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Abstract. Heterogeneous networks are ubiquitous. For example, bibliographic
data, social data, medical records, movie data and many more caondsen

as heterogeneous networks. Rich information associated with multi-tyguisn

in heterogeneous networks motivates us to propose a new definitiorliefsu
which is different from those defined for homogeneous networkthitnpaper,

we propose the novel concept @mmunity Distribution Outliers (CDOutliers)

for heterogeneous information networks, which are defined as objduise
community distribution does not follow any of the popular community distri-
bution patterns. We extract such outliers using a type-aware joint anafysisl-

tiple types of objects. Given community membership matrices for all types o
objects, we follow an iterative two-stage approach which performs padiier
covery and outlier detection in a tightly integrated manner. We first propose
novel outlier-aware approach based on joint non-negative mattiarfaation to
discover popular community distribution patterns for all the object types in a
holistic manner, and then detect outliers based on such patterns. Egptim
results on both synthetic and real datasets show that the proposeaapjso
highly effective in discovering interesting community distribution outliers.

1 Introduction

Heterogeneous information networks are omnipresent.dh setworks, the nodes are
of different types and relationships between nodes aredetasing multi-typed edges.
For example, bibliographic networks consist of authorsifeences, papers and title
keywords. Edges in such a network represent relationstkigsdn author collaborated
with another author”, “an author published in a conferenegid so on. Analysts of-
ten perform community detection on such networks with an @imnderstanding the
hidden structures more deeply. Although methods desigmdubimogeneous networks
can be applied by extracting a set of homogeneous netwaooks the heterogeneous
network, such a transformation causes inevitable infaondoss. For example, when
converting bibliographic networks to co-authorship netgpsome valuable connectiv-
ity information, e.g., paper title or conference an authdslished in, is lost. As objects
of different types interact strongly with each other in tieéwork, analysis on heteroge-
neous information networks at various levels must be caedusimultaneously from
multiple types of data. Such an analysis will help in exphgjtthe shared hidden struc-
ture of communities across object types, i.e., the commtiens across types that can



explain the generation of these community distributiors.dxample, in bibliographic

networks, when grouping authors based on their “reseagdf distributions, one must
use the knowledge of the grouping of “research area” digiohs for related confer-

ences and keywords. This is because (1) the community speseafch areas) is the
same across different object types, and (2) all these abijeietract strongly with each

other in the network.

Although most of the objects in a heterogeneous networkviotdommon commu-
nity distribution patterns which can be uncovered by jomdlgsis of community mem-
bership of multiple heterogeneous object types, certajerctd deviate significantly
from these patterns. It is important to detect such outlireh®terogeneous information
networks for de-noising data thereby improving the qualityhe patterns and also for
further analysis. Therefore, in this paper, we propose teaisuch anomalous objects
asCommunity Distribution Outliers (or CDOutliers) given the community distribution
of each object of every type. In the following, we presentwa @DOutlier examples
and discuss the importance of identifying such outlieread applications.

CDOutlier Examples Consider a bibliographic network where the research ates la
associated with an author node depends on the communitis lebéhe conferences
where he publishes, keywords he uses in the title of the paped the other authors he
collaborates with. There may exist some popular commungiridution patterns ex-
tracted by analysis across various object types, whichitajaf the objects follow. For
example, say there are four communities: data mining (Dbfnare engineering (SE),
compilers (C) and machine learning (ML). Then popular dstiion patterns could be
(DM:1, SE:0, C:0, ML:0), (DM:0, SE:1, C:0, ML:0), (DM:0, S&;C:1, ML:0), (DM:O0,
SE:0, C:0, ML:1), and (DM:0.7, SE:0, C:0, ML:0.3). Then, artteor who contributes to
DM and C (with a distribution like (DM:0.5, SE:0, C:0.5, ML))Owould be considered
as aCDOutlier. Furthermore, there could be subtle patterns like (DM:Br&rgy:0.2),
i.e., 80% probability belonging to DM and 20% probability Emergy, which is fol-
lowed by majority of the objects. If an author's communitgtdbution is (DM:0.2,
Energy:0.8), which deviates from the majority patternnthe is considered as@D-
Outlier. Similarly, one could compute outliers among other typeslgécts, such as
conferences and title keywords, based on the popular laisivh patterns derived by
holistic analysis across all object types.

Besides these examples, application€biOutliers can be commonly observed in
real-life scenarios, and we briefly mention a few here. (1)hka Delicious network,
most users who tag pages about “Tech and Science” do not tgs @doout “Arts and
Design”. A user doing so (user with unusual skill combinasipcan be considered as a
CDOutlier. (2) In the Youtube network, most of the users would be irgieetin videos
of a particular category. However, certain users who act igsllemen in publishing
and uploading videos may interact with videos of many déffercategories and would
be detected aSDOutliers.

CDOutlier distributions should not be confused with “hub” distrilaurts (i.e., dis-
tributions with high entropy) over communities. Certairulfi distributions could be
frequent patterns, but only those that are very rare shauldiieled a€DOutliers. On
the other hand, not alDOutlier distributions have high entropy.



Brief Overview of CDOutlier Detection Given thesoft community distributions for
each object of every type, one can compute distributiorepatCDOutliers are ob-
jects that defy the trend, and the trend must be obtained &aruarate pattern discov-
ery. However, pattern discovery suffers from the presefc@DOutliersitself. There-
fore, given community detection results, we design an titerawo-stage procedure
to identify CDOutliers, which integrates community distribution pattern disagvend
CDOutlier detection. First, we discover popular distribution patsefor all the ob-
ject types together by performing a joint nonnegative mé&actorization (NMF) on
the community distribution matrices, such that it ignotes dutliers discovered in the
previous iteration. At the second step, the outliernessesfy an object is computed
based on its distance from its nearest distribution patfEne algorithm iterates until
the set of outliers discovered do not change. Thus, digtobwpattern discovery and
outlier detection are improved through iterative updatecpdures, and upon conver-
gence, meaningful outliers are output.

Summary Our contributions are summarized as follows.

— We introduce the notion of identifyin@DOutliers from heterogeneous networks
based on the discovery of community distribution patterns.

— We propose a unified framework based on joint-NMF formulatiehich integrates
the discovery of distribution patterns across multipleegbjypes and the detection
of CDOutliers based on such patterns together.

— We show interesting and meaningful outliers detected fraultipte real and syn-
thetic datasets.

Our paper is organized as follows. In Sec. 2, we introducediien of distribution
patterns and develop our method to extract heterogeneousgnity trends for objects
of different types in the form of popular distribution patis. In Sec. 3, we present
discussions related to practical usage of the algorithmdM&uss datasets and results
with detailed insights in Sec. 4. Finally, related work amatcusions are presented in
Sec. 5 and 6 respectively.

2 CDOutlier Detection Approach

[Notation [Meaning |

T k'™ object type

k,l Index for a type of objects

Ny, Number of objects of typé

K Number of types of objects

C Number of communities

C’ Number of distribution patterns

Tk *C Membership matrix for objects of type

T
W,évk *“" | Distribution pattern indicator matrix for objects of type
ch *C | Distribution patterns matrix for objects of type
Oy Outlier objects set for typg
a Regularization Parameter ) o ) )
Fig. 2. Distribution Patterns in 3D
Fig. 1. Table of Notations Space

In this section, we will present our iterative two-stage raagh forCDOutlier de-
tection. Table 1 shows the important notations we will usthia paper. We denote an



element(i, j) of a matrixA by A, ;). More details about the notations will be found in
the following problem definition.

2.1 Problem Definition

We start with introduction to a few basic concepts.

Community Consider a heterogeneous network withypes of object§r, 72, ..., 7k }.
A community is a probabilistic collection of similar objsctsuch that similarity be-
tween objects within the community is higher than the sirtifabetween objects in
different communities. For example, a research area is amonity in a bibliographic
network. For heterogeneous networks, one is often inteddstidentifying heteroge-
neous communities which contain objects of different typs will useC' to denote
the number of communities.

Membership Matrix Membership matrix” is a matrix such that the elemety; cor-
responds to the probability with which an objedbelongs to a community The rows
of the matrix correspond to objects while the columns c@oes to communities. Let
N1, Ns, ..., Ng be the number of objects of each type. gt T, ..., Tx denote
the membership matrices for the objects of types-, . .., 7x respectively. Thus, the
membership matrif}, is of size Ny x C.

Distribution Patterns The rows of a membership matrix can be grouped into clusters.
To be able to capture inter-type interactions, such classéould be obtained using
a joint analysis of membership matrices of all types. Thetelucentroid of each such
cluster denotes a representative distribution in the conitypspace. We call these clus-
ter centroids as distribution patterns. For example, iufé@, we plot a membership
matrix with C'=3. Each axis represents probability of membership for treespond-
ing community. Different colors represent objects follogiidifferent patterns. Black
stars @k) are the representatives (cluster centroids) used toseptéhe distribution
patterns.

Community Distribution Outlier An objecto in a heterogeneous network, iSCD-
Outlier if its distance to the closest distribution pattern, whishobtained by a joint
analysis of all the object types, is very high. For exampidsigure 2, theCDOutlier
points are marked as black squarili.(

Communities and hence distribution patterns discovei@u 1 heterogeneous net-
work are very different from those obtained by processingmdgeneous projection
of a heterogeneous network. Th@D)Outliers are quite different from the community
outliers obtained using homogeneous network analysis [6].

Community Distribution Outlier Detection Problem

Input : Community membership matric&3s, Ts, . . ., Tk for the typesr, o, ..., Tk
Output: Top  outlier objects of each type that deviate the most from ithistion pat-
terns for that type.

For example, for DBLP, the types arg =author,» =conference and; =keywords,
and research areas are communitigswill then be a matrix where each row denotes
the probability with which an author belongs to various egshk areas. The expected
output is top few authors (conferences, keywords) thatadexthe most from the popu-
lar research area distribution patterns for the authorfézence, keyword) type.



We will solve this problem using an iterative two-stage &agh. In the first stage,
distribution patterns are discovered ignoring the outliéetected in the previous iter-
ation. In the second stage outliers are detected based gatteens discovered at the
first stage within the same iteration. The proposed pattisodery step is a joint Non-
negative Matrix Factorization (NMF) process, and thus wfirgt discuss basics about
NMF in the next section. We then introduce the two stages ati@es 2.3 and 2.4, and
finally present the complete algorithm.

2.2 Brief Overview of NMF

Given a non-negative matrik ¢ RV*¢ (each element of" is > 0), the basic NMF
problem formulation aims to compute a factorizatioffdhto two factorsi’ € RNV *¢’
andH e RY %€ such thafl’ ~ W H. Both matriced¥ and H are constrained to have
only non-negative elements in the decomposition.

It has been shown earlier ([4]) that NMF is equivalent to axet form oiKMeans[16]
clustering. NMF can be considered as a form of clustering theematrix7'. Each row
of H represents a cluster centroid (or a distribution patteri)@éC-dimensional space.
Thus, H contains the information about tli€ cluster centroids obtained by clustering
T'. Each element of row of 1 represents the probability with which the object corre-
sponding to row- belongs to the different clusters. Generally, the losstionaised to
represent the error betwe&hand W H is the element-wise Euclidean distance. Thus
the typical NMF can be expressed as the following optimaagiroblem.

min ||T — WH||? )
W,H

subject to the constraints
W=0,H=>0 @
where||A|| is the sum of the square of each element in the matrix

2.3 Discovery of Distribution Patterns

In this sub-section, we will discuss how to learn distribatpatterns from community
membership matrices. These patterns will form the basisdtier detection which we
will discuss in Section 2.4.

For a homogeneous network, any clustering algorithm coelcuip over the com-
munity membership matrix to obtain distribution pattetdewever, the case of hetero-
geneous networks is challenging. Each of the membershipaesd), can be clustered
individually (using the basic NMF) to obtain distributiomtterns for that type. How-
ever, since all the membership matrices are defined for tsbfhat are connected to
each other, the hidden structures that can explain thesetsbgommunities should be
consistent across types. Also, the membership matricessept objects in the same
space ofC components. Hence the clustering of maffixshould correspond to the
clustering of matrixZ; for all 1 < 4,7 < K. In other words, the divergence between
any pair of clusterings should be low.

This intuition can be encoded in the form of an optimizatisakpem, which con-
ducts Non-negative Matrix Factorization (NMF) over mukipnatrices together. In the



proposed problem setting, each of the matrices in th&'set{T},T5,...,Tx } needs

to be factorized, and we expect them to share a lot of commuorfaor have factors
which are quite similar to each other. We will factorize eawdtrix 7;, € RV+*C into

two factorsW,, € RV«xC" and H, € R *C, Also, we need to ensure that cluster-
ing across different types is somewhat related. We achi@gebly introducing a new
term || Hy, — H;||? to the basic NMF optimization objective function, and a paeger

« which decides what degree of correspondence should banebtacross clusterings.
Problem Formulation Based on the above discussion, the problem can be formulated
as an optimization problem as follows. LBt and H represent the set of matrices
{Wh,Wa,...,Wgk}and{H;, Hs, ..., Hg} respectively.

K K
i Ty, — Hy|]? « — 2
%}gkz:l{\l b — WeHg||"} + ;{HHk Hi||"} 3)
=
subject to the constraints
Wp>0 Vk=1,2,....K (4)
H,>0 Vk=1,2,...,K (5)

For example, for DBLPr, =author,T; is the research-area distribution matrix for
the author type. Each row @i, represents a distribution pattern for the author type and
each row ofit’; denotes the probability with which the author belongs toctheauthor
distribution patterns.

The objective function in Eqg. 3 is quadratic with respeciip or H; when the
other variable matrices are fixed. Converting to Lagranfpam by introducing the La-
grangian multiplier matrix variableB = {Py, P, ..., Px}andQ = {Q1,Q2,...,Qk},
we obtain the following.

W.H,P,

K K K
min D ATk = WiHi|*y + @) {|[He — Hil|*} + Y _{tr(PWi) + tr(QiHi)} (6)
k=1 k=1 k=1

=1
k<l

KKT optimality conditions require the following.

K
O || Te — WiHy||* + o 3 || Hi — Hil|?
2
Ot ;)
O [||Tw — Wi Hy||?]
8W’“<i,j>

= Qi k=12, K @)

=Py, Yk=12...K (8)
Also, the complementary slackness conditions can be esgaless follows.

Qk(i‘j) X Hk(ri,j) =0 V’Lmjyk (9)
Pk(i,j) X Wk('i,j) =0 Vi, jk (10)
Substituting Egs. 7 and 8 into Egs. 9 and 10 respectively,et¢hg following.



K

W WiHe — Wi Te + oy (IC'XC'Hk - IC'XC'Hl) X Hy, , =0 Vi j,k (11)
=1
r (i.9)

L X Wiy, =0 Visjk (12)

(4,5

These set of equations can be solved using the followingtiter equations.

[WkaHkT —T.HT }

W<—W®T’“7H’“T Vk=1,2 K (13)
k k WkaHg = 1,4,...,
K ! ’
WETy +a > 197 1,
=1
Hy + Hy, © sy Vk=1,2,... K 14)
WkTWka + « Z JC'xC" H,
=y
Here® denotes the Hadamard product (element-wise product)%dénotes the
. L. . A Ay
element-wise division, |.e(.§)m. = gL.

2.4 Community Distribution Outlier Detection

Using the joint-NMF formulation described in the previoudhssection, we obtain the
matrices{ W}, }/*_,. Each row ofH}, is a distribution pattern (a cluster centroid) and
each elementi, j) of W}, denotes the probability with which objetbelongs to the
distribution pattern;j. We define the outlier score of an object as the distance of the
objecti of type 7}, from the nearest cluster centroid. Thus, the outlier scoreah
objecti, OS(i) can be written as follows.

05(i) = argmin Dist(Th, ,, Hk; ) (15)

J

An object which is far away from its nearest cluster centrgéds a high outlier
score. Using this outlier definition, one can find outlier resofor all objects of all
types. Topx objects with highest outlier scores for each type can be etbak outliers.
Iterative Refinement If the input data contains outliers, the distribution patsewill
try to overfit to those outliers and hence will be distortethpared to the actual hidden
structure of the clean data, so the distribution patternadisry needs to be outlier-
aware. Similarly, if the distribution patterns are acceyatutlier detection will be of a
high quality. Therefore, we propose to perform the stepsatiepn discovery and outlier
detection iteratively until convergence. At each itematiwhile performing pattern dis-
covery we ignore the set of top-outliers from each type. For outlier detection, we use
the patterns discovered during the same iteration, to ctenputlier scores for all the
objects of all types. Empirically we observed that such arative refinement always
converges. However in case the algorithm oscillates @gmters a loop where the set
of outliers detected repeats), the algorithm can be tet@ihavhen the set of outliers
detected after any iteration is the same as the one detectey iprevious iteration.



We summarize the outlier detection algorithm in AlgorithmAle initialize the set
of outliers of each type to an empty set (Step 1). The set dieosiis updated itera-
tively and the algorithm terminates when the outliers det@across two consecutive
iterations are the same. Within every iteration, we firseobf}, for that iteration by
removing the rows corresponding to the current outliersftbe original membership
matrix (Step 6). NMF is sensitive to initialization and henwe initialize 1W,'s and
Hj,’s using clusters discovered by runnik@/leans [16] on T}, (Step 7). Steps 6 to 13
correspond to pattern discovery using joint-NMF. Stepsald# correspond to outlier
detection based on the discovered patterns. Finally, theoabjects are returned.

Algorithm 1 CDOutlier Detection Algorithm (CDODA)

Input: (1) Cluster membership matrice§ = {T1,T»,...,Tk} corresponding to objects of types =
{r1,72,..., 7k}, @) o, B)k.
Output: Top x CDOutlier objects of each type{(D1, Oa, . . ., Ox}).
1: Initialize each element afurrOutliers = {Oy, O2, ..., Ok } t0 ¢.

2: Initialize each element girevOutliers = {0}, O}, ..., O% } to null.
3: {origTy + Tu}E_,
4 while checkForChangerrOutliers, prevOutliers) do
5: prevOutliers < currOutliers
6: {T}, + origTy— rows corresponding t®; },’le > Pattern Discovery
7 Initialize { W, } &, and{H}, }K_, using{ K Means(Ty)}E_,.
8 while NOT convergedio
9: for k = 1to K do
10: UpdateW, using Eq. 13.

11: UpdateH, using Eq. 14.

12: end for

13:  endwhile

14:  for k =1to K do > Outlier Detection
15: Compute outlier scores for all objects of typg.

16: O}, + top x objects of typer;, with highest outlier scores.

17:  endfor

18: end while

3 Discussions

In this section, we analyze the time complexity of the preagSDOutlier detection
method. We also discuss several important issues in impigngethe method.
Initialization The joint-NMF formulation will converge to bocal optimum, and thus

it could be sensitive to initialization. Therefore, it isyémportant to choose an appro-
priate initialization for the algorithm. To initialize theatrix H},, we runKMeans [16]

on the matrixTy. W is then computed by finding the nearest cluster for each tbjec
and setting the corresponding entryiin, to 1.

Computational Complexity The time required for an update tolE, or H; matrix

is O(NK(C"). Thus, the pattern discovery phase has a complexity (@271 NC"?),
where I is the number of iterations for joint-NMF and is the average number of
objects per type. The outlier detection phase consists diffintop~ outliers per type
which can be done i®(K Nlog(x)) time. Let the number of iterations for the exter-
nal While loop (Steps 4 to 18) bE. Thus, the overall complexity of the algorithm is
O(NI'K(KIC"™ + log(k))). Note thatl’ K (KI1C" + log(x)) becomes a small con-
stant whenV is large. Thus the algorithm is linear in the number of olgect

Selecting Parameters ¢ and ) « determines the amount of regularization applied
when performing the joint-NMF. If we setto 0, it is as good as performing NMF sep-



arately. A high value ofv will favor a solution where there are many shared distrdyuti
patterns across various types, while a low valuevafill try to fit the NMF for each

of the types individually without trying to discover any séd distribution patterns.
Hence, the setting of the parameteis important and domain dependent. If we believe
that the objects of different types interact a lot all acribgsnetwork, we should use a
higher value forx for better resultss can be selected based on the percentage of out-
liers expected. Another way of principled thresholdingosét the variance level, for
example, consider any point as an outlier if it is at least $tamdard deviations away
from the nearest cluster centroid.

4 Experiments

Evaluation of outlier detection algorithms is quite difficdue to lack of ground truth.
We generate multiple synthetic datasets by injecting exstlinto normal datasets, and
evaluate outlier detection accuracy of the proposed dlyos on the generated data.
We also conduct case studies by applying the method to re¢alsdds. We perform
comprehensive analysis to justify that the top few outlietsirned by the proposed
algorithm are meaningful. The code and the data sets arablsat:http:/dais.
cs.uiuc.edu/manish/CDOuitlier/

4.1 Baselines

Community Distribution Outlier Detection AlgorithnCDO) is the proposed method.
The baseline methodSI(andHomo) are explained as follows.

Singlelteration (SI) As described in Algorithm 1CDO performs community pattern
discovery and outlier detection iteratively until the sktap « outliers for each type do
not changes is a simpler version o€DO, which performs only one iteration. Thus
the pattern discovery phaseshsuffers from the presence @DOutliers. This baseline
will help us evaluate the importance of ignoring tBBOutlier noise when computing
the distribution patterns.

Homogeneous (HomoDO performs pattern discovery using joint-NMF across mul-
tiple types. In contrast to this, the baselldemo treats all objects to be of the same type
and then performs distribution pattern discovery usingglsimatrix NMF. This base-
line will help us evaluate the importance of modeling hegerteous data types rather
than reducing them to homogeneous ones in heterogeneousatfon networks.

4.2 Synthetic Datasets

Dataset Generation

We generate our synthetic dataset as follows. The datasepissented by the
matricesT}, for 1 < k < K. We start by generatingl/,, and IW,, and then obtain
T, = Wy Hy. We first generate a single matdk® <€ which we consider as a template
for generating the distribution patterns. It appears acdifferent types in a slightly
perturbed formH is generated as follows. We first fix’ = 2C. Next, each cluster
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centroid (a row offf) could be an impulse probability distribution function #fefent
dimensions or could have non-zero random probability vedu@ dimensions. Perturb

H randomly such that all objects of the same type follow theeséired perturbation
togetH,..., Hx (Recall K=Number of types). Such a perturbation captures the fact
that clusters across different types of objects deviaggh#}i from each other. Then
{W,.}_, are generated such that one element in every row is closeaodlthe re-
maining probability mass is distributed uniformly amongetelements. Thesé&’,’s
andH}'s could then be used to generdtg, = Wka}szl.

Outliers are injected as follows. First we set an outliesnfestor? and choose a
random set of objectd?;, with N, x ¥ objects of typek. For each object in Ry, we
choose either a pattern randomly from some other typgé k or a pattern quite differ-
ent from any pattern it{;’s. We use this pattern to define the rowlip corresponding
to the objecb, i.e., T, ,. Note that patterns in different types are reasonably rdiffe
from each other. Hence, such an object which follows a paftem some other type,
or a completely different pattern froif itself, can be considered as an outlier for type
k.

Results on Synthetic Datasets

We generate a variety of synthetic datasets capturingdiffeexperimental settings.
For each setting, we perform 20 experiments and report theage values. We fix the
threshold for NMF objective function convergence(t®1. We vary the number of
objects as 1000, 2000 and 5000. We also study the accuraeyagipect to variation
in number of object types (2, 3, 4) and variation in the nunmddfezommunities (4, 6,
8, 10). We also vary the percentage of injected outliers as2B%and 5%. We fixed
«=0.5 for our experiments. Using these settings, we comperadtual outlier objects
with the top outliers returned by various algorithms. Fachealgorithm, we show the
accuracy with respect to matches in the set of detectedceaaitiind the set of injected
outliers, in Table 1 (False Positives(%)=100-accuracgsits forC' = 6,8 are also
similar and we omit them for lack of space. For each expertaieetting, we show the
best accuracy obtained in bold. Each of the accuracy vatuebtained by averaging
the accuracy across all types of objects for that experiahesetting (across 20 runs).
Average standard deviations are 3.07% @0, 3.48 % forS and 2.19% foiHomo.
As the table shows, the proposed algorithm outperformsdidtie other algorithms for
most of the settings by a wide margin. On an average acrosgarimental settings,
CDO is 2.85% better tha8l and 21.5% better thadomo. In general, the accuracy of
the proposed algorithm decreases slightly as the amounitiiimess increases to 5%.

4.3 Running Time and Convergence

The experiments were run on a Linux machine with 4 Intel Xe®UE with 2.67GHz
each. The code was implemented in Jausleans [16] implementation of Weka [11]
was used for initialization of théf; and W, matrices. Figure 3 shows the execution
time for CDO algorithm for different number of object types. Note that #igorithm
is linear in the number of objects. These times are averagedsmultiple runs of the
algorithm across different settings for degree of outkssiand number of communities.
Figure 4 shows the decrease in the objective function valtierespect to the num-
ber of iterations for different dataset sizes (f6r3 andC'=10). The figure shows that
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the joint-NMF algorithm converges well. The average nundféterations for conver-
gence of joint-NMF are 118, 173 and 242 for datasets of sif€8,12000 and 5000
respectively.

s0 o 012
400 s < 20 01
= — £ . —
§300 .a.a_,.'_:; \ ——N=1000
k3 K1 = So008 —
> g ——N=2000
£ 200 c &5 0.06 N
E £8 =
100 % So.04 X 2000
c S
0 : : 2 %0.02
1000 2000 5000 © 0
Number of Objects (N) 50 100 150 200

Number of Iterations

Fig. 3. Running Time (sec) fo€DO (Scal-
ability) Fig. 4. Convergence of joint-NMF

On an average across all experimental settings, the prd@dgerithmCDO takes
the following number of external iterations’) of pattern discovery and outlier detec-
tion: 6.21 forN=1000, 6.98 forN=2000 and 7.66 foiv=5000.

Table 1.Synthetic Dataset ResultSDO=The Proposed Algorithm CDODA = Single Iteration
Baseline Homo=Homogeneous (Single NMF) Baseline) {04 (left) andC=10 (right)

=2 K[ =3 K[ =4
SI_[Homo[ CDOJ SI [Homo|[CDOJ SI [Homo|
92 [915| 52 |81.3| 80 | 53.7 | 73.8| 75 | 54.2
94.2[858] 60 [83.3] 83| 57.3|76.1[75.4| 56.4 1000
86.5[70.5] 59.5 [ 74.7[67.8] 57.2 | 71 [64.4| 55.6
95 [ 91 | 56.5 | 81.2[81.3| 54.8 | 73.1[74.5| 52.1
90.486.1[ 57.181.8[78.3] 55.2 | 74.2[73.8] 52.3 2000
73.4|65.4[ 57.2 | 74 |67.7] 55.4
92.1|86.4| 52.3|80.9|78.4| 56.3 | 72.8/69.1| 51.6
95.4[94.4[ 56 [ 79.9[77.2[ 546746 74 [ 53.8 5000
88.5| 68 [ 60.780.4[66.7[ 57.9 | 74.8[65.9] 56.8

35

S8

Z

Z|

K[ =2 K[ =3 K[ =4

CDO][_SI [Homo|CDO[ SI [Homo[CDOJ SI [Homo|
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4.4 Regularization Parameter Sensitivity

The joint-NMF optimization problem (Eg. 3) includes a regpigation parameter. We
study the sensitivity of the algorithm with respect to thésameter. Table 2 shows the
accuracy of the propose€DO algorithm for K=3 andC=6. Across different settings
of the number of objects\) and the degree of outliernegg)( the table shows that the
accuracy is not sensitive to the valuecofWe observe that the algorithm provides good
accuracy for any value ef between 0 and 1. Note thatdecides how much importance
the algorithm gives to the quality of object clustering witlone type versus matches
between clusters obtained across types. Thshould be decided for any dataset based
on the size of the dataset and its inter-type cluster strecimilarity.

4.5 Real Datasets

Dataset Generation
We perform experiments using 2 real datasB8LP and Delicious. We useNet-
Clus [20] to perform community detection on the datasets sincmséis both data and
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Table 2. Regularization Parameter Sensitivity f&r=3,C'=6
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link information for clustering and is specifically desighe handle heterogeneous net-
works.NetClus outputs the matric€es, . . ., Tx which we use as input for the proposed
outlier detection algorithm. We found that the proposedhmeétprovides much more
interesting top outliers compared to th®mo baseline and we provide case studies
usingCDO only, for lack of space.
DBLP: The DBLP network consists of papers, authors, keywords and cordeseiVe
considered a temporal subset of DBLfBr 2001-2010. We removed authors witl10
papers during that time period. Our dataset consistsGH0K papers;~480K authors,
3900 conferencesy107K keywords and 14 research areas. We obtained a list ef con
ferences from the Wikipedia Computer Science Conferenage phich labels confer-
ences by research areas. By associating keywords frome¢bagerences with research
areas, we obtained term priors which were used as inpiNéiitlus. We consider each
research area as a community, and thus the number of coniesuisitL4. We experi-
mented withC’'=28 (twice the number of communitieg)70.5 andx =1%.
Delicious The Delicious network consists of tagging events, users, URLs and tags.
The dataset consists of all tagging events performed bydoraly chosen list of-73K
users from July 1 to July 28, 2010. The tagging events werandxd as RSS feetland
were processed to obtain the desired network. Deliciougiges a basic categoriza-
tion on the home padeWe scrap category pages linked from home page to associate
keywords with the categories. We consider these categasiesmmunities and hence
use the number of communities as 10 when runiNetflus on the Delicious data. The
categorized keywords are used to supply term priord&€lus. Our Delicious dataset
consists of~73K usersy1.3M tagging events;902K URLs,~273K tags and 10 cat-
egories. We experimented wittf=20 (twice the number of communities)=0.5 and
Kk =1%.
Results on Real Datasets

Running time for the algorithm is about 1.5 hours for bothdhtasets. Here, we will
discuss case studies obtained from these datasets. Wealttadytop 2 outliers of each
type from the 2 datasets in terms of their community distridsu Objects that have very
small frequency of occurrence may not have an appropriatemamity distribution.
Hence, we analyze objects with at least 10 links in the nédéwidote that the outliers

“http://www.informatik.uni-trier.de/ ~ ley/db/
Shttp://en.wikipedia.org/wiki/List_of computer_scien ce_
conferences

Shttp://feeds.delicious.com/v2/rss/
"http://delicious.com/
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for each type have been obtained using a joint hidden steietualysis across multiple
types, and hence are quite different from outliers obtairsdg homogeneous network
analysis [6].
DBLP

In DBLP, we observe specialization in one of the 14 categories as pltterns.
Multiple types of objects share a few patterns, which comlsaveral areas, for ex-
ample, (“Databases™0.8, “Computational Biology”:0.BJowever, some of the other
patterns with combinations of research areas are specibartaular types. For exam-
ple, the pattern (“Software engineering”:0.3, “Operataygtems”:0.6, “others”:0.1) is
observed for conferences but not for other types. Simildhlg pattern (“Concurrent
Distributed and Parallel Computing”:0.5, “Security andvacy”:0.45, “others”:0.05)
is observed specifically for authors while (“Security anivgey™:0.8,“Education”:0.2)
is observed specifically for title keywords. Thus some pagi@re shared across types
while others are slightly different. This stresses the rfeed joint-NMF-based clus-
tering.
Authors: Most of the authors publish frequently in such “commonlyred’ categories
or in a single category of their expertise. However our tofliens show interesting
combinations as follows. (Note that the community membipnsiobabilities are shown
in brackets and may not add up to 1; the residual is spreadsotbher communities.)
(1) Giuseppe de Giacomo: Algorithms and Theory (0.25), Dadas (0.47), Artificial
Intelligence (0.13), Human Computer Interaction (0.06)té\that the combination of
Algorithms and Theory, Databases and Artificial Intelligerwith small contributions
to HCl is rare and hence interesting.
(2) Guang R Gao: Concurrent Distributed and Parallel Comgui0.41), Computer
Architecture (0.3), Computational Biology (0.27). Simita the case above, this com-
bination of the research areas is quite rare.
Conferences:Among the top conference outliers are conferences thatapass mul-
tiple streams of computer science. The top 2 conferenceemitire as follows.
(1) From integrated publication and information systemwittual information and
knowledge environmeritsDatabases (0.5), Artificial Intelligence (0.09), HumamGo
puter interaction (0.4). This conference is special bezauselebrates awccasion
(65" birthday of Erich J. Neuhold). From the name itself the read@ guess the wide
nature of this conference.
(2) International Conference on Modelling and Simulati®nogramming languages
(0.18), Security and privacy (0.29), Databases (0.39), @ider Graphics (0.13). Again,
this combination is quite rare.
Keywords: Finally, we also list the top 2 paper title keywords with higttlierness
scores.
(1) military: Algorithms and theory (0.02), Security andivacy (0.37), Databases
(0.22), Computer Graphics (0.37). Lots of military sporgbresearch and paper moti-
vations containing military scenarios results in such audig distribution for “military”.
(2) inventory: Security and Privacy (0.29), Databasesl() Gomputer Graphics (0.34),
Computational Biology (0.03). The nearest matching patierthis one was (Databases:

8http://dblp.dagstuhl.de/db/conf/birthday/neuhold200 5.html
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0.8, Computational Biology: 0.2). But usually computergrigs and security and pri-
vacy are not associated with these.
Delicious

In Delicious, we observe specialization in one of the 10 categories as phdterns,
as expected. Different types of objects share a few pattetmish corresponds to com-
binations of categories, for example, “Education” and ‘Temd Science”. However,
some of the other patterns with combinations of categoniespecific to particular
types. For example, “Arts and Design” and “Tech and Scieme@bserved for URLs
but not for other types. Similarly, the pattern “Arts and @eS$ and “Entertainment” is
observed specifically for users and “Lifestyle” and “Spoisobserved specifically for
tags. Thus even in the Delicious dataset, some patterndaredsacross types while
others are slightly different.
Users: Most of the users (who tag a sizeable number of pages) tag peled to a
particular category only. However, there are some usersamexperts across multiple
categories. Sometimes their interests are quite diverdedamot follow patterns of
other users. Here, we report top 2 users that the proposedthig reported as outliers,
along with the probabilistic categories they belong to. &lisulifestyle and travel are
highly correlated with food, unlike for the user “saassaga”
(1) saassaga: Arts and Design (0.25), Food (0.04), Life¢t/B5), Travel (0.34)
(2) Ibbrad: Food (0.24), Lifestyle (0.37), News and Patit{6.37)
Tags: Top 2 tags detected as outliers by our algorithm along wighctimmunity dis-
tributions are as follows. It is interesting to note that plecften mention “canoeing”
as a sport that they perform often when they travel (e.g.rongoutings).
(1) canoeing: Sports (0.62), Travel (0.38). Though theeecdiner sports which people
feel interesting in while traveling, canoeing seems to b&arexception wrt number
of travel pages it is mentioned on. The closest distribupiattern is (Sports: 1).
(2) rosary: Arts and Design (0.38), Education (0.02), Sp(iit6)
URLs: We find that not many web-pages belong to the Lifestyle andelteategories
together. As a result the pages that belong partially to theel and Lifestyle categories
get marked as top outliers.
(1) http://globetrooper.com/ : Lifestyle (0.35), Travel (0.38)
(2) http://vandelaydesign.com/blog/galleries/travel-web sites/
Lifestyle (0.33), Travel (0.48)

In conclusion, our algorithm is effective at finding intdrfeg outliers from real
datasets.

5 Related Work

Outlier detection has been studied in the context of a latgeler of application do-
mains [1,2,5, 6,13, 15]. Chandola et al. [3] and Hodge etld] provide extensive
overview of outlier detection techniques. Different frdmes$e studies, we perform com-
munity outlier detection for heterogeneous network data.

Individual, Global and Community Contexts Outlier Detection can be performed at
different levels of context. (1) Individual Context: Foraample, Type | and Type Il Out-
liers [5] in time series are defined based on values obseoratié same object across
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different time points. (2) Global Context: Stream Outlig2 DB Outliers [13], Sub-
Structure Outliers [18] are defined based on comparison alitthe other objects in
the dataset. (3) Community Context: Different from exigtecommunity outlier detec-
tion approaches (Community Outliers [6], CTOutliers [9G @utliers [10]), we model
multiple data types in heterogeneous network simultaneously to find outliers.
Homogeneous versus Heterogeneous NetworRecently there has been work on out-
lier detection for homogeneous networks [2, 6, 7, 10]. Whilevipus work on outlier
detection for heterogeneous networks [14, 17] models tenaty detection problem
in heterogeneous networks as a tensor decomposition pnolle model the problem
using a joint-NMF model to extract distribution patterngyigh are further used to de-
tect outliers. Also compared to our previous work (ABCQar8i [8]) which identified
outlier cliques, this work focuses on finding outlier obgect

6 Conclusions

We introduced the notion of outliers with respect to lateotomunities for hetero-
geneous networks, i.eGDOutliers. Such outliers represent objects that disobey the
frequent community distribution patterns. The challenge&étecting such outliers is
twofold: (1) correlation between patterns across diffetgpes of objects in the net-
work should be considered; and (2) patterns need to be kéasniginoring the outliers,
while outlier detection depends on effective discoveryattgrns. To tackle such chal-
lenges, we proposed a joint-NMF optimization frameworkei@rh distribution patterns
across multiple object types, that uses a regularizer fetadce between the cluster
centroid matrices of different object types. We derive thdaie rules to learn the joint
NMF model, which alternately updates the cluster membprahd the cluster centroid
matrices. Experiments on a series of synthetic data shoprthsed algorithm'’s ca-
pability of detecting outliers under various levels of @rthess, data dimensionality,
and number of types. Case studiesiBLP andDelicious datasets reveal some inter-
esting and meaningful outliers. In the future, we plan teegtthe framework to handle
multiple temporal network snapshots in a stream scenario.
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