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Abstract. Heterogeneous networks are ubiquitous. For example, bibliographic
data, social data, medical records, movie data and many more can be modeled
as heterogeneous networks. Rich information associated with multi-typed nodes
in heterogeneous networks motivates us to propose a new definition of outliers,
which is different from those defined for homogeneous networks. Inthis paper,
we propose the novel concept ofCommunity Distribution Outliers (CDOutliers)
for heterogeneous information networks, which are defined as objectswhose
community distribution does not follow any of the popular community distri-
bution patterns. We extract such outliers using a type-aware joint analysisof mul-
tiple types of objects. Given community membership matrices for all types of
objects, we follow an iterative two-stage approach which performs pattern dis-
covery and outlier detection in a tightly integrated manner. We first proposea
novel outlier-aware approach based on joint non-negative matrix factorization to
discover popular community distribution patterns for all the object types in a
holistic manner, and then detect outliers based on such patterns. Experimental
results on both synthetic and real datasets show that the proposed approach is
highly effective in discovering interesting community distribution outliers.

1 Introduction

Heterogeneous information networks are omnipresent. In such networks, the nodes are
of different types and relationships between nodes are encoded using multi-typed edges.
For example, bibliographic networks consist of authors, conferences, papers and title
keywords. Edges in such a network represent relationships like “an author collaborated
with another author”, “an author published in a conference”, and so on. Analysts of-
ten perform community detection on such networks with an aimof understanding the
hidden structures more deeply. Although methods designed for homogeneous networks
can be applied by extracting a set of homogeneous networks from the heterogeneous
network, such a transformation causes inevitable information loss. For example, when
converting bibliographic networks to co-authorship networks, some valuable connectiv-
ity information, e.g., paper title or conference an author published in, is lost. As objects
of different types interact strongly with each other in the network, analysis on heteroge-
neous information networks at various levels must be conducted simultaneously from
multiple types of data. Such an analysis will help in exploiting the shared hidden struc-
ture of communities across object types, i.e., the common patterns across types that can
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explain the generation of these community distributions. For example, in bibliographic
networks, when grouping authors based on their “research area” distributions, one must
use the knowledge of the grouping of “research area” distributions for related confer-
ences and keywords. This is because (1) the community space (research areas) is the
same across different object types, and (2) all these objects interact strongly with each
other in the network.

Although most of the objects in a heterogeneous network follow common commu-
nity distribution patterns which can be uncovered by joint analysis of community mem-
bership of multiple heterogeneous object types, certain objects deviate significantly
from these patterns. It is important to detect such outliersin heterogeneous information
networks for de-noising data thereby improving the qualityof the patterns and also for
further analysis. Therefore, in this paper, we propose to detect such anomalous objects
asCommunity Distribution Outliers (or CDOutliers) given the community distribution
of each object of every type. In the following, we present a few CDOutlier examples
and discuss the importance of identifying such outliers in real applications.

CDOutlier Examples Consider a bibliographic network where the research area label
associated with an author node depends on the community labels of the conferences
where he publishes, keywords he uses in the title of the papers, and the other authors he
collaborates with. There may exist some popular community distribution patterns ex-
tracted by analysis across various object types, which majority of the objects follow. For
example, say there are four communities: data mining (DM), software engineering (SE),
compilers (C) and machine learning (ML). Then popular distribution patterns could be
(DM:1, SE:0, C:0, ML:0), (DM:0, SE:1, C:0, ML:0), (DM:0, SE:0, C:1, ML:0), (DM:0,
SE:0, C:0, ML:1), and (DM:0.7, SE:0, C:0, ML:0.3). Then, an author who contributes to
DM and C (with a distribution like (DM:0.5, SE:0, C:0.5, ML:0)) would be considered
as aCDOutlier. Furthermore, there could be subtle patterns like (DM:0.8,Energy:0.2),
i.e., 80% probability belonging to DM and 20% probability inEnergy, which is fol-
lowed by majority of the objects. If an author’s community distribution is (DM:0.2,
Energy:0.8), which deviates from the majority pattern, then he is considered as aCD-
Outlier. Similarly, one could compute outliers among other types ofobjects, such as
conferences and title keywords, based on the popular distribution patterns derived by
holistic analysis across all object types.

Besides these examples, applications ofCDOutliers can be commonly observed in
real-life scenarios, and we briefly mention a few here. (1) Inthe Delicious network,
most users who tag pages about “Tech and Science” do not tag pages about “Arts and
Design”. A user doing so (user with unusual skill combinations) can be considered as a
CDOutlier. (2) In the Youtube network, most of the users would be interested in videos
of a particular category. However, certain users who act as middlemen in publishing
and uploading videos may interact with videos of many different categories and would
be detected asCDOutliers.

CDOutlier distributions should not be confused with “hub” distributions (i.e., dis-
tributions with high entropy) over communities. Certain “hub” distributions could be
frequent patterns, but only those that are very rare should be labeled asCDOutliers. On
the other hand, not allCDOutlier distributions have high entropy.
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Brief Overview of CDOutlier Detection Given thesoft community distributions for
each object of every type, one can compute distribution patterns.CDOutliers are ob-
jects that defy the trend, and the trend must be obtained fromaccurate pattern discov-
ery. However, pattern discovery suffers from the presence of CDOutliers itself. There-
fore, given community detection results, we design an iterative two-stage procedure
to identify CDOutliers, which integrates community distribution pattern discovery and
CDOutlier detection. First, we discover popular distribution patterns for all the ob-
ject types together by performing a joint nonnegative matrix factorization (NMF) on
the community distribution matrices, such that it ignores the outliers discovered in the
previous iteration. At the second step, the outlierness score for an object is computed
based on its distance from its nearest distribution pattern. The algorithm iterates until
the set of outliers discovered do not change. Thus, distribution pattern discovery and
outlier detection are improved through iterative update procedures, and upon conver-
gence, meaningful outliers are output.
Summary Our contributions are summarized as follows.

– We introduce the notion of identifyingCDOutliers from heterogeneous networks
based on the discovery of community distribution patterns.

– We propose a unified framework based on joint-NMF formulation, which integrates
the discovery of distribution patterns across multiple object types and the detection
of CDOutliers based on such patterns together.

– We show interesting and meaningful outliers detected from multiple real and syn-
thetic datasets.

Our paper is organized as follows. In Sec. 2, we introduce thenotion of distribution
patterns and develop our method to extract heterogeneous community trends for objects
of different types in the form of popular distribution patterns. In Sec. 3, we present
discussions related to practical usage of the algorithm. Wediscuss datasets and results
with detailed insights in Sec. 4. Finally, related work and conclusions are presented in
Sec. 5 and 6 respectively.

2 CDOutlier Detection Approach

Notation Meaning

τk kth object type
k, l Index for a type of objects
Nk Number of objects of typek
K Number of types of objects
C Number of communities
C′ Number of distribution patterns

T
Nk×C

k
Membership matrix for objects of typek

W
Nk×C′

k
Distribution pattern indicator matrix for objects of typek

H
C′×C
k

Distribution patterns matrix for objects of typek
Ok Outlier objects set for typek
α Regularization Parameter

Fig. 1. Table of Notations
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In this section, we will present our iterative two-stage approach forCDOutlier de-
tection. Table 1 shows the important notations we will use inthis paper. We denote an
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element(i, j) of a matrixA byA(i,j). More details about the notations will be found in
the following problem definition.

2.1 Problem Definition

We start with introduction to a few basic concepts.
Community Consider a heterogeneous network withK types of objects{τ1, τ2, . . . , τK}.
A community is a probabilistic collection of similar objects, such that similarity be-
tween objects within the community is higher than the similarity between objects in
different communities. For example, a research area is a community in a bibliographic
network. For heterogeneous networks, one is often interested in identifying heteroge-
neous communities which contain objects of different types. We will useC to denote
the number of communities.
Membership Matrix Membership matrixT is a matrix such that the elementToi cor-
responds to the probability with which an objecto belongs to a communityi. The rows
of the matrix correspond to objects while the columns correspond to communities. Let
N1, N2, . . . , NK be the number of objects of each type. LetT1, T2, . . . , TK denote
the membership matrices for the objects of typesτ1, τ2, . . . , τK respectively. Thus, the
membership matrixTk is of sizeNk × C.
Distribution Patterns The rows of a membership matrix can be grouped into clusters.
To be able to capture inter-type interactions, such clusters should be obtained using
a joint analysis of membership matrices of all types. The cluster centroid of each such
cluster denotes a representative distribution in the community space. We call these clus-
ter centroids as distribution patterns. For example, in Figure 2, we plot a membership
matrix withC=3. Each axis represents probability of membership for the correspond-
ing community. Different colors represent objects following different patterns. Black
stars (⋆) are the representatives (cluster centroids) used to represent the distribution
patterns.
Community Distribution Outlier An objecto in a heterogeneous network, is aCD-
Outlier if its distance to the closest distribution pattern, which is obtained by a joint
analysis of all the object types, is very high. For example, in Figure 2, theCDOutlier
points are marked as black squares (�).

Communities and hence distribution patterns discovered from a heterogeneous net-
work are very different from those obtained by processing a homogeneous projection
of a heterogeneous network. Thus,CDOutliers are quite different from the community
outliers obtained using homogeneous network analysis [6].
Community Distribution Outlier Detection Problem
Input : Community membership matricesT1, T2, . . . , TK for the typesτ1, τ2, . . . , τK .
Output : Topκ outlier objects of each type that deviate the most from distribution pat-
terns for that type.

For example, for DBLP, the types areτ1 =author,τ2 =conference andτ3 =keywords,
and research areas are communities.T1 will then be a matrix where each row denotes
the probability with which an author belongs to various research areas. The expected
output is top few authors (conferences, keywords) that deviate the most from the popu-
lar research area distribution patterns for the author (conference, keyword) type.
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We will solve this problem using an iterative two-stage approach. In the first stage,
distribution patterns are discovered ignoring the outliers detected in the previous iter-
ation. In the second stage outliers are detected based on thepatterns discovered at the
first stage within the same iteration. The proposed pattern discovery step is a joint Non-
negative Matrix Factorization (NMF) process, and thus we will first discuss basics about
NMF in the next section. We then introduce the two stages in Sections 2.3 and 2.4, and
finally present the complete algorithm.

2.2 Brief Overview of NMF

Given a non-negative matrixT ∈ R
N×C (each element ofT is ≥ 0), the basic NMF

problem formulation aims to compute a factorization ofT into two factorsW ∈ R
N×C′

andH ∈ R
C′×C such thatT ≈ WH. Both matricesW andH are constrained to have

only non-negative elements in the decomposition.
It has been shown earlier ([4]) that NMF is equivalent to a relaxed form ofKMeans [16]

clustering. NMF can be considered as a form of clustering over the matrixT . Each row
of H represents a cluster centroid (or a distribution pattern) in theC-dimensional space.
Thus,H contains the information about theC ′ cluster centroids obtained by clustering
T . Each element of rowr of W represents the probability with which the object corre-
sponding to rowr belongs to the different clusters. Generally, the loss function used to
represent the error betweenT andWH is the element-wise Euclidean distance. Thus
the typical NMF can be expressed as the following optimization problem.

min
W,H
||T −WH||2

subject to the constraints

W ≥ 0, H ≥ 0

(1)

(2)

where||A|| is the sum of the square of each element in the matrixA.

2.3 Discovery of Distribution Patterns

In this sub-section, we will discuss how to learn distribution patterns from community
membership matrices. These patterns will form the basis foroutlier detection which we
will discuss in Section 2.4.

For a homogeneous network, any clustering algorithm could be run over the com-
munity membership matrix to obtain distribution patterns.However, the case of hetero-
geneous networks is challenging. Each of the membership matricesTk can be clustered
individually (using the basic NMF) to obtain distribution patterns for that type. How-
ever, since all the membership matrices are defined for objects that are connected to
each other, the hidden structures that can explain these objects’ communities should be
consistent across types. Also, the membership matrices represent objects in the same
space ofC components. Hence the clustering of matrixTi should correspond to the
clustering of matrixTj for all 1 ≤ i, j ≤ K. In other words, the divergence between
any pair of clusterings should be low.

This intuition can be encoded in the form of an optimization problem, which con-
ducts Non-negative Matrix Factorization (NMF) over multiple matrices together. In the
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proposed problem setting, each of the matrices in the setT = {T1, T2, . . . , TK} needs
to be factorized, and we expect them to share a lot of common factors or have factors
which are quite similar to each other. We will factorize eachmatrixTk ∈ R

Nk×C into
two factorsWk ∈ R

Nk×C
′

andHk ∈ R
C′×C . Also, we need to ensure that cluster-

ing across different types is somewhat related. We achieve this by introducing a new
term ||Hk − Hl||

2 to the basic NMF optimization objective function, and a parameter
α which decides what degree of correspondence should be obtained across clusterings.
Problem Formulation Based on the above discussion, the problem can be formulated
as an optimization problem as follows. LetW andH represent the set of matrices
{W1,W2, . . . ,WK} and{H1, H2, . . . , HK} respectively.

min
W,H

K
∑

k=1

{||Tk −WkHk||
2}+ α

K
∑

k=1
l=1
k<l

{||Hk −Hl||
2}

subject to the constraints

Wk ≥ 0 ∀k = 1, 2, . . . ,K

Hk ≥ 0 ∀k = 1, 2, . . . ,K

(3)

(4)

(5)

For example, for DBLP,τ1=author,T1 is the research-area distribution matrix for
the author type. Each row ofH1 represents a distribution pattern for the author type and
each row ofW1 denotes the probability with which the author belongs to theC ′ author
distribution patterns.

The objective function in Eq. 3 is quadratic with respect toWk or Hk when the
other variable matrices are fixed. Converting to Lagrangianform by introducing the La-
grangian multiplier matrix variablesP = {P1, P2, . . . , PK} andQ = {Q1, Q2, . . . , QK},
we obtain the following.

min
W,H,P,Q

K
∑

k=1

{||Tk −WkHk||
2}+ α

K
∑

k=1
l=1
k<l

{||Hk −Hl||
2}+

K
∑

k=1

{tr(PkW
T
k ) + tr(QkH

T
k )} (6)

KKT optimality conditions require the following.

∂



||Tk −WkHk||
2 + α

K
∑

l=1
k 6=l

||Hl −Hk||
2





∂Hk(i,j)

= Qk(i,j)
∀k = 1, 2, . . . ,K

∂
[

||Tk −WkHk||
2
]

∂Wk(i,j)

= Pk(i,j)
∀k = 1, 2, . . . ,K

(7)

(8)

Also, the complementary slackness conditions can be expressed as follows.

Qk(i,j)
×Hk(i,j)

= 0 ∀i, j, k

Pk(i,j)
×Wk(i,j)

= 0 ∀i, j, k

(9)

(10)

Substituting Eqs. 7 and 8 into Eqs. 9 and 10 respectively, we get the following.
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




W

T
k WkHk −W

T
k Tk + α

K
∑

l=1
k 6=l

(

I
C′×C′

Hk − I
C′×C′

Hl

)







(i,j)

×Hk(i,j)
= 0 ∀i, j, k

[

WkHkH
T
k − TkH

T
k

]

(i,j)
×Wk(i,j)

= 0 ∀i, j, k

(11)

(12)

These set of equations can be solved using the following iterative equations.

Wk ←Wk ⊙
TkH

T
k

WkHkH
T
k

∀k = 1, 2, . . . ,K

Hk ← Hk ⊙

WT
k Tk + α

K
∑

l=1
k 6=l

IC
′×C′

Hl

WT
k WkHk + α

K
∑

l=1
k 6=l

IC
′×C′

Hk

∀k = 1, 2, . . . ,K

(13)

(14)

Here⊙ denotes the Hadamard product (element-wise product) andA
B

denotes the

element-wise division, i.e.
(

A
B

)

i,j
=

Aij

Bij
.

2.4 Community Distribution Outlier Detection

Using the joint-NMF formulation described in the previous sub-section, we obtain the
matrices{Wk}

K
k=1. Each row ofHk is a distribution pattern (a cluster centroid) and

each element(i, j) of Wk denotes the probability with which objecti belongs to the
distribution patternj. We define the outlier score of an object as the distance of the
object i of type Tk from the nearest cluster centroid. Thus, the outlier score for an
objecti, OS(i) can be written as follows.

OS(i) = argmin
j

Dist(Tk(i,·)
, Hk(j,·)

) (15)

An object which is far away from its nearest cluster centroidgets a high outlier
score. Using this outlier definition, one can find outlier scores for all objects of all
types. Topκ objects with highest outlier scores for each type can be marked as outliers.
Iterative Refinement If the input data contains outliers, the distribution patterns will
try to overfit to those outliers and hence will be distorted compared to the actual hidden
structure of the clean data, so the distribution pattern discovery needs to be outlier-
aware. Similarly, if the distribution patterns are accurate, outlier detection will be of a
high quality. Therefore, we propose to perform the steps of pattern discovery and outlier
detection iteratively until convergence. At each iteration, while performing pattern dis-
covery we ignore the set of top-κ outliers from each type. For outlier detection, we use
the patterns discovered during the same iteration, to compute outlier scores for all the
objects of all types. Empirically we observed that such an iterative refinement always
converges. However in case the algorithm oscillates (i.e.,enters a loop where the set
of outliers detected repeats), the algorithm can be terminated when the set of outliers
detected after any iteration is the same as the one detected in any previous iteration.
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We summarize the outlier detection algorithm in Algorithm 1. We initialize the set
of outliers of each type to an empty set (Step 1). The set of outliers is updated itera-
tively and the algorithm terminates when the outliers detected across two consecutive
iterations are the same. Within every iteration, we first obtain Tk for that iteration by
removing the rows corresponding to the current outliers from the original membership
matrix (Step 6). NMF is sensitive to initialization and hence we initializeWk ’s and
Hk ’s using clusters discovered by runningKMeans [16] on Tk (Step 7). Steps 6 to 13
correspond to pattern discovery using joint-NMF. Steps 14 to 17 correspond to outlier
detection based on the discovered patterns. Finally, the outlier objects are returned.

Algorithm 1 CDOutlier Detection Algorithm (CDODA)
Input: (1) Cluster membership matricesT = {T1, T2, . . . , TK} corresponding to objects of typesτ =
{τ1, τ2, . . . , τK}, (2)α, (3)κ.

Output: Topκ CDOutlier objects of each type ({O1, O2, . . . , OK}).
1: Initialize each element ofcurrOutliers = {O1, O2, . . . , OK} to φ.
2: Initialize each element ofprevOutliers = {O′

1, O
′
2, . . . , O

′
K} to null.

3: {origTk ← Tk}
K
k=1

4: while checkForChange(currOutliers, prevOutliers) do
5: prevOutliers← currOutliers
6: {Tk ← origTk− rows corresponding toOk}

K
k=1 ⊲ Pattern Discovery

7: Initialize {Wk}
K
k=1 and{Hk}

K
k=1 using{KMeans(Tk)}

K
k=1.

8: while NOT convergeddo
9: for k = 1 toK do

10: UpdateWk using Eq. 13.
11: UpdateHk using Eq. 14.
12: end for
13: end while
14: for k = 1 to K do ⊲ Outlier Detection
15: Compute outlier scores for all objects of typeτk.
16: Ok ← topκ objects of typeτk with highest outlier scores.
17: end for
18: end while

3 Discussions

In this section, we analyze the time complexity of the proposed CDOutlier detection
method. We also discuss several important issues in implementing the method.
Initialization The joint-NMF formulation will converge to alocal optimum, and thus
it could be sensitive to initialization. Therefore, it is very important to choose an appro-
priate initialization for the algorithm. To initialize thematrixHk, we runKMeans [16]
on the matrixTk. Wk is then computed by finding the nearest cluster for each object
and setting the corresponding entry inWk to 1.
Computational Complexity The time required for an update to aWk or Hk matrix
is O(NKC ′2). Thus, the pattern discovery phase has a complexity ofO(K2INC ′2),
whereI is the number of iterations for joint-NMF andN is the average number of
objects per type. The outlier detection phase consists of finding topκ outliers per type
which can be done inO(KNlog(κ)) time. Let the number of iterations for the exter-
nal While loop (Steps 4 to 18) beI ′. Thus, the overall complexity of the algorithm is
O(NI ′K(KIC ′2 + log(κ))). Note thatI ′K(KIC ′2 + log(κ)) becomes a small con-
stant whenN is large. Thus the algorithm is linear in the number of objects.
Selecting Parameters (α and κ) α determines the amount of regularization applied
when performing the joint-NMF. If we setα to 0, it is as good as performing NMF sep-
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arately. A high value ofα will favor a solution where there are many shared distribution
patterns across various types, while a low value ofα will try to fit the NMF for each
of the types individually without trying to discover any shared distribution patterns.
Hence, the setting of the parameterα is important and domain dependent. If we believe
that the objects of different types interact a lot all acrossthe network, we should use a
higher value forα for better results.κ can be selected based on the percentage of out-
liers expected. Another way of principled thresholding is to set the variance level, for
example, consider any point as an outlier if it is at least twostandard deviations away
from the nearest cluster centroid.

4 Experiments

Evaluation of outlier detection algorithms is quite difficult due to lack of ground truth.
We generate multiple synthetic datasets by injecting outliers into normal datasets, and
evaluate outlier detection accuracy of the proposed algorithms on the generated data.
We also conduct case studies by applying the method to real data sets. We perform
comprehensive analysis to justify that the top few outliersreturned by the proposed
algorithm are meaningful. The code and the data sets are available at:http://dais.
cs.uiuc.edu/manish/CDOutlier/

4.1 Baselines

Community Distribution Outlier Detection Algorithm (CDO) is the proposed method.
The baseline methods (SI andHomo) are explained as follows.
SingleIteration (SI) As described in Algorithm 1,CDO performs community pattern
discovery and outlier detection iteratively until the set of top κ outliers for each type do
not change.SI is a simpler version ofCDO, which performs only one iteration. Thus
the pattern discovery phase inSI suffers from the presence ofCDOutliers. This baseline
will help us evaluate the importance of ignoring theCDOutlier noise when computing
the distribution patterns.
Homogeneous (Homo)CDO performs pattern discovery using joint-NMF across mul-
tiple types. In contrast to this, the baselineHomo treats all objects to be of the same type
and then performs distribution pattern discovery using a single matrix NMF. This base-
line will help us evaluate the importance of modeling heterogeneous data types rather
than reducing them to homogeneous ones in heterogeneous information networks.

4.2 Synthetic Datasets

Dataset Generation
We generate our synthetic dataset as follows. The dataset isrepresented by the

matricesTk for 1 ≤ k ≤ K. We start by generatingHk andWk and then obtain
Tk = WkHk. We first generate a single matrixHC′×C which we consider as a template
for generating the distribution patterns. It appears across different types in a slightly
perturbed form.H is generated as follows. We first fixC ′ = 2C. Next, each cluster
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centroid (a row ofH) could be an impulse probability distribution function at different
dimensions or could have non-zero random probability valuefor 2 dimensions. Perturb
H randomly such that all objects of the same type follow the same fixed perturbation
to getH1, . . . , HK (RecallK=Number of types). Such a perturbation captures the fact
that clusters across different types of objects deviate slightly from each other. Then
{Wk}

K
k=1 are generated such that one element in every row is close to 1,and the re-

maining probability mass is distributed uniformly among other elements. TheseWk ’s
andHk ’s could then be used to generate{Tk = WkHk}

K
k=1.

Outliers are injected as follows. First we set an outlierness factorΨ and choose a
random set of objects,Rk with Nk × Ψ objects of typek. For each objecto in Rk, we
choose either a pattern randomly from some other typek′ 6= k or a pattern quite differ-
ent from any pattern inHk ’s. We use this pattern to define the row inTk corresponding
to the objecto, i.e.,Tk(o,.)

. Note that patterns in different types are reasonably different
from each other. Hence, such an object which follows a pattern from some other type,
or a completely different pattern fromH itself, can be considered as an outlier for type
k.
Results on Synthetic Datasets

We generate a variety of synthetic datasets capturing different experimental settings.
For each setting, we perform 20 experiments and report the average values. We fix the
threshold for NMF objective function convergence to0.01. We vary the number of
objects as 1000, 2000 and 5000. We also study the accuracy with respect to variation
in number of object types (2, 3, 4) and variation in the numberof communities (4, 6,
8, 10). We also vary the percentage of injected outliers as 1%, 2% and 5%. We fixed
α=0.5 for our experiments. Using these settings, we compare the actual outlier objects
with the top outliers returned by various algorithms. For each algorithm, we show the
accuracy with respect to matches in the set of detected outliers and the set of injected
outliers, in Table 1 (False Positives(%)=100-accuracy). Results forC = 6, 8 are also
similar and we omit them for lack of space. For each experimental setting, we show the
best accuracy obtained in bold. Each of the accuracy values is obtained by averaging
the accuracy across all types of objects for that experimental setting (across 20 runs).
Average standard deviations are 3.07% forCDO, 3.48 % forSI and 2.19% forHomo.
As the table shows, the proposed algorithm outperforms bothof the other algorithms for
most of the settings by a wide margin. On an average across allexperimental settings,
CDO is 2.85% better thanSI and 21.5% better thanHomo. In general, the accuracy of
the proposed algorithm decreases slightly as the amount of outlierness increases to 5%.

4.3 Running Time and Convergence

The experiments were run on a Linux machine with 4 Intel Xeon CPUs with 2.67GHz
each. The code was implemented in Java.KMeans [16] implementation of Weka [11]
was used for initialization of theHk andWk matrices. Figure 3 shows the execution
time for CDO algorithm for different number of object types. Note that the algorithm
is linear in the number of objects. These times are averaged across multiple runs of the
algorithm across different settings for degree of outlierness and number of communities.

Figure 4 shows the decrease in the objective function value with respect to the num-
ber of iterations for different dataset sizes (forK=3 andC=10). The figure shows that
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the joint-NMF algorithm converges well. The average numberof iterations for conver-
gence of joint-NMF are 118, 173 and 242 for datasets of sizes 1000, 2000 and 5000
respectively.
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On an average across all experimental settings, the proposed algorithmCDO takes
the following number of external iterations (I ′) of pattern discovery and outlier detec-
tion: 6.21 forN=1000, 6.98 forN=2000 and 7.66 forN=5000.
Table 1.Synthetic Dataset Results (CDO=The Proposed Algorithm CDODA,SI= Single Iteration
Baseline,Homo=Homogeneous (Single NMF) Baseline) forC=4 (left) andC=10 (right)

N Ψ |K| = 2 |K| = 3 |K| = 4
(%) CDO SI Homo CDO SI Homo CDO SI Homo

1000
1 92 91.5 52 81.3 80 53.7 73.8 75 54.2
2 94.2 85.8 60 83.3 83 57.3 76.1 75.4 56.4
5 86.5 70.5 59.5 74.7 67.8 57.2 71 64.4 55.6

2000
1 95 91 56.5 81.2 81.3 54.8 73.1 74.5 52.1
2 90.4 86.1 57.1 81.8 78.3 55.2 74.2 73.8 52.3
5 91.7 72.8 58 73.4 65.4 57.2 74 67.7 55.4

5000
1 92.1 86.4 52.3 80.9 78.4 56.3 72.8 69.1 51.6
2 95.4 94.4 56 79.9 77.2 54.6 74.6 74 53.8
5 88.5 68 60.7 80.4 66.7 57.9 74.8 65.9 56.8

N Ψ |K| = 2 |K| = 3 |K| = 4
(%) CDO SI Homo CDO SI Homo CDO SI Homo

1000
1 97 90.5 51 78 74.3 51.3 69.5 68.2 52.8
2 81.8 81.2 55 67.3 66.8 56.8 65.9 65.6 59
5 78.6 77.2 59.4 69.2 69.1 58.3 68.8 69 56

2000
1 79.2 78 55.5 72.7 71.5 58.2 71.9 72.2 56.6
2 79 78.2 55.8 68.1 68.2 59.2 65.4 65.9 56.1
5 74.4 72.4 61.5 73.1 73.4 58.4 66.4 67.2 56.2

5000
1 97.1 85.7 54.3 77.8 71.2 54.9 69.3 69 58.3
2 75.8 74.4 57.1 68.9 69.3 56.9 69.3 70.8 57.3
5 75 72.1 61.2 70.2 69.5 57.9 68.2 69.9 56.3

4.4 Regularization Parameter Sensitivity

The joint-NMF optimization problem (Eq. 3) includes a regularization parameterα. We
study the sensitivity of the algorithm with respect to this parameter. Table 2 shows the
accuracy of the proposedCDO algorithm forK=3 andC=6. Across different settings
of the number of objects (N ) and the degree of outlierness (Ψ ), the table shows that the
accuracy is not sensitive to the value ofα. We observe that the algorithm provides good
accuracy for any value ofα between 0 and 1. Note thatα decides how much importance
the algorithm gives to the quality of object clustering within one type versus matches
between clusters obtained across types. Thus,α should be decided for any dataset based
on the size of the dataset and its inter-type cluster structure similarity.

4.5 Real Datasets

Dataset Generation
We perform experiments using 2 real datasets:DBLP andDelicious. We useNet-

Clus [20] to perform community detection on the datasets since ituses both data and
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Table 2.Regularization Parameter Sensitivity forK=3,C=6

N Ψ α
(%) 0 0.2 0.5 0.8 1 10

1000
1 85.0 86.3 86.0 86.3 86.3 86.0
2 81.5 83.5 83.3 82.8 82.7 82.2
5 64.2 67.2 66.9 66.4 68.1 66.7

2000
1 82.1 85.5 85.8 85.5 85.3 83.5
2 74.7 78.6 81.0 80.2 80.3 77.7
5 62.3 70.6 70.5 70.5 70.4 69.9

5000
1 80.1 84.5 84.6 84.5 84.5 83.3
2 79.6 82.3 82.7 83.9 83.9 84.1
5 65.6 72.1 71.9 72.0 71.8 71.4

link information for clustering and is specifically designed to handle heterogeneous net-
works.NetClus outputs the matricesT1, . . . , TK which we use as input for the proposed
outlier detection algorithm. We found that the proposed method provides much more
interesting top outliers compared to theHomo baseline and we provide case studies
usingCDO only, for lack of space.
DBLP: TheDBLP network consists of papers, authors, keywords and conferences. We
considered a temporal subset of DBLP4 for 2001-2010. We removed authors with<10
papers during that time period. Our dataset consists of∼650K papers,∼480K authors,
3900 conferences,∼107K keywords and 14 research areas. We obtained a list of con-
ferences from the Wikipedia Computer Science Conferences page5 which labels confer-
ences by research areas. By associating keywords from theseconferences with research
areas, we obtained term priors which were used as input forNetClus. We consider each
research area as a community, and thus the number of communities is 14. We experi-
mented withC ′=28 (twice the number of communities),α=0.5 andκ =1%.
Delicious: The Delicious network consists of tagging events, users, URLs and tags.
The dataset consists of all tagging events performed by a randomly chosen list of∼73K
users from July 1 to July 28, 2010. The tagging events were obtained as RSS feeds6 and
were processed to obtain the desired network. Delicious provides a basic categoriza-
tion on the home page7. We scrap category pages linked from home page to associate
keywords with the categories. We consider these categoriesas communities and hence
use the number of communities as 10 when runningNetClus on the Delicious data. The
categorized keywords are used to supply term priors forNetClus. Our Delicious dataset
consists of∼73K users,∼1.3M tagging events,∼902K URLs,∼273K tags and 10 cat-
egories. We experimented withC ′=20 (twice the number of communities),α=0.5 and
κ =1%.
Results on Real Datasets

Running time for the algorithm is about 1.5 hours for both thedatasets. Here, we will
discuss case studies obtained from these datasets. We analyze the top 2 outliers of each
type from the 2 datasets in terms of their community distribution. Objects that have very
small frequency of occurrence may not have an appropriate community distribution.
Hence, we analyze objects with at least 10 links in the network. Note that the outliers

4http://www.informatik.uni-trier.de/ ˜ ley/db/
5http://en.wikipedia.org/wiki/List_of_computer_scien ce_

conferences
6http://feeds.delicious.com/v2/rss/
7http://delicious.com/
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for each type have been obtained using a joint hidden structure analysis across multiple
types, and hence are quite different from outliers obtainedusing homogeneous network
analysis [6].
DBLP

In DBLP, we observe specialization in one of the 14 categories as clear patterns.
Multiple types of objects share a few patterns, which combine several areas, for ex-
ample, (“Databases”:0.8, “Computational Biology”:0.2).However, some of the other
patterns with combinations of research areas are specific toparticular types. For exam-
ple, the pattern (“Software engineering”:0.3, “Operatingsystems”:0.6, “others”:0.1) is
observed for conferences but not for other types. Similarly, the pattern (“Concurrent
Distributed and Parallel Computing”:0.5, “Security and privacy”:0.45, “others”:0.05)
is observed specifically for authors while (“Security and privacy”:0.8,“Education”:0.2)
is observed specifically for title keywords. Thus some patterns are shared across types
while others are slightly different. This stresses the needfor a joint-NMF-based clus-
tering.
Authors: Most of the authors publish frequently in such “commonly-paired” categories
or in a single category of their expertise. However our top outliers show interesting
combinations as follows. (Note that the community membership probabilities are shown
in brackets and may not add up to 1; the residual is spread across other communities.)
(1) Giuseppe de Giacomo: Algorithms and Theory (0.25), Databases (0.47), Artificial
Intelligence (0.13), Human Computer Interaction (0.06). Note that the combination of
Algorithms and Theory, Databases and Artificial Intelligence with small contributions
to HCI is rare and hence interesting.
(2) Guang R Gao: Concurrent Distributed and Parallel Computing (0.41), Computer
Architecture (0.3), Computational Biology (0.27). Similar to the case above, this com-
bination of the research areas is quite rare.
Conferences:Among the top conference outliers are conferences that spanacross mul-
tiple streams of computer science. The top 2 conference outliers are as follows.
(1) From integrated publication and information systems tovirtual information and
knowledge environments8: Databases (0.5), Artificial Intelligence (0.09), Human Com-
puter interaction (0.4). This conference is special because it celebrates anoccasion
(65th birthday of Erich J. Neuhold). From the name itself the reader can guess the wide
nature of this conference.
(2) International Conference on Modelling and Simulation:Programming languages
(0.18), Security and privacy (0.29), Databases (0.39), Computer Graphics (0.13). Again,
this combination is quite rare.
Keywords: Finally, we also list the top 2 paper title keywords with highoutlierness
scores.
(1) military: Algorithms and theory (0.02), Security and Privacy (0.37), Databases
(0.22), Computer Graphics (0.37). Lots of military sponsored research and paper moti-
vations containing military scenarios results in such a diverse distribution for “military”.
(2) inventory: Security and Privacy (0.29), Databases (0.31), Computer Graphics (0.34),
Computational Biology (0.03). The nearest matching pattern for this one was (Databases:

8http://dblp.dagstuhl.de/db/conf/birthday/neuhold200 5.html
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0.8, Computational Biology: 0.2). But usually computer graphics and security and pri-
vacy are not associated with these.
Delicious

In Delicious, we observe specialization in one of the 10 categories as clear patterns,
as expected. Different types of objects share a few patterns, which corresponds to com-
binations of categories, for example, “Education” and “Tech and Science”. However,
some of the other patterns with combinations of categories are specific to particular
types. For example, “Arts and Design” and “Tech and Science”is observed for URLs
but not for other types. Similarly, the pattern “Arts and Design” and “Entertainment” is
observed specifically for users and “Lifestyle” and “Sports” is observed specifically for
tags. Thus even in the Delicious dataset, some patterns are shared across types while
others are slightly different.
Users: Most of the users (who tag a sizeable number of pages) tag pages related to a
particular category only. However, there are some users whoare experts across multiple
categories. Sometimes their interests are quite diverse and do not follow patterns of
other users. Here, we report top 2 users that the proposed algorithm reported as outliers,
along with the probabilistic categories they belong to. Usually lifestyle and travel are
highly correlated with food, unlike for the user “saassaga”.
(1) saassaga: Arts and Design (0.25), Food (0.04), Lifestyle (0.35), Travel (0.34)
(2) lbbrad: Food (0.24), Lifestyle (0.37), News and Politics (0.37)
Tags: Top 2 tags detected as outliers by our algorithm along with the community dis-
tributions are as follows. It is interesting to note that people often mention “canoeing”
as a sport that they perform often when they travel (e.g., on group outings).
(1) canoeing: Sports (0.62), Travel (0.38). Though there are other sports which people
feel interesting in while traveling, canoeing seems to be a clear exception wrt number
of travel pages it is mentioned on. The closest distributionpattern is (Sports: 1).
(2) rosary: Arts and Design (0.38), Education (0.02), Sports (0.6)
URLs: We find that not many web-pages belong to the Lifestyle and Travel categories
together. As a result the pages that belong partially to the Travel and Lifestyle categories
get marked as top outliers.
(1) http://globetrooper.com/ : Lifestyle (0.35), Travel (0.38)
(2) http://vandelaydesign.com/blog/galleries/travel-web sites/ :
Lifestyle (0.33), Travel (0.48)

In conclusion, our algorithm is effective at finding interesting outliers from real
datasets.

5 Related Work

Outlier detection has been studied in the context of a large number of application do-
mains [1, 2, 5, 6, 13, 15]. Chandola et al. [3] and Hodge et al. [12] provide extensive
overview of outlier detection techniques. Different from these studies, we perform com-
munity outlier detection for heterogeneous network data.
Individual, Global and Community Contexts Outlier Detection can be performed at
different levels of context. (1) Individual Context: For example, Type I and Type II Out-
liers [5] in time series are defined based on values observed for the same object across



15

different time points. (2) Global Context: Stream Outliers[2], DB Outliers [13], Sub-
Structure Outliers [18] are defined based on comparison withall the other objects in
the dataset. (3) Community Context: Different from existing community outlier detec-
tion approaches (Community Outliers [6], CTOutliers [9], ECOutliers [10]), we model
multiple data types in aheterogeneous network simultaneously to find outliers.
Homogeneous versus Heterogeneous NetworksRecently there has been work on out-
lier detection for homogeneous networks [2, 6, 7, 10]. While previous work on outlier
detection for heterogeneous networks [14, 17] models the anomaly detection problem
in heterogeneous networks as a tensor decomposition problem, we model the problem
using a joint-NMF model to extract distribution patterns, which are further used to de-
tect outliers. Also compared to our previous work (ABCOutliers [8]) which identified
outlier cliques, this work focuses on finding outlier objects.

6 Conclusions

We introduced the notion of outliers with respect to latent communities for hetero-
geneous networks, i.e.,CDOutliers. Such outliers represent objects that disobey the
frequent community distribution patterns. The challenge in detecting such outliers is
twofold: (1) correlation between patterns across different types of objects in the net-
work should be considered; and (2) patterns need to be learned by ignoring the outliers,
while outlier detection depends on effective discovery of patterns. To tackle such chal-
lenges, we proposed a joint-NMF optimization framework to learn distribution patterns
across multiple object types, that uses a regularizer for distance between the cluster
centroid matrices of different object types. We derive the update rules to learn the joint
NMF model, which alternately updates the cluster membership and the cluster centroid
matrices. Experiments on a series of synthetic data show theproposed algorithm’s ca-
pability of detecting outliers under various levels of outlierness, data dimensionality,
and number of types. Case studies onDBLP andDelicious datasets reveal some inter-
esting and meaningful outliers. In the future, we plan to extend the framework to handle
multiple temporal network snapshots in a stream scenario.
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