
Boot-Strapping Language Identifiers for Short
Colloquial Postings

Moises Goldszmidt, Marc Najork, and Stelios Paparizos

Microsoft Research, Mountain View, CA 94043, USA
{moises, najork, steliosp}@microsoft.com

Abstract. There is tremendous interest in mining the abundant user
generated content on the web. Many analysis techniques are language
dependent and rely on accurate language identification as a building
block. Even though there is already research on language identification, it
focused on very ‘clean’ editorially managed corpora, on a limited number
of languages, and on relatively large-sized documents. These are not the
characteristics of the content to be found in say, Twitter or Facebook
postings, which are short and riddled with vernacular.

In this paper, we propose an automated, unsupervised, scalable solution
based on publicly available data. To this end we thoroughly evaluate
the use of Wikipedia to build language identifiers for a large number of
languages (52) and a large corpus and conduct a large scale study of
the best-known algorithms for automated language identification, quan-
tifying how accuracy varies in correlation to document size, language
(model) profile size and number of languages tested. Then, we show the
value in using Wikipedia to train a language identifier directly applicable
to Twitter. Finally, we augment the language models and customize them
to Twitter by combining our Wikipedia models with location information
from tweets. This method provides massive amount of automatically la-
beled data that act as a bootstrapping mechanism which we empirically
show boosts the accuracy of the models.

With this work we provide a guide and a publicly available tool [1] to the
mining community for language identification on web and social data.

Keywords: Language Identification, Wikipedia, Twitter

1 Introduction

The last decade has seen the exponential rise of user-generated content such
as contributions to web forums, Facebook posts and Twitter messages. There
is a tremendous interest in mining this content to extract trends, to perform
sentiment analysis [14], for automatic machine translation [10], and for different
types of social analytics [2]. There is consequently an entire industry providing
infrastructure, tools, and platform support to address these problems. Many of
the techniques are either language dependent (i.e., affective words for sentiment
analysis) or can benefit dramatically from knowing the language to apply certain

2

type of rules and knowledge. Thus, reliable automatic language identification is
a basic requirement for providing higher level analytic capabilities.

Even though there is a large body of research on language identification,
labeled as “solved” by some [13], the conventional wisdom is no longer valid.
Computers and smartphones have become internationalized, making it trivial to
publish postings in one’s native language. Constraints in the number of char-
acters have resulted in abbreviations (such as OMG, LOL), and in sentiment
and emphasis being expressed using repetition of letters. In addition a new ver-
nacular, particular to each language, using misspellings and incorporating other
languages into the mix has emerged. These characteristics are different from
clean and editorially managed corpora used to train language identifiers in the
past. These trends combined with the rise of microblogging has caused renewed
interest on research in language identification [3, 4].

An big obstacle to adapting established models and techniques for language
identification is the generation of a sizable corpus of labeled data for all languages
in the world that keeps up with the trends described above. In this paper we
propose and evaluate such a methodology. The first step is to use Wikipedia as
training material for producing an initial set of language identifiers. Wikipedia
provides a good source of user generated content, covering a wide variety of
topics in 280 languages. We restrict ourselves to the 52 languages with at least
50,000 documents each. Besides being user-generated, these documents have
interesting characteristics such as incorporating words from non-primary lan-
guages (e.g., Latin and Greek word definitions, pronunciation guidance, etc.),
making classifiers more robust to multilingual content. Using language identi-
fiers trained this way, we first characterize the tradeoff of the various parameters
for a popular set of language classifiers. We then directly apply the classifiers
trained on Wikipedia to two sets of labeled Tweets with different characteristics.
Our results indicate that this procedure already yield acceptable identifiers. In
order to further improve performance in the context of Twitter, we combine our
language prediction with the country information found in tweets to assemble a
more appropriate training corpus – each tweet that is labeled as being in lan-
guage “L” comes from a region where the native language is indeed “L”. We
retrain our language identifiers using this corpus and repeat our experiment on
tweets, resulting in a significant accuracy increase.

All our experiments are performed on well established language identification
models and algorithms. The contributions of this paper are:
1. A careful empirical quantification of the different tradeoffs in the selection

of the free parameters of existing language identifiers to be used as a guide
on selecting the most efficient solution for training and testing depending on
the task and the scale.

2. A methodology for automated and unsupervised labeled data generation for
current social and colloquial postings by taking advantage of side information
such as location. This can be generalized for any additional feature besides
location and provides a boot-strapping mechanism for other social data sets.

This paper is organized as follows: Section 2 provides a taxonomic overview of
statistical language classifiers and tokenization methodology; Section 3 defines a

3

principled way to evaluate language identification, Section 4 describes the setup
and detailed results of our experiments; Section 5 surveys related work, and
Section 6 offers concluding thoughts.

2 Statistical Language Classifiers

Automatic language identification is a classification task consisting of finding
a mapping from a document to the language it is written in. In this paper we
consider statistical classifiers, namely those that model both languages and doc-
uments using token frequencies.

In order to construct language models, we use a corpus of documents labeled
with their respective languages, extract tokens from each document, compile
their frequencies, and use the token frequencies of all documents in a given
language to build a language profile, a function from tokens to frequencies. The
document to be classified is represented by a document profile using the same
techniques. The classification process consists of computing a similarity score
between a document profile and each language profile, and reporting the language
whose profile is most similar to the document.

Such a statistical approach is language-agnostic and presents the advantages
that (i) models can be constructed without any knowledge of the morphology or
grammar of a language; and (ii) there is no need for stemming, part-of-speech
tagging, and the like. Still, there are several design choices to be made regarding
text normalization, tokenization, profile size, and the choice of profile similarity
metric, all of which we explore in this paper.

Text normalization refers to any cleanup performed on the training corpus or
the document instance prior to tokenization, e.g. the removal of spurious whites-
pace characters and punctuation. It may also include case folding: whether to
convert upper-case characters into their lower-case equivalents or not. For some
languages, there are firm grammatical rules governing capitalization; for exam-
ple, in German, all nouns are capitalized. Other languages, including English,
only capitalize the first word of a sentence and certain parts of speech.

In virtually all previous work, tokens are either character n-grams or word
n-grams1. Language profiles may contain n-grams for multiple values of n. We
write {n1, n2, n3} -grams to denote token sets that include n1-grams, n2-grams
and n3-grams. There are various trade-offs to consider when choosing between
character n-grams and word n-grams and when deciding on the value(s) of n.
The alphabet of Western languages is quite limited (52 lower- and upper-case
letters in English), so the set of possible n-grams remain manageable for small
values of n. By contrast, the set of valid words in a language is very large.

We consider three different families of profile similarity measures:

1. Rank-based approaches (RANK). In these approaches the tokens in the lan-
guage and document models are ranked (according to their observed fre-
quencies in the training corpus and document respectively). In this paper

1 In the context of this paper, a character is a Unicode symbol. We break words on
whitespace characters; ignoring the different word-breaking rules of Asian languages.

4

we investigated two rank correlation measures in order to compute a simi-
larity score between these two rankings: Spearman’s footrule (SF) [16] and
Spearman’s rho (SR) [15].

2. Vector-based approaches (VECTOR). These approaches assume that each
language model defines a vector in the (very high-dimensional) space of to-
kens, and the similarity between the vector of the language model and the
vector of the document model is given by the cosine between the vectors.
Vector-based approaches are used widely in Information Retrieval systems
to quantify the similarity between a document and a query.

3. Likelihood-based approaches (LIKELY). These approaches use the frequen-
cies in the models to estimate the probability of seeing a token. Given a
document to be classified we can estimate the likelihood that the document
was generated from the language model. Likelihood-based approaches differ
from the rank and vector approaches in that the document under consider-
ation does not need to be converted into a document profile.

The remainder of this section provides a more formal definition of the profile
similarity measures we consider in this paper. We use D to denote a document
and L to denote a language profile. All of the measures described below have
been adjusted such that higher values indicate greater similarity between D and
L. Let T denote the universe of tokens. We write FΨ (t) to denote the frequency
of token t in profile Ψ , and we write PΨ (t) to denote the normalized frequency

of token t in profile Ψ , PΨ (t) = FΨ (t)∑
t′∈T

FΨ (t′)
. We will write t ∈ Ψ to denote the

tokens in Ψ , that is, those t ∈ T where FΨ (t) > 0.

Rank-based approaches (RANK): All rank-based similarity measures rank-

order the tokens in D and L and then compute a similarity measure on the
rank-ordering. It is worth pointing out that rank-based approaches use token
frequency information only to rank-order tokens (and discards the difference in
magnitude). Let RΨ (ti) = i denote the rank of the token in the sorted order.
If there are z ranks, we define RΨ (t) = z + 1 for all t /∈ T . Our variant of
Spearman’s footrule is defined as SF (D,L) = −

∑
t∈D |RL(t)−RD(t)|, where

|x| denotes the absolute value of x. Our variant of Spearman’s rho is defined
as SR(D,L) = −

∑
t∈D(RL(t) − RD(t))2. In both these measures a value of 0

indicates perfect similarity between D and L.

Vector-based approaches (VECTOR): The prototypical similarity measure

between two vectors in a high-dimensional space is their cosine similarity,
that is, their dot product normalized by their Euclidean lengths: CS (D,L) =∑

t∈D
FD(t)FL(t)√∑

t∈D
FD(t)2

√∑
t∈L

FL(t)2
.

Likelihood-based approaches (LIKELY): Likelihood-based approaches use

the statistical information captured in each language profile to estimate the
probability that document d was generated from a given language model. As-
sume that d consists of symbols (characters or words) (s1 . . . sz) ∈ S, S the
universe of symbols, and that the language models capture n-gram frequency in-

5

formation. We estimate the probability that d is generated by language model L
by directly looking up PL(s1 . . . sn), and then sliding an n-symbol window over d,
advancing one symbol at a time, and computing PL(s1+i . . . sn+i|s1+i . . . sn+i−1),
the probability that symbol sn+i is preceded by s1+i . . . sn+i−1. Thus PL(s1 . . . sz)
≈ PL(s1 . . . sn)

∏z−n
i=1 PL(s1+i . . . sn+i |s1+i . . . sn+i−1), where PL(s1+i . . . sn+i |

s1+i . . . sn+i−1) = PL(s1+i...sn+i)∑
s∈S

PL(s1+i...sn+i−1s)
. It is possible for L not to contain an

entry for some n-gram in d. As we are performing a maximum likelihood es-
timation of the parameters this will be a problem as we will divide by zero.
One standard approach to this problem is to smooth the maximum likelihood
estimate by using information from a larger (and related) population that has
a non-zero values. There are many choices including the amount of smoothing
(usually a linear combination of values) as well as the selection of a suitable
population. After experimentation, we settled for an approach that assumes a
small value such as the min P ′L(t′) amongst all tokens t′ in all languages L′.

3 Performance Measures

The accuracy A of an identifier is estimated as follows [6]: Let True(`) be
the number of documents in language ` in L, and TP(`) be the number of
true positives – that is, documents in ` that were correctly classified, then

A =

∑
`∈L

TP(`)∑
`∈L

True(`)
. Given the fact that different languages have very different

numbers of documents for testing (and training), we would like our estimate to
reflect that our confidence in a classifier performance depends on the number of
samples. To this end, we use weighted accuracy, where each language is weighted
using the standard deviation of the estimate of the accuracy as a measure of the
uncertainty on that estimate. Thus we think of TP(`) as coming from a Bino-
mial distribution with parameters (A(`),True(`)), where A(`) is the maximum

likelihood estimate of the accuracy: A(`) = TP(`)
True(`) . Now, we take the weight the

inverse of the standard deviation of this estimate: W (`) =
√

True(`)
A(`)(1−A(`)) . So the

weighted accuracy of an identifier is: WA =

∑
`∈L

A(`)W (`)∑
`∈L

W (`)

To compare the statistical significance between the reported accuracies WA1

and WA2 of identifiers 1 and 2, we can use a Wald test [19] directed at reject-
ing the null hypothesis (H0) that WA1 −WA2 = 0 as advocated in [19] when
comparing predictors. Again assuming that the accuracies come from a Bino-
mial distribution, and letting n1 and n2 denote the number of samples used in
classifiers 1 and 2 respectively, we have that

WA1 −WA2√
WA1∗(1−WA1)

n1
+ WA2∗(1−WA2)

n2

(1)

essentially computes the number of standard deviations providing a degree of
confidence necessary to reject H0. Regarding this expression as approximating a

6
Table 1. Basic statistics for the 52 languages we trained and tested on.

Language # docs # words # chars Language # docs # words # chars

English 3,841,701 69,995,728 420,822,801 Arabic 154,105 3,638,910 21,077,370
German 1,334,677 21,476,871 153,119,580 Serbian 151,409 1,850,106 12,006,824
French 1,175,638 19,664,258 116,384,106 Lithuanian 142,468 1,314,498 10,254,168
Italian 874,827 14,892,786 92,885,963 Slovak 130,348 1,703,213 11,452,875
Dutch 871,310 16,666,710 108,570,923 Malay 130,170 1,878,252 12,846,493
Polish 852,219 11,107,886 79,515,315 Hebrew 124,884 2,408,802 13,677,123
Spanish 851,369 18,239,492 109,873,261 Bulgarian 124,665 2,192,227 13,911,993
Russian 800,527 8,972,267 66,586,091 Kazakh 122,442 1,879,736 14,817,377
Japanese 791,350 5,390,566 40,296,474 Slovene 121,968 1,496,767 10,103,516
Portuguese 706,771 13,518,871 81,500,258 Volapük 118,923 1,757,761 9,813,402
Swedish 417,092 7,671,785 49,951,384 Croatian 109,103 1,499,300 10,120,238
Chinese 385,528 2,526,386 19,823,371 Basque 106,846 1,463,312 11,361,999
Catalan 359,848 7,860,184 44,345,082 Hindi 92,371 4,337,272 10,367,220
Ukrainian 330,559 4,148,304 29,714,043 Estonian 90,333 1,061,293 8,128,345
Norwegian 320,318 5,557,555 34,993,643 Azerbaijani 84,265 714,444 5,041,032
Finnish 284,303 3,093,762 25,700,474 Galician 78,419 2,089,220 12,265,696
Vietnamese 247,286 5,141,075 25,607,852 Nynorsk 75,399 1,385,501 8,466,704
Czech 214,219 3,040,486 20,456,549 Thai 70,863 2,085,809 9,704,446
Hungarian 206,518 2,613,681 19,410,794 Greek 67,634 1,676,886 11,126,017
Korean 186,746 2,751,819 11,251,750 Latin 62,985 1,149,511 8,383,645
Indonesian 182,026 3,174,474 22,359,174 Occitan 55,520 830,662 4,685,239
Romanian 170,328 2,372,032 15,006,843 Tagalog 54,796 809,647 4,856,032
Persian 170,137 3,397,007 16,845,518 Georgian 53,736 731,235 5,847,744
Turkish 164,263 2,114,148 15,257,393 Haitian 53,575 509,151 2,650,222
Danish 158,497 2,711,688 17,229,078 Slavomacedonian 53,185 857,418 5,538,833
Esperanto 158,152 2,761,440 17,518,543 Serbo-Croatian 52,922 826,400 5,460,844

standard Normal distribution,2 we can reject H0 and declare the accuracies as
different if this expression is bigger than 2 with approximately 95% confidence.

For example, assume n1 = n2 = 20 million samples, and one classifier has
a weighted accuracy of 0.901 and another has a weighted accuracy of 0.90. The
difference is 0.001 – is this significant? An application of Eq. 1 yields a results of
10.5, which is bigger than 2 and provides us with confidence that the difference is
significant.3 This should not be surprising with this number of samples. Indeed,
taking the weighted accuracy as coming from a Binomial with around 20 million
samples, only differences in the fourth digit should start concerning us.

4 Experiments

We used Wikipedia to build our language profiles and evaluate the various lan-
guage identifier design choices. We downloaded the XML files for all languages.
We selected the languages that have over 50000 documents as the popular and
most representative ones. We concatenated the text of all documents of a lan-

2 This will certainly be true for all tests sets involving Wikipedia data, given that even
the smallest test set contains millions of samples.

3 When the samples are the same we are violating an assumption of independence that
will impact the degrees of freedom; yet with this many samples this has no effect.

7
Table 2. Design alternatives explored in this paper

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF × × × × × × × × × VECTOR × ×
RANK SR × × × × × × × × × LIKELY ×

Table 3. Weighted accuracy % of in-model testing.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 93.35 89.17 78.56 89.45 88.56 80.92 90.97 88.66 83.39 VECTOR 80.19 79.88

RANK SR 93.35 89.64 79.08 87.41 87.57 81.14 83.03 81.17 77.96 LIKELY 88.68

guage into a single document and build the language profile. Table 1 shows a
summary of information for the languages we considered.

In our experiments, we probed a variety of design choices for language iden-
tifiers. For character n-grams, we considered {3}-grams (a popular choice in the
literature) as well as {1, 2, 3, 4, 5}-grams (as suggested by Cavnar & Trenkle [6]).
Going above the 5 character grams did not produce any benefits and increased
the language profiles dramatically. For word n-grams, we considered only 1-
grams – in other words, a language profile is simply the lexicon of that language.
Multi-gram words could be used, but this would be more suitable for phrase
prediction than language prediction, and the space required for even bi-grams
words made it computationally infeasible for us. For language and document
profile sizes, we explored retaining all tokens, and for performance reasons we
also explored using the 10k or 500 most frequent ones. Table 2 summarizes our
choices. In each case, we explored both case folding and leaving the capitaliza-
tion unchanged. In other words, in each of the experiments described below we
compare the performance of 42 different classifiers.

4.1 Language Identification Design Alternatives

In-model accuracy: Our first experiment compares the performance of the 21
design choices described in Table 2. We used the uncleaned Wikipedia abstracts
of the 52 languages shown in Table 1 for both training and testing; we did not
perform any case folding. We conducted in-model testing using every abstract in
the collection. The results are summarized in Table 3. We observe the following:

– {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) have the highest weighted
accuracy.

– {1, · · · , 5}-char RANK is preferable.
– Using the full language profile (all) is better than restricting to smaller sizes.
– The vector-based approaches are not competitive.

Cross-validation: In order to quantify the impact of over-fitting we re-
peated the same experiment using ten-fold cross validation. Table 4 shows the
difference between the weighted accuracies of ten-fold and in-model experiments.
A negative value indicates the ten-fold accuracy is lower, i.e. over-fitting oc-
curred. We observe the following:

8

Table 4. Weighted accuracy change for ten-fold cross validation vs in-model testing
from Table 3. Negative values indicate over-fitting.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.51 0.01 0.00 -2.87 -0.04 0.00 -2.90 -0.09 0.03 VECTOR -0.02 -0.51

RANK SR -0.57 0.00 0.00 -2.87 -0.08 -0.02 -3.65 -0.12 0.01 LIKELY -0.90

Table 5. Weighted accuracy change for case folding. Negative values indicated that
case folding hurts accuracy (compared to Table 4).

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.82 0.02 0.21 0.00 -0.56 -0.41 -0.96 -0.14 0.31 VECTOR -0.42 -0.61

RANK SR -0.96 -0.02 0.28 0.13 -1.03 -0.35 -1.06 -0.19 0.19 LIKELY -0.61

– {1, · · · , 5}-char, RANK(SF, all) and RANK(SR, all) still have the highest
weighted accuracy.

– Over-fitting is a bigger issue when using the full language profile (all). This
makes sense: the truncated language profiles omit low frequency tokens.

– Amongst rank-based approaches, {1, · · · , 5}-char are less affected.
– Rank-based classifiers are more affected than Vector or Likelihood-based for

the same tokenization scheme and profile limit.

Case folding: We lowercased both training and test data and repeated the
same ten-fold cross validation experiment with all other choices unmodified.
Table 5 shows the difference between the weighted accuracies of using case folding
vs leaving the capitalization as is. A negative value indicates that case folding
lowers accuracy, i.e. lower casing is a bad idea. We observe the following:

– {1, · · · , 5}-char, RANK(SF, all) and RANK(SR, all) still have the highest
weighted accuracy.

– By and large, case folding not only does not help much, but in many cases
produces statistically significant worse results. We attribute this to the fact
that in some languages, such as German, capitalization is governed by strict
grammatical rules.

Language specific results: Next, we tested the accuracy of classifiers with
respect to the 52 languages in our corpus. The results are shown in Figure 1. The
solid black line shows the weighted accuracy of the classifier from Table 2 that
performed best for each given language; the dotted red line shows the weighted
accuracy of {1, · · · , 5}-char RANK(SF, all), and the dashed green line shows the
weighted accuracy of {1, · · · , 5}-char RANK(SR, all). There were only three lan-
guages where neither of these two classifiers performed best: Occitan, Thai, and
Turkish. In the case of Thai, the accuracy gap was minor, in the case of Turk-
ish and more so Occitan it was substantial. For Occitan, 1-word RANK(SR,all)
performed best; for Turkish, it was 3-char RANK(SF,all), and in the case of
Thai, the 3-char LIKELY classifier slightly outperformed the overall leaders. We
speculate that Occitan is sufficiently close to Catalan that their character n-
gram profiles are very similar, while their lexica are different enough to allow

9

1-
w

or
d

RA
N

K(
SR

,a
ll)

3-
ch

ar
 L

IK
EL

Y

3-
ch

ar
 R

AN
K(

SF
,a

ll)

0.75

0.80

0.85

0.90

0.95

1.00
Vo

la
pü

k
Ha

iti
an

Ba
sq

ue
Ge

or
gi

an
O

cc
ita

n
G

re
ek

Ka
za

kh
Ko

re
an

Ar
ab

ic
Es

to
ni

an
Az

er
ba

ija
ni

Pe
rs

ia
n

Se
rb

ia
n

He
br

ew
U

kr
ai

ni
an

Du
tc

h
Hi

nd
i

Es
pe

ra
nt

o
Ta

ga
lo

g
Bu

lg
ar

ia
n

Sl
ov

en
e

Ja
pa

ne
se

Hu
ng

ar
ia

n
Sl

ov
ak

Sw
ed

ish
Ita

lia
n

G
er

m
an

Po
lis

h
Th

ai
N

yn
or

sk
Ca

ta
la

n
Ro

m
an

ia
n

La
tin

Po
rt

ug
ue

se
M

ac
ed

on
ia

n
Da

ni
sh

G
al

ic
ia

n
Fr

en
ch

Tu
rk

ish
Sp

an
ish

Vi
et

na
m

es
e

Ch
in

es
e

Ru
ss

ia
n

N
or

w
eg

ia
n

Cz
ec

h
En

gl
ish

M
al

ay
Fi

nn
ish

In
do

ne
sia

n
Cr

oa
tia

n
Se

rb
o-

Cr
oa

tia
n

Li
th

ua
ni

an

[1,5]-char RANK(SR,all)

[1-5]-char RANK(SF,all)

Maximal weighted accuracy of any studied classifer

Fig. 1. Classification accuracy broken down by language. The solid black line shows
the accuracy of the classifier from Table 2 that performed best for each given language;
the dotted red line shows the accuracy of {1, · · · , 5}-char RANK(SF, all), and the
dashed green line shows the accuracy of {1, · · · , 5}-char RANK(SR, all). For the three
languages (Occitan, Thai, and Turkish) where these two classifiers did not perform
best, the best-performing classifier is listed along the upper horizontal axis.

differentiation, giving an edge to word-based approached. We are not sure why
3-character tokens work better than one- to five-character tokens for Turkish.
Languages with languages-specific characters sets (such as Hebrew and Greek)
provide a strong signal to any character-based classifier, and thus can be recog-
nized with high accuracy. By contrast, our classifiers performed relatively poorly
on Chinese. This is to be expected because it has a large alphabet of information-
rich symbols, meaning the space of character n-grams is both large and sparse.

Number of Languages: We hypothesized that language detection becomes
harder as the set of languages increases. In order to test that hypothesis we
repeated the experiment described in Table 3 using only the 8 languages listed
in [6] (namely, English, German, Dutch, Polish, Portuguese, Spanish, Italian
and French). Table 6 shows the difference between the weighted accuracies of 52
and 8 languages. Generally speaking differences are positive, indicating that it is
indeed easier to classify languages when presented with fewer choices. However,
the two classifiers that perform the best ({1, · · · , 5}-char RANK(SF, all) and
RANK(SR, all)) perform slightly worse for fewer languages. Moreover, none of
the accuracy values approaches the accuracy scores reported by [6].

Limiting Minimum Document Size: In order to understand the differ-
ence between our performance and that of [6] we explored three alternative
hypotheses: (i) the quality of Wikipedia abstracts might be low; full Wikipedia
documents might be better, (ii) some abstracts are very short, and these tend to
be of low quality, (iii) the weighted accuracy measure we use might produce dif-
ferent results. We tested this by taking the two best performing classifiers from
our previous experiments (({1, · · · , 5}-char RANK(SF, all) and RANK(SR, all)))
and applied them to (i) full Wikipedia articles, (ii) only abstracts with at least

10

Table 6. Weighted accuracy change for restricting the set of languages to 8. Positive
values indicate fewer languages produce better accuracy (compared to Table 3).

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.39 2.10 5.99 0.04 1.49 6.14 1.18 2.84 4.22 VECTOR 6.31 9.02

RANK SR -0.71 1.90 5.58 -1.25 1.37 5.72 3.35 5.07 7.41 LIKELY 2.65

Table 7. Two best classifiers applied to full Wikipedia articles and Wikipedia abstracts
of at least 150 characters for both 8 and 52 languages.

[1, 5]-char, all 8L full 8L abs 52L abs 8L full 8L abs 52L abs

RANK(SF) weighted 99.52 99.96 99.95 un-weighted 98.91 99.90 99.74

RANK(SR) weighted 99.46 99.97 99.98 un-weighted 97.47 99.82 99.71

150 characters, and (iii) computed both weighted and un-weighted accuracy
measures. Besides testing on only the 8 languages described in [6], we also com-
puted weighted and un-weighted accuracies for the length-restricted abstracts
of the 52 languages from Table 1. Restricting to abstracts of minimum length
eliminated about 71.5% of the Wikipedia abstracts. The results are shown in
Table 7. We observed that both the weighted and un-weighted accuracies are
in the same range to those from [6]. This is a dramatic improvement over the
previous results we reported in Tables 3 and 6. The false negative rate was re-
duced by 99%. We attribute this to the longer average size of each document
tested. Using the full Wikipedia articles does not provide an improvement over
the length-restricted abstracts. Furthermore, there is no statistically significant
difference between the 8 and 52 languages. Finally, the un-weighted accuracy
is lower but inline with [6]. So considering only documents with at least 150
characters when building the language profile shows significant improvement.

Length of Test Documents: To examine whether classifier accuracy is
indeed affected by the length of test documents, we constructed a synthetic col-
lection of test cases where we control the size of the documents. For a language `
with n` Wikipedia abstracts, we generated 0.1n` documents consisting of consec-
utive words drawn from the concatenated wikipedia abstracts of `. The lengths
of these synthetic documents is uniformly distributed in the range of 1 to 500
characters per language. We tested the performance of the two best classifiers
– {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) – on this collection, using
the 52 languages from Table 1. Figure 2 shows the weighted and un-weighted
accuracies for the classifiers. We observe that the weighted accuracy of both
classifiers reaches 99% at around 9 characters average document length. The un-
weighted accuracy grows more gradually, approaching 98% at the 500 character
limit. The curves show some noise which is due to the limited sample size – for
example, less popular languages have just 10 test cases per bucket.

4.2 Short Colloquial Postings and Tweets

Synthetic Tweets: We assembled a synthetic collection with a word count dis-
tribution that follows that of Twitter. We used all 52 languages and again 0.1n`

11

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 300 350 400 450 500

weighted accuracy of [1,5]-char RANK(SF,all)

weighted accuracy of [1,5]-char RANK(SR,all)

unweighted accuracy of [1,5]-char RANK(SF,all)

unweighted accuracy of [1,5]-char RANK(SR,all)

Fig. 2. Accuracy as a function of test document size in characters.

Table 8. Synthetic documents using Twitter’s word-length distribution.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 94.05 89.78 81.40 87.55 86.27 78.39 82.56 79.38 72.96 VECTOR 76.87 66.06

RANK SR 93.03 89.05 80.47 84.03 83.68 77.45 79.07 76.60 71.23 LIKELY 88.80

documents per language. The Twitter word count distribution was based on
one month worth of real tweets, with Twitter commands, usernames, emoticons
and URLs removed. 12.5% of cleaned tweets contained a single word and 64.5%
contained at most ten words. Table 8 shows the weighted accuracy for all our
classifiers applied to this synthetic data set. We observe that the two best clas-
sifiers – {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) – still perform best.
However, when comparing with the results of Table 3, RANK(SR, all) improves
slightly whereas RANK(SF, all) deteriorates slightly.

Real Tweets from Tromp and Pechenizkiy [17]: The experiment uses
the 9066 labeled tweets made available by [17]. They extracted tweets from ac-
counts known to only contain messages in a specific language, namely German,
English, French, Spanish, Italian, and Dutch. They also used six different ac-
counts per language, to provide diversity (tweets from different accounts) and
consistency (several tweets from the same account). The tweets in the corpus
are all lowercase, thus for this experiment we only applied our classifiers with
models that had case-folding. We limited the language profiles used by our clas-
sifier to the six languages found in the data set. The results are displayed in
Table 9. As in our previous experiments the {1, · · · , 5}-char RANK classifiers
perform best. We observed the tweets in the test set are longer and relatively
cleaner than average tweets, in fact the length is even higher than the median
length of Wikipedia abstracts. Therefore, the numbers produced are inline with
our findings on minimum 150 character length. Furthermore, we highlight that
we are able to beat the results from [17]. Even though we used Wikipedia as
the training data and our rank-based classifier, in contrast to their specialized
Machine Learning approach trained and tested on this very same data set.

12

Table 9. Trained on Wikipedia and applied on tweets from [17].

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 98.00 99.10 95.34 95.83 98.19 96.84 97.51 98.35 94.89 VECTOR 91.51 85.15

RANK SR 89.22 99.12 95.08 89.21 95.51 96.67 96.41 98.03 94.78 LIKELY 98.75

Table 10. Trained on Wikipedia and applied on a random sample of real tweets.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 81.73 87.90 72.57 81.20 82.47 70.55 79.40 80.28 67.81 VECTOR 53.61 37.11

RANK SR 74.58 87.89 74.24 67.44 72.51 69.61 74.13 77.77 66.00 LIKELY 79.60

Real Tweets – Uniform Random Sample: We sampled 2000 random
tweets from the Twitter stream using uniform distribution. We labeled them
ourselves to the correct language resulting in 869 tweets that we could process
confidently. We run the same set of language identifiers on the labeled tweets and
report the results in Table 10. The two best-performing classifiers are {1, · · · , 5}-
char RANK(SF,10k) and {1, · · · , 5}-char RANK(SR,10k). Compared to Table 9,
the performance is worse overall. We attribute this to the tweets in this sam-
ple being shorter and much less pristine than those provided by [17]. The best
way to illustrate this is with some examples: (a) “u nah commmming ?”, (b)
“alreadyyyy!!!!!!!!”, (c) “omg im bussin up”. Note the use of letter repetition for
emotion, single letter such as ‘u’ for ‘you’, and what is becoming standard ab-
breviations such as ‘omg ’ for ‘oh my god ’. These should be contrasted with the
tweets from [17], which look like: “egypts supreme military council to sack cab-
inet suspend both houses of parliament and govern with head of supreme court
from reuters”. The performance difference is expected once we consider such
differences in the sets of tweets. We feel the random sample of our tweets is rep-
resentative of what to expect from average tweets. The results indicate that our
language identifiers trained on Wikipedia do a good job in processing tweets.

Tweets from an Uncommon Language with Latin alphabet: To test
the strength of our methodology, we chose to explore the performance of a clas-
sifier trained on Wikipedia and applied on Twitter, but this time on a language
that had the following characteristics: (i) is written mostly in Latin characters
(so the character set will not help the classification), (ii) was not on the top list
in terms of data available for training (i.e., relatively obscure), and (iii) we have
access to a native speaker capable of labeling the results. One language that met
all these conditions was Romanian (with 170,000 abstracts – see Table 1). For
this experiment we sampled 250 tweets that our classifier labeled as Romanian
and that had more than 50 characters (to avoid too much ambiguity) and asked
our native speaker to label them. We found that 85.2% (213 of 250) were indeed
Romanian. While this result is based on a moderately sized sample, in combina-
tion with the previous experiments it provides evidence that classifiers trained
on Wikipedia is generally helpful in automatically classifying tweets.

Boot-strapping Twitter Labels: As our experiments have demonstrated,
Wikipedia is a great resource for building language profiles, however its corpus

13

Table 11. Boot-strapped Twitter labels, applied on tweets as in Table 9.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 99.11 99.52 96.40 99.02 99.06 97.97 99.31 99.44 97.03 VECTOR 95.41 93.98

RANK SR 95.05 99.53 96.42 96.53 97.44 97.93 98.83 99.27 96.99 LIKELY 99.64

Table 12. Boot-strapped Twitter labels, applied on tweets as in Table 10.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 96.23 95.37 89.07 93.85 95.05 90.22 92.80 94.25 90.06 VECTOR 84.55 79.16

RANK SR 93.95 95.44 88.78 87.99 90.27 90.83 90.25 92.02 88.73 LIKELY 95.09

is missing idioms that are particular to social postings such as tweets (e.g., the
examples given above). One way to address this problem is to train models using
large amounts of labeled tweets which is an expensive proposition (when human
provide the labels). We automatically (and inexpensively) created this labeled
set using the following methodology: by selecting tweets containing a country
code in their metadata, labeling each tweet with our best language prediction
as “L”, and verifying it comes from a country where the native language is
indeed “L”. To avoid over-representation of popular languages, we put a cap of
10 million tweets at most per language. We were able to generate 88.3 million
labeled documents – pairs of tweet and corresponding language. The set of 52
languages from Table 1 was reduced to 26, as we can only capture the actively
used languages for which we could extract location information from the tweets.
Using these documents we constructed new language profiles and repeated the
set of experiments on real tweets.

Table 11 summarizes the results for the tweets from Tromp & Pechenizkiy [17].
In comparison to Table 9, accuracy is higher across the set of models tested, and
even the (previously) weaker performing algorithms perform great. This is truly
an indication of the value of our method for generating boot-strapped labels –
the large amount of automatically training data generated by our method boosts
the accuracy of our relatively simple classifiers, perform better than the special-
ized approach in [17] and the relatively more complex approach in [11] which
were tested on the same dataset.

Table 12 summarizes the results for the random sample of tweets we obtained
directly from the Twitter stream. As we discussed earlier, we believe this data
set to be a closer representation of the average tweet. The results show a very
high degree of accuracy. We note that our language identifiers are triggered on
all tweets – we will always return our top language guess. Consequently, the
overall best results have precision above 96% with 100% recall.

5 Related Work

Our study is inspired by the work on using n-grams for text classification and
statistical language identification, like [5, 7, 8], and in particular Cavnar and
Trenkle [6]. This work proposed to use character n-grams for values of n rang-

14

ing from 1 to 5, to limit the number of n-gram/frequency pairs retained for
each language to 400, to compare languages and documents using a rank-based
approach, and specifically to use Spearman’s footrule [16] to estimate rank corre-
lation. Cavnar and Trenkle recognized 8 languages and trained on a total of 3713
samples (documents) from a Usenet group. They reported accuracy of 92.9% for
language profiles of 100 tokens and documents of less than 300 characters, and
accuracy of 99.8% for language profiles of 400 tokens documents over 400 charac-
ters in length. We achieved similar accuracy (99.82; see Table 7) using the same
8 languages but training and testing on Wikipedia. Furthermore, we did a more
exhaustive study: we experimented on 52 languages, trained on over 18 million
Wikipedia documents, and tested on both Wikipedia and Twitter documents
with different characteristics. We found that language profiles should be one to
two orders of magnitude larger than suggested by [6].

Our work compares a larger number of models and classifiers including those
based on using words as tokens, and those that take the frequencies of the tokens
to estimate probabilities, and use likelihood for discrimination. In that sense our
work is closer in spirit to Grothe et al. [9]. Once again, our study differs from
theirs in terms of scale: we recognize almost three times as many languages (52
vs. 18), use a much larger corpus for training and testing, and also expand on the
number of classifiers, the use of capitalization, and the length of the documents to
be classified.4 We are also able to explain their observed phenomena of restricting
the number of tokens in the profile based on word models. Using all the words
(as opposed to the top ones) will result in over-fitting.

More recently Majlis [12] proposed a study using n-grams with W2C (WebTo-
Corpus) training corpora and various methods like SVM, naive Bayes, regression
tree and their own YALI algorithm. The results show high precision for large
documents but much lower precision for document sizes of 30 to 140 characters.
In some cases the results are in the order of 70% precision for the smaller docu-
ments. The YALI method proposed in the paper produces the best results when
using 4-grams and shows an in-model testing accuracy of around 93% for small
documents. Conceptually, there are similarities between YALI and our approach
in that we both use a variation of n-gram retrieval to determine the language
of documents. Another important difference is in the testing methodology. We
trained and tested on Wikipedia and also tested on real tweets. The authors of
YALI trained and tested on a carefully curated W2C corpus. By comparison, we
achieved significantly better accuracies on “dirtier” data.

Dunning in [8] considered using probabilistic methods to identify the lan-
guage of a document including Markov chains and Bayesian inference. Our like-
lihood classifier is similar in spirit and has similar performance characteristics.

Tromp and Pechenizkly [17] explore a supervised machine learning approach
to language identification in the context of Twitter. They made their corpus
available, enabling us to benchmark our implementations on their test corpus. In
comparing the tweets contained in their collection to a uniform random sample
of tweets we collected and labeled, we found the tweets in their collection to

4 We note that in one of their evaluation they use 135 documents from Wikipedia.

15

be much “cleaner” than the average tweet: They are fairly long, tend to be
grammatically well formed, and contain fewer Twitter-specific acronyms than
we observe “in the wild”. Tromp and Pechenizkly used the same corpus for
training and for testing. Our classifiers are unsupervised, start with Wikipedia
and can be extended with automatically generated Twitter labels, and produce
better results on their test set.

Another approach that is similar to ours is the work described in [11]. Their
approach is based on a combination of a naive Bayes classifier using n-grams as
features, with separate feature selection for each use case. By contrast our ap-
proach relies on side information to automatically obtain labeled data, allowing
us to use over 80 million Tweets for training – three orders of magnitude larger
than the corpus used by [11]. Moreover, the corpus can be generated dynami-
cally and therefore our approach adapts to changes in style and usage patterns.
Finally, [11] report 94% accuracy on the dataset from [17] while our method
yields accuracies above 99% on the same dataset.

The work in [18] explores the task of identification of very short text seg-
ments on the order of 5 to 21 characters, training on the Universal Declaration
of Human Rights as a corpus. They explore this space at full scale in terms of
the number of languages, using 281 (we restricted to 52 because of limitations
on the labeled data of the corpus). They also explore n-grams-based models,
but because of their restrictions to very short text they have to explore smooth-
ing techniques (which do not seem to be necessary for identification of longer
objects). We did not find that expanding the set of languages has a deleterious
effect, but we did find that accuracy is sensitive to document length.

Finally, there is recent work in identifying the language in coping with short
idiomatic text, such as tweets. The authors in [4] propose to use both endoge-
nous and exogenous information to improve classification accuracy. In addition
to the text of a tweet, they use the posting history of the author and other users
mentioned in a tweet and web page content referred in the message. The under-
lying idea is to increase the size of each document by leveraging the structure
of Twitter messages. The results reported are in line with our findings in that
an increase in document length will yield higher accuracy. The authors in [3]
focus on tweets from low-resource languages. Their approach is to collect such
tweets, label them via the use of Mechanical Turk and use a supervised learning
algorithm to train a classifier. They compare against three readily available lan-
guage identifier systems, including an implementation of Cavnar and Trenkle [6].
Like [4], they also incorporate some meta information, such as tweet authorship.
In contrast, our classifiers are unsupervised, using Wikipedia and tweet location
to boot-strap mass labeling, and perform in a higher accuracy range.

6 Conclusions

In this paper we focused on two aspects of language identification. (i) study the
various algorithms and free parameters and offer a guide on what works well and

16

what not, and (ii) determine a methodology to provide high quality language
identification for short colloquial postings, e.g. Twitter.

For language identification in general we learned that: (a) rank based classi-
fiers are both effective and efficient, (b) if memory-limited, we can obtain good
results with the top 10k tokens in the language model, (c) case folding does not
matter, (d) the number of languages makes little difference, if enough training
data exists, and (e) the length of test documents make a big difference, with
larger being easier to classify.

Specifically to Twitter postings we learned that (a) Wikipedia works great
for a solid baseline language model, and (b) generating labeled data using a com-
bination of Wikipedia classification and a Twitter specific signal, like location,
allows us to boot-strap superior language models.

According to our knowledge, this work describes the best overall methodology
for an automated, unsupervised, and scalable technique in language identification
on short colloquial postings. Our implementation is available [1] as a building
block for further research in the area of social analytics.

References

1. Automatic language identification tool. http://research.microsoft.com/lid/.
2. C. C. Aggarwal, editor. Social Network Data Analytics. Springer, 2011.
3. S. Bergsma, P. McNamee, M. Bagdouri, C. Fink, and T. Wilson. Language identifi-

cation for creating language-specific twitter collections. In Proc. Second Workshop
on Language in Social Media, pages 65–74, 2012.

4. S. Carter, W. Weerkamp, and E. Tsagkias. Microblog language identification: Over-
coming the limitations of short, unedited and idiomatic text. Language Resources
and Evaluation Journal, 2013.

5. W. Cavnar. Using an n-gram-based document representation with a vector pro-
cessing retrieval model. NIST SPECIAL PUBLICATION SP, pages 269–269, 1995.

6. W. Cavnar and J. Trenkle. N-gram-based text categorization. In SIDAIR, 1994.
7. M. Damashek. Gauging similarity with n-grams: Language-independent catego-

rization of text. Science, 267(5199):843–848, 1995.
8. T. Dunning. Statistical identification of language. Technical Report MCCS-94-273,

New Mexico State University, 1994.
9. L. Grothe, W. D. Luca, and A. Nurnberger. A comparative study on language

identification methods. In Proc. of LREC, 2008.
10. A. Lopez. Statistical machine translation. ACM Comput. Surv., 40(3), 2008.
11. M. Lui and T. Baldwin. landid.py: An off-the-shelf language identification tool. In

Proc. of ACL, 2012.
12. M. Majlǐs. Yet another language identifier. EACL 2012, page 46, 2012.
13. P. McNamee. Language identification: A solved problem suitable for undergraduate

instruction. Journal of Computing Sciences in Colleges, 20(3), 2005.
14. B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1-2):1–135, 2007.
15. C. Spearman. The proof and measurement of association between two things. The

American Journal of Psychology, 15(1):72–101, 1904.
16. C. Spearman. Footrule for measuring correlation. The British Journal of Psychi-

atry, 2(1):89–108, 1906.

17

17. E. Tromp and M. Pechenizkly. Graph-based n-gram language identification on
short texts. In Proc. of BENELEARN, 2011.

18. T. Vatanen, J. Vayrynen, and S. Virpioja. Language identification of short text
segments with n-gram models. In Proc. of LREC, 2010.

19. L. Wasserman. All of statistics. Springer, 2004.

