usually limited by their divergence under high degree of parallelism
(DOP), or need data pre-process to avoid divergence. To better exploit
parallelism, we propose a coordinate descent based parallel algorithm
without needing of data pre-process, termed as Bundle Coordinate De-
scent Newton (BCDN), and apply it to large-scale ℓ1-regularized logistic
regression. BCDN first randomly partitions the feature set into Q non-
overlapping subsets/bundles in a Gauss-Seidel manner, where each bun-
dle contains P features. For each bundle, it finds the descent directions
for the P features in parallel, and performs P -dimensional Armijo line
search to obtain the stepsize. By theoretical analysis on global conver-
gence, we show that BCDN is guaranteed to converge with a high DOP.
Experimental evaluations over five public datasets show that BCDN can
better exploit parallelism and outperforms state-of-the-art algorithms in
speed, without losing testing accuracy.

Keywords: parallel optimization, coordinate descent newton, large-scale
optimization, ℓ1-regularized logistic regression

1 Introduction

High dimensional ℓ1-regularized models arise in a wide range of applications,
such as sparse logistic regression [12] and compressed sensing [10]. Various opti-
mization methods such as coordinate minimization [4], stochastic gradient [15]
and trust region [11] have been developed to solve ℓ1-regularized models, among
which coordinate descent newton (CDN) is proven to be promising [17].

The growing demand of scalable optimization along with the stagnant CPU
speed impels people to design computers with more cores and heterogeneous
computing frameworks, such as generous purpose GPU (GPGPU). To fully uti-
lize these kinds of devices, parallel algorithms pop up like mushrooms in various
areas, such as parallel annealed particle filter for motion tracking by Bian et al [1]
and parallel stochastic gradient descent by Niu et al [13]. While works in [7, 19]
perform parallelization over samples, there are often much more features than
samples in ℓ1-regularized problems. Bradley et al [2] proposed Shotgun CDN for
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ℓ1-regularized logistic regression by directly parallelizing the updates of features.
However, Shotgun CDN is easily affected by interference among parallel updates,
which limits its DOP. To get more parallelism, Scherrer et al [14] proposed to
conduct feature clustering, which would introduce extra computing overhead.

To better exploit parallelism, we propose a new globally convergent algo-
rithm, Bundle Coordinate Descent Newton (BCDN), without needing of data
pre-process. In each outer iteration, BCDN randomly partitions the feature in-
dex set N into Q subsets/bundles with size of P in a Gauss-Seidel manner. In
each inner iteration it first parallelly finds the descent directions for P features
in a bundle and second, it conducts P -dimensional Armijo line search to find the
stepsize. A set of experiments demonstrate its remarkable properties: a highly
parallelized approach with strong convergence guarantee. Experimental results
with different bundle size P (DOP) indicate that it could run with high DOP
(large bundle size P ). Also, its high parallelism ensures good scalability on d-
ifferent parallel computing frameworks (e.g. multi-core, cluster, heterogeneous
computing).

The contributions of this paper are mainly threefold: (1) proposing a highly
parallelized coordinate descent based algorithm, BCDN; (2) giving strong con-
vergence guarantee by theoretical analysis; (3) applying BCDN to large-scale
ℓ1-regularized logistic regression.

For readability, we here briefly summarize the mathematical notations as
follows. s and n denote the number of training samples and the number of
features respectively.N = {1, 2, · · · , n} denotes the feature index set. (xi, yi), i =
1, · · · , s denote the sample-label pairs, where xi ∈ Rn, yi ∈ {−1,+1}. X ∈ Rs×n

denotes the design matrix, whose ith row is xi. w ∈ Rn is the unknown vector of
model weights; ej denotes the indicator vector with only the jth element equaling
1 and others 0. ∥ · ∥ and ∥ · ∥1 denote the 2-norm and 1-norm, respectively.

The remainder of this paper is organized as follows. We first briefly review two
related algorithms for ℓ1-regularized logistic regression in Section 2, then describe
BCDN and its high ideal speedup in Section 3. We give the theoretical analysis
for convergence guarantee of BCDN in Section 4 and present implementation and
datasets details in Section 5. Experimental results will be reported in Section 6.

2 Algorithms for ℓ1-regularized Logistic Regression

Consider the following unconstrained ℓ1-regularized optimization problem:

min
w∈Rn

Fc(w) ≡ c
s∑

i=1

φ(w;xi, yi) + ∥w∥1, (1)

where φ(w;xi, yi) is a non-negative and convex loss function; c > 0 is the reg-
ularization parameter. For logistic regression, the overall training losses can be
expressed as follows:

L(w) ≡ c
s∑

i=1

φ(w;xi, yi) = c
s∑

i=1

log(1 + e−yiw
Txi). (2)
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A number of solvers are available for this problem. In this section, we focus on
two effective solvers: CDN [17] and its parallel variant, Shotgun CDN [2].

2.1 Coordinate Descent Newton (CDN)

Yuan et al [17] have demonstrated that CDN is a very efficient solver for large-
scale ℓ1-regularized logistic regression. It is a special case of coordinate gradient
descent (CGD) proposed in [16]. The overall procedure of CDN is summarized
in Algorithm 1.

Given the current model w, for the selected feature j ∈ N , w is updated
along the descent direction dj = d(w; j)ej , where,

d(w; j) ≡ argmin
d

{∇jL(w)d+
1

2
∇2

jjL(w)d2 + |wj + d|}. (3)

Armijo rule is adopted based on [3] to determine the stepsize for the line search
procedure. Let α = α(w,d) be the determined stepsize, where,

α(w,d) ≡ max
t=0,1,2,···

{βt | Fc(w + βtd)− Fc(w) ≤ βtσ∆}, (4)

where 0 < β < 1, 0 < σ < 1, βt denotes β to the power of t, ∆ ≡ ∇L(w)Td +
∥w+d∥1−∥w∥1. This rule requires only function evaluations. According to [16],
larger stepsize will be accepted if we choose σ near 0.

Algorithm 1 Coordinate Descent Newton (CDN) [17]

1: Set w1 = 0 ∈ Rn.
2: for k = 1, 2, 3, · · · do
3: for all j ∈ N do
4: Obtain dk,j = d(wk,j ; j)ej by solving Eq. (3).
5: Find the stepsize αk,j = α(wk,j ,dk,j) by solving Eq. (4). //1-dimensional

line search
6: wk,j+1 ← wk,j + αk,jdk,j .
7: end for
8: end for

2.2 Shotgun CDN (SCDN)

Shotgun CDN (SCDN) [2] simply updates P̄ features in parallel, where each
feature update corresponds to one inner iterations in CDN, so its DOP1 is P̄ .
However, its parallel updates might increase the risk of divergence, which comes
from the correlation among features. Bradley et al [2] provided a problem-specific

1 DOP is a metric indicating how many operations can be or being simultaneously
executed by a computer.
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measure for SCDN’s potential of parallelization: the spectral radius ρ of XTX.
With this measure, an upper bound is given to P̄ , i.e., P̄ ≤ n/ρ + 1 to achieve
speedups linear in P̄ . However, ρ can be very large for most large-scale datasets,
e.g. ρ = 20, 228, 800 for dataset gisette with n = 5000, which limits the parallel
ability of SCDN. Therefore, algorithms with high parallelism are desired to deal
with large-scale problems. The details of SCDN can be found in Algorithm 2.

Algorithm 2 Shotgun CDN (SCDN) [2]

1: Choose the number of parallel updates P̄ ≥ 1.
2: Set w = 0 ∈ Rn.
3: while not converged do
4: In parallel on P̄ processors
5: Choose j ∈ N uniformly at radom.
6: Obtain dj = d(w; j)ej by solving Eq. (3).
7: Find the stepsize αj = α(w,dj) by solving Eq. (4). //1-dimensional line

search
8: w← w + αjdj .
9: end while

3 Bundle Coordinate Descent Newton (BCDN)

SCDN places no guarantee on its convergence when the number of features to
be updated in parallel is greater than a threshold, i.e., P̄ > n/ρ + 1. This
is because the 1-dimensional line search (step 7 in Algorithm 2) inside each
parallel loop of SCDN cannot ensure the descent of Fc(w) for all the P̄ parallel
feature updates. Motivated by this observation and some experimental results,
we propose to perform high dimensional line search to ensure the descent of
Fc(w). The proposed method is termed as Bundle Coordinate Descent Newton
(BCDN) whose overall procedure is summarized in Algorithm 3.

In each outer iteration, BCDN first randomly2 partitions the feature index
set N into Q subsets/bundles B1,B2, · · · ,BQ in a Gauss-Seidel manner,

Q∪
q=1

Bq = N and Bp
∩
p ̸=q

Bq = ∅, ∀ 1 < p, q < Q. (5)

For simplicity, in practice, all bundles are set to have the same size P , then
the number of bundles Q = ⌈ n

P ⌉. Note that in the following theoretical analysis,
the bundles can have different sizes.

Then in each inner iteration, BCDN first finds 1-dimensional descent direc-
tions (step 7) for features in Bq in parallel, then performs P -dimensional line
search (step 10) to get the stepsize along the descent direction.

2 The randomness is conducted by a random permutation of the feature index.
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Algorithm 3 Bundle CDN (BCDN)

1: Choose the bundle size P ∈ [1, n].
2: Set w1 = 0 ∈ Rn.
3: for k = 1, 2, 3, · · · do
4: Randomly partition N to B1,B2, · · · ,BQ satisfying Eq. (5).
5: for all Bq ⊆ N do
6: for all j ∈ Bq in parallel do
7: Obtain dk,j = d(wk,Bq

; j)ej by solving Eq. (3).
8: dk,Bq

← dk,Bq

+ dk,j .
9: end for
10: Find the stepsize αk,Bq

= α(wk,Bq

,dk,Bq

) by solving Eq. (4).//P -dimensional
line search

11: wk,Bq+1

← wk,Bq

+ αk,Bq

dk,Bq

.
12: end for
13: end for

Obviously, CDN is a special case of BCDN with the setting Q = n. That is,
Bq = {q}, q = 1, 2, · · · , n.

3.1 High Ideal Speedup3 of BCDN

In the following part, we will demonstrate that the ideal speedup of BCDN is
the bundle size P , compared to CDN.

First, in the computing procedure for descent direction (step 7 in Algorith-
m 3), the computing of 1-dimensional descent directions for each feature is inde-
pendent of each other. Therefore, the DOP is P and the ideal speedup also is P .
Then, we argue that, in BCDN, the P -dimensional line search (step 10 in each
outer iteration in Algorithm 3) also has the ideal speedup of P , in comparison
with CDN. In each outer iteration, BCDN runs Q = ⌈ n

P ⌉ times of P -dimensional
line search (step 10 in Algorithm 3), while CDN runs n times of 1-dimensional
line search (step 5 in Algorithm 1). However, the P -dimensional line search in
BCDN costs about the same computing time as the 1-dimensional line search in
CDN, which will be shown as follows.

First, each P -dimensional line search in BCDN will terminate roughly within
the same finite number of steps, with respect to CDN. This will be proven in
Theorem 1 and verified by experiments in Section 6.1. Second, the time costs
of one step of line search in BCDN and CDN are equivalent. In our BCDN

implementation, we maintain both dTxi and ew
Txi , i = 1, · · · , s and follow the

implementation technique of Fan et al (see Appendix G of [5]). That is, the

3 Here we introduce a notation “ideal speedup” to measure the speedup ratio for a
parallel algorithm on an ideal computation platform. The ideal platform is assumed
to have unlimited computing resources, and have no parallel schedule overhead.
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sufficient decrease condition in Eq. 4 is computed using the following form:

f(w + βtd)− f(w)

= ∥w+βtd∥1− ∥w∥1+ c(

s∑
i=1

log(
e(w+βtd)Txi + 1

e(w+βtd)Txi + eβtdTxi
) + βt

∑
i:yi=−1

dTxi)

≤ σβt(∇L(w)Td+ ∥w + d∥1 − ∥w∥1)

(6)

It is worth noting that BCDN and CDN share some steps in Algorithm 4: (1)

Algorithm 4 Armijo Line Search Details

1: Given β, σ,∇L(w),w,d and ew
T xi , i = 1, · · · , s.

2: ∆← ∇L(w)Td+ ∥w + d∥1 − ∥w∥1.
3: *Compute dTxi, i = 1, · · · , s.
4: for t = 0, 1, 2, · · · do
5: if Eq. (6) is satisfied then
6: w← w + βtd.

7: ew
T xi ← ew

T xieβ
tdT xi , i = 1, · · · , s.

8: break
9: else
10: ∆← β∆.
11: dTxi ← βdTxi, i = 1, · · · , s.
12: end if
13: end for

compute ∆ using the pre-computed value ∇L(w) (step 2 in Algorithm 4); (2) in
each line search step, they both check if Eq. (6) is satisfied. The only difference
is the rule of computing dTxi (step 3 in Algorithm 4): dTxi = djxij in CDN

because only the jth feature is updated, while dTxi =
∑P

j=1 djxij in BCDN.

However, dTxi in BCDN could be computed in parallel with P threads and a
reduction-sum operation, so the time cost is equivalent for CDN and BCDN.

Summarizing the above analysis, the ideal speedup of BCDN is the bundle
size P . It is worth noting that P can be very large in practice. In our experiments,
P can be at least 1250 for the dataset real-sim. See Table 2 for details.

4 Global Convergence of BCDN

Our BCDN conducts P -dimensional line search for all features of a bundle Bq

to ensure its global convergence, under high DOP. In this section, we will the-
oretically analyze the convergence of BCDN on two aspects: the convergence of
P -dimensional line search and the global convergence.

Lemma 1. BCDN (Algorithm 3) is a special case of CGD [16] with the specifi-
cation H ≡ diag(∇2L(w)).
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Proof. Note that, the selection of bundle set in Eq. (5) is consistent with that
used in CGD (Eq. (12) in [16]). Then, for descent direction computing for a
bundle in Algorithm 3, we have,

dk,Bq

=
∑
j∈Bq

d(w; j)ej

=
∑
j∈Bq

argmin
d

{∇jL(w)T d+
1

2
∇2

jjL(w)d2 + |wj + d|}ej (7)

= argmin
d

{∇L(w)Td+
1

2
dTHd+ ∥w + d∥1 | dt = 0, ∀t ̸∈ Bq} (8)

≡ dH(w;Bq) (9)

where Eq. (7) is derived by considering the definition of d(w; j) in Eq. (3); Eq. (8)
is obtained by applying the setting of H ≡ diag(∇2L(w)); Eq. (9) follows the
definition of the descent direction by Tseng et al (Eq. (6) in [16]). Therefore the
definition of direction computing is in a CGD manner.

Moreover, since BCDN conducts line Armijo search for dk,Bq

, it is clear that
BCDN is a special case of CGD by setting H = diag(∇2L(w)). �

By means of Lemma 1, we can use conclusions of Lemma 5 and Theorem
1(e) in [16] to prove the following theorems.

Theorem 1 (Convergence of P -dimensional line search). For ℓ1-regularized
logistic regression, the P -dimensional line search in Algorithm 3 will converge
within finite steps. That is, the descent condition in Eq. (4) Fc(w+αd)−Fc(w) ≤
σα∆ is satisfied for any σ ∈ (0, 1) within finite steps.

Proof. According to Lemma 5 of [16], to have finite steps of line search, it needs
two requirements. The first requirement is,

∇2
jjL(w) > 0, ∀ j ∈ Bq (10)

and the second requirement is that there exists E > 0 such that,

∥∇L(w1)−∇L(w2)∥ ≤ E∥w1 −w2∥ (11)

First, we prove that the first requirement in Eq. (10) can be satisfied. Note
that, we can easily obtain the closed form solution of Eq. (3):

d(w; j) =


−∇jL(w)+1

∇2
jjL(w)

if ∇jL(w) + 1 ≤ ∇2
jjL(w)wj ,

−∇jL(w)−1

∇2
jjL(w)

if ∇jL(w)− 1 ≥ ∇2
jjL(w)wj ,

−wj otherwise

(12)

where for logistic regression we have,

∇jL(w) = c
s∑

i=1

(τ(yiw
Txi)− 1)yixij

∇2
jjL(w) = c

s∑
i=1

τ(yiw
Txi)(1− τ(yiw

Txi))x
2
ij

(13)
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where τ(s) ≡ 1
1+e−s is the derivative of the logistic loss function. Eq. (13) shows

that ∇2
jjL(w) > 0 except for xij = 0,∀ i = 1, · · · , s. In this exception, ∇jL(w)

and ∇2
jjL(w) always remain zero. There are two situations: wj = 0 and wj ̸= 0.

• wj ̸= 0: according to Eq. (12), we have d(w; j) = −wj . Note that d(w; j) =
−wj also satisfies the sufficient decrease condition in Eq. (4), so wj becomes
zero in the first iteration. Then, in the following iterations, wj will always
satisfy the shrinking condition4 in BCDN and will always be removed from
the working set and remains zero.

• wj = 0: wj will always satisfy the shrinking condition and will be removed
from the working set from the first iteration to the end.

Under the above analysis, in the exception of ∇2
jjL(w) = 0, wj will becomes

zero and have no effect on the optimization procedure at least from the second
iteration to the end. Therefore Eq. (10) always holds for the working set.

Second, we prove the second requirement in Eq. (11). We follow the analysis
in Appendix D of [17]. For logistic regression, we have,

∥∇L(w1)−∇L(w2)∥ ≤ ∥∇2L(w̄)∥∥w1 −w2∥

where w̄ = tw1+(1− t)w2, 0 ≤ t ≤ 1. Note that, Hessian of the logistic loss can
be expressed as,

∇2L(w) = cXTDX (14)

where D = diag(D11, D22, · · · , Dss) with Dii = τ(yiw
Txi)(1−τ(yiw

Txi)). Con-
sidering Eq. (14) and the fact that Dii < 1, we have,

∥∇2L(w̄)∥ < c∥XT ∥∥X∥

Therefore, E = c∥XT ∥∥X∥ will fulfill the second requirement of Eq. (11). �

The experimental results in Section 6.1 support the analysis in Theorem 1.

Theorem 2 (Global Convergence of BCDN). Let {wk}, {αk} be the se-
quences generated by Algorithm 3. If supk α

k < ∞, then every cluster point of
{wk} is a stationary point of Fc(w).

Proof. In Algorithm 4, αk ≤ 1, k = 1, 2, · · · , which satisfies supk α
k < ∞. To

ensure the global convergence, Tseng et al made the following assumption,

0 < ∇2
jjL(w

k) ≤ λ̄, ∀j = 1, · · · , n, k = 1, 2, · · · (15)

Considering Eq. (14), we have ∇2
jjL(w

k) < c∥XT ∥∥X∥. Setting λ̄ = c∥XT ∥∥X∥
and following the same analysis in Theorem 1, we have ∇2

jjL(w
k) > 0 for all

features in the working set. Therefore Eq. (15) is fulfilled. According to Theorem
1(e) in [16], any cluster point of {wk} is a stationary point of Fc(w). �

Theorem 2 guarantees that our proposed BCDN will converge globally for
any bundle size P ∈ [1, n].

4 BCDN uses the same shrinking strategy as that in CDN (Eq. (32) in [17] ).
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5 Datasets and Implementation

In this section, various aspects of the performances of CDN, SCDN and BCDN
will be investigated by extensive experiments on five public datasets. For fair
comparison, in these experiments, we use these methods to solve logistic regres-
sion with a bias term b,

min
w∈Rn,b

Fc(w, b) ≡ c
s∑

i=1

log(1 + e−yi(w
Txi+b)) + ∥w∥1. (16)

5.1 Datasets

The five datasets used in our experiments are summarized in Table 15. news20,
rcv1, a9a and real-sim are document datasets, whose instances are normalized
to unit vectors. gisette is a handwriting digit problem from NIPS 2003 feature
selection challenge, whose features are linearly scaled to the [-1,1] interval. The

Table 1: Summary of data sets. #test is the number of test samples. The best
regularization parameter c is set according to Yuan et al [17]. Spa. means optimal

model sparsity (n−∥w∗∥0

n ), Acc. is the test accuracy for optimal model.
Dataset s #test n best c Spa./% Acc./%

a9a 26,049 6,512 123 2 17.89 84.97

real-sim 57,848 14,461 20,958 4 83.36 97.16

news20 15,997 3,999 1,355,191 64 99.80 95.62

gisette 6,000 1,000 5,000 0.25 90.7 98.10

rcv1 541,920 135,479 47,236 4 76.77 97.83

bundle size P for BCDN in Algorithm 3 is set according to Table 2. Note that P ∗

is only BCDN’s conservative setting, under which BCDN can quickly converge
with the most strict stopping criteria ϵ = 10−8 (defined in Eq. (17)). Moreover,
P can be larger for a common setting such as ϵ = 10−4 (see Section 6.4).

Table 2: Conservative bundle size P ∗ for each dataset.
Dataset a9a real-sim news20 gisette rcv1

Bundle size P ∗ 25 1,250 150 15 200

5 All these datasets can be downloaded at http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/
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5.2 Implementation

All the three algorithms, CDN, SCDN and BCDN, are implemented in C/C++
language. Since the shrinking procedure cannot be performed inside the par-
allel loop in SCDN and BCDN, to enable fair comparison, we use equivalent
implementation where the shrinking is conducted outside the parallel loop in
CDN. Further, we set σ = 0.01 and β = 0.5 for the line search procedure in the
three algorithms. OpenMP is used as the parallel programming model. Work in
parallel is distributed among a team of threads using OpenMP parallel for

construct and the static scheduling of threads is used because it proves to be
very efficient in our experiments.

The stopping condition similar to the outer stopping condition in [18] is used
in our implementation.

∥∇SFc(w
k)∥1 ≤ ϵend ≡ ϵ · min(#pos,#neg)

s
· ∥∇SFc(w

1)∥1, (17)

where ϵ is user-defined stopping tolerance; #pos and #neg respectively denote
the numbers of positive and negative labels in the training set; ∇SFc(w

k) is the
minimum-norm sub-gradient,

∇S
j Fc(w) ≡

∇jL(w) + 1 if wj > 0,
∇jL(w)− 1 if wj < 0,
sgn(∇jL(w))max(|∇jL(w)| − 1, 0) otherwise

We run CDN with an extremely small stopping criteria ϵ = 10−8 to get the
optimal value F ∗

c , which is used to compute the relative difference to the optimal
function value (relative error),

(Fc(w, b)− F ∗
c )/F

∗
c (18)

Some private implementation details are listed as follows:

• CDN: we use the source code included in LIBLINEAR6. Shrinking procedure
is modified to be consistent with the parallel algorithms BCDN and SCDN.

• SCDN: though Bradley et al [2] released the source code for SCDN, for fair
comparison, we reimplement it in C language based on CDN implementation.

• BCDN: we implement BCDN carefully, including the data type and the
atomic operation. For atomic operation, we use a compare-and-swap imple-
mentation using inline assembly.

6 Experimental Results

In this section we provide several groups of experimental results, including line
search step number, scalability and timing results about relative error, testing
accuracy and number of nonzeros (NNZ) in the model. To estimate the testing

6 version 1.7, http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/
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accuracy, for each dataset, 25% samples are used for testing and the rest samples
are used for training.

All experiments are conducted on a 64-bit machine with Intel(R) Core(TM)
i7 CPU (8 cores) and 12GB main memory. We set P̄ = 8 for SCDN in Algorithm
2 and use 8 threads to run the parallel updates with DOP of P̄=8.

For BCDN, the descent direction computing (step 7 in Algorithm 3) can have
the DOP of bundle size P , which is several hundreds even to thousand according
to Table 2, while our 8-core machine is unable to fully exhibit its parallelism
potential. To justify time performances of three algorithms impartially, we need
to estimate time cost for BCDN by running with at least P cores. Assuming we
have a machine with P cores, to distribute step 7 in Algorithm 3 to P cores, the
extra data transfer (if needed) is little: the training data (X,y) only needs to
be transferred once before all iterations, so its time cost can be omitted. Arrays

with the size of s × sizeof(double) bytes containing values of ew
Txi ,dTxi, i =

1, · · · , s need to be transferred each time, which costs very little extra transfer
time. Taking into count the scheduling time, we estimate the fully parallelized
computing time of descent direction computing tp by multiply the ideal parallel
time cost with a reasonable factor 2,

tp = (2 · tserial)/P,

where tserial is the serial time cost of step 7 in Algorithm 3.

6.1 Empirical Performance of Line Search

Table 3 reports the average number of line search steps per outer iteration.
These statistics support the analysis in Theorem 1: for all datasets, line search

Table 3: Average number of line search steps per outer iteration with ϵ = 10−4

Datasets a9a real-sim news20 gisette rcv1

CDN 96.2 3,455.3 3,022.3 472.2 10,272.4

SCDN 149.8 3,560.4 2,704.0 679.4 10,504.5

BCDN 6.0 5.7 62.4 97.6 57.3

of BCDN terminates in finite steps, which is far less than that of CDN and
SCDN. It is also in line with the analysis in Section 3.1: BCDN conducts about
1/P times of line search compared to CDN, while the time cost of each line
search is about the same for both. In Table 3, BCDN’s number of line search
steps is a little larger than 1/P times of that of CDN. This is because the
parallel direction computing procedure in BCDN slows its convergence rate,
which increases the number of line search steps. SCDN conducts more line search
steps than BCDN and CDN, which indicates that its parallel strategy cannot
well deal with interference among features and tends to diverge, thus needing
more line search steps to fulfill the descent condition in Eq. (4).
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6.2 Empirical Performance of Global Convergence

We verify the global convergence of all compared algorithms by setting the most
strict stopping criteria ϵ = 10−8. Fig. 1 of the relative error (see Eq. (18)) shows
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Fig. 1: Relative error under most strict stopping condition of ϵ = 10−8.

that in all the cases, BCDN could converge to the final value at the fastest speed.
Meanwhile, though SCDN behaves faster compared to CDN in the beginning,
it cannot converge in a limited time (Fig. 1(b),(c)) or cannot converge faster
than CDN (Fig. 1(a)). Table 4 with the runtime and iteration number reaches

Table 4: Runtime (sec) and iteration number. The number marked a ”∗” means
less than that of CDN

Methods
real-sim news20 rcv1

time #iter time #iter time #iter

CDN 210.2 1,311 6,426.4 50,713 11,583.9 2,970

SCDN 399.9 ∗1, 158 > 54, 672.9 > 82, 520 > 13, 900.6 > 3, 029

BCDN ∗13.2 1,838 ∗489.5 73,986 ∗2, 298.4 ∗2, 774

the same conclusion. The iteration number of SCDN is more than that of CDN,
while the iteration number of BCDN is less than SCDN except for real-sim. This
again indicates that SCDN tends to diverge with P̄ = 8 while BCDN can quickly
converge under strict stopping criteria with extremely high DOP (large bundle
size P , even to thousand).

6.3 Time Performance Under Common Setting

Fig. 2 plots relative error (see Eq. 18), testing accuracy and model NNZ, with
a common setting of ϵ = 10−4. We use the conservative setting P ∗ in Table 2
for BCDN. For all datasets, BCDN is much faster than CDN and SCDN, which
highlights its higher DOP and strong convergence guarantee. Note that for gisette
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Fig. 2: Time performance under common setting on 3 datasets. Top, middle
and bottom plot traces of relative error, testing accuracy and model NNZ over
training time, respectively. The dotted horizontal line is the value obtained by
running CDN with ϵ = 10−8.

SCDN is even slower than CDN, which comes from its tend to diverge at a DOP
of 8 (P̄ = 8).

6.4 Scalability of BCDN

This section evaluates the scalability of BCDN (runtime and number of outer
iterations w.r.t varying bundle size P ) with the common setting ϵ = 10−4. From
Fig. 3 one can see that the runtime (blue lines) becomes shorter as the increase
of bundle size P , which is in line with the analysis of BCDN in Section 3.1:
BCDN has an ideal speedup of P . At the same time, the increase of P brings
about more outer iterations (see the green lines in Fig. 3), which is because
more parallelism causes slower convergence rate. However, it will not introduce
extra runtime because of the more parallelism with larger P . With the feature
number of 20,958 (Table 1), real-sim could acquire an amazing high DOP of 1,300
or higher in Fig. 3 (b), which comes from the strong convergence guarantee of
BCDN.
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Fig. 3: Scalability of BCDN. Runtime (blue lines) and outer iteration number
(green lines) w.r.t varying bundle size P .

7 Conclusions

This paper introduces the Bundle CDN, a highly parallelized approach with
DOP of the bundle size P , for training high dimensional ℓ1-regularized logis-
tic regression models. It has a strong convergence guarantee under theoretical
analysis, which is consistent with empirical experiments. A set of experimen-
tal comparisons on 5 public large-scale datasets demonstrate that the proposed
BCDN is superior among state-of-the-art ℓ1 solvers for speed, which comes from
its high DOP to better exploit parallelism among features.

High DOP of BCDN makes it possible to develop highly parallelized algorith-
m on clusters with many more cores or heterogeneous computing frameworks [6]
such as GPU and FPGA. BCDN can also be used to solve other ℓ1-regularized
problems with a higher speed, such as Lasso, compressed sensing, Support Vector
Machine and other related discriminative models [9, 8].
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