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Abstract. Transcription of polyphonic piano music is an important
computer music problem and many sophisticated methods have been
proposed for its solution. However, most techniques cannot fully utilize
all the available training data e�ciently and do not scale well beyond a
certain size. We develop an exemplar-based approach that can easily han-
dle very large training corpora. We maintain transcription performance
by only retaining 1% of the training data. The method is competitive
with the state-of-the-art techniques in the literature. Besides, it is very
e�cient and can work in real time.
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1 Introduction

Transcription of music is the process of determining the notes and the time
intervals in which they are active given a piece of music. Conventionally, it is
done by hand and requires both an educated ear and considerable amount of
time. Automation of this process is one of the fundamental problems studied
in the field of audio processing [1]. The computational methods developed to
solve this problem find application in various areas such as phonetics, speech
processing and music information retrieval [1]. Transcription is closely related
to pitch detection and tracking which is extensively studied in the literature.
Among the proposed methods, the model-based ones on matrix factorization
have become very popular in the last decade [1, 2].

It is still not very clear how humans, especially musicians, recognize notes
in polyphonic textures. Experience suggests that human listeners become more
successful with training in recognizing musical constructs. Inspired partially by
this idea, Smaragdis has demonstrated that it is possible to perform polyphonic
pitch tracking successfully via a linear model that tries to approximate the ob-
served musical data as a superposition of previously recorded monophonic mu-
sical data [3]: X ⇡ DW where X is the observed spectrogram, D is the dictio-
nary matrix obtained from the training data, and W contains the corresponding
weights.
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Intuitively, we would expect better transcription accuracy with larger and
more comprehensive dictionary matrix D, but on the other hand, this poten-
tially very large dictionary leads to an impractical algorithm. A wise solution is
to express the dictionary matrix using fewer dimensions in order to perform a
faster transcription with a smaller computation and memory requirement. We
employ two state-of-the-art exemplar selection algorithms, k-medoids [4] and
a�nity propagation [5], in order to remove repetitive and irrelevant part of the
data. In particular, we significantly reduce the size of the dictionary without
compromising the success rate of the full solution.

2 Polyphonic Music Transcription

Let Di, with elements Di(f, ⌧i), denote the magnitude spectrogram of mono-
phonic piano recordings belonging to 88 di↵erent notes. Here, i = 1, . . . , 88 is
the note index, f = 1, . . . , F is the frequency index, and ⌧i = 1, . . . , Ni is the
time index where F is the number of frequency bins and Ni is the number
of columns in Di. We obtain the training data by concatenating all training
vectors, D = [ D

1

D
2

. . . D
88

]. Test data are composed of polyphonic piano
recordings. Let X, with values X(f, t), be the spectrogram of the test data where
t = 1, . . . , T and T is the number of time frames.

We use a basic linear model where the observed spectrum is expressed as a
superposition of the training vectors:

X ⇡ X̂ = DW (1)

The aim is to find the weight matrix W which minimizes D [XkDW] where
D[·k·] is a properly selected cost function. We choose KL divergence for the cost
function. Note that the model is identical to the NMF model whose update rule
is well known [2,6]. We start with random initialization of W, and continue with
the following step until convergence:

W W �
 
D| X

(DW)

D|

!
(2)

The � symbol implies element-wise multiplication and division is also done
element-wise. is a matrix of all ones of the same size with X. Active notes are
observed to have significantly higher weights than the inactive ones and they
are selected by thresholding. Additionally, each weight value is smoothed by
applying a median filter to remove sharp jumps.

Let us now shift our attention to select exemplar data points which are
good candidates to represent remaining data points. The classical approach to
this problem is the k-medoids method where a medoid of a cluster is defined
to be the one whose average dissimilarity to all the objects in the cluster is
minimal [4]. In a typical k-medoids algorithm, we start with random initialization
of medoids. Then, at each iteration, we assign clusters to the data points and
recompute a medoid per cluster until convergence or a permitted maximum
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number of iterations. The distance among two data points is usually chosen to
be l

1

distance, but any appropriate distance is possible. k-medoids is run several
times each with di↵erent initial centers and the best solution is taken in order
to avoid local optima.

Another approach to clustering via exemplar selection is the a�nity propaga-
tion (AP) of Frey and Dueck [5]. AP finds a solution by exchanging real-valued
messages between data points until a high-quality set of exemplars and corre-
sponding clusters gradually emerges [5]. The number of clusters is not given a
priori in AP clustering. It is determined by the preferences: If the preference for
selecting a column is larger than its similarity to the nearest possible exemplar,
then it is selected as a new exemplar. Similar to k-medoids, AP can use any
appropriate similarity measure.

Applying exemplar-based algorithms on the merged data is not practical
since it requires pairwise distances of all the columns, which is of order O(N2).
Instead, we apply it for each note data Di, i = 1, . . . , 88 separately which is of
order O(

P
88

i=1

N2

i ).

3 Experiments and Results

We have used the MAPS (MIDI Aligned Piano Sounds) data set [8] in our exper-
iments. The training set is obtained using 440 monophonic piano sounds where
we represent the audio by its magnitude spectrogram which is computed via
DFT. The spectrogram is formed using overlapping Hanning windows of dimen-
sion 2048 with a window shift 512. The final dictionary matrix is 1025⇥ 115600
and is around 860 MB. In order to evaluate the performance of the methods
we used precision (fraction of retrieved instances that are relevant), recall (frac-
tion of relevant instances that are retrieved) and f-measure = 2⇥precision⇥recall

precision+recall

metrics. The evaluation is performed framewise.

We start with the full solution given in Eq. (2) and obtain an f-measure of
78.07%. This performance competes with the leading results obtained on MAPS
(81% [8], 77% [1]).

Then, we use exemplar selection methods. We first choose 45 exemplars per
note via k-medoids, merge these selected exemplars to form the training data
and get an f-measure of 78.69%. Note that whereas selecting columns of D cor-
responds to exemplars, selecting certain rows corresponds to frequency selection.
Choosing only 400 of the rows via k-medoids in addition to the selected columns
and using this skeletonized training data leads to an f-measure of 77.41%. Al-
ternatively, we use a�nity propagation. The preference values are set to be a
multiple of the median of the similarity values such that nearly 45 exemplars
are selected per note. The f-measure of this approach is 78.54%. We also apply
a�nity propagation on the rows and choose 278 exemplars with an f-measure of
78.39%. That is, we use less than 1% of the training data and still maintain the
success rate. In fact, there is a slight increase in the f-measure which supports
that removing repetitive and non-relevant parts may lead to better results.
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Fig. 1. Results obtained on the test set for all approaches.

The values are obtained by optimizing the threshold on a verification set
which excludes the test data. As post-processing, we apply a median filter on
each row of W before thresholding. Filtering leads to an increase around 2-5%
in f-measure for all approaches. We have conducted experiments with di↵erent
polyphony orders and obtained similar results. We observe a minimum of 60%
f-measure per polyphony order which shows that the proposed method is robust
to polyphony order.

4 Conclusions

We have studied automatic polyphonic music transcription and discussed that
the conventional methods are ine�cient to handle big data. We show that even
a standard matrix factorization model is prohibitive in real applications where a
huge amount of training data is used. The update rules are made e�cient by the
use of exemplar selection techniques. Time and space complexities are improved
such that the proposed method can work in real time without compromising
the accuracy. A high f-measure value (⇠78%) is obtained by using only a few
hundred frequency bins and sample columns out of a huge dictionary matrix.
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