
A Deep Learning Approach to Rhythm Modelling

with Applications

Aggelos Pikrakis

Department of Informatics, University of Piraeus, Greece
e-mail: pikrakis@unipi.gr, web: www.cs.unipi.gr/pikrakis

Abstract. This paper presents a deep-learning architecture which is capable of
modelling signatures that represent the rhythm of music recordings. The proposed
architecture consists of a stack of Restricted Boltzmann Machines on top of which
lies an associative memory. In the current study, we operate this architecture as a
classifier which can discriminate among genres of rhythm. As a proof of concept,
our method is applied on a standard corpus of ballroom dances. The results in-
dicate that the proposed architecture exhibits promising learning capabilities and
satisfactory generalization performance.

1 Introduction

Over the past decade, numerous studies in the field of Music Information Retrieval (MIR)
have focused on the development of computational tools for tempo induction, beat track-
ing and related problems. This paper is making an attempt to approach the task of rhythm
modelling from a deep-learning perspective. Deep architectures have been gaining popu-
larity over the past few years in various machine learning disciplines but their penetration
in the area of MIR is still limited [1], [2], [3].

The proposed method operates on rhythmic signatures (patterns), i.e., fixed-length
representations that are able to capture inherent signal periodicities (key components of
the rhythmic structure), especially in the case of popular music that exhibits repetition
[4], [5], [6]. In this study, we extend previous work by the authors [4] and propose a new
type of rhythmic signature that has a probabilistic interpretation. Furthermore, we focus
on the design of a deep architecture that can operate as a classifier of such signatures.
During the training stage of the classifier, the patterns at the output of the feature
extraction stage (Section 2) are fed as input to a deep-learning network (Section 3) that
consists of a stack of Restricted Boltzmann Machines (RBMs), on top of which lies an
associative memory. The training stage is based on training each RBM individually using
Contrastive Divergence and then the network as a whole using back-propagation. As a
proof of concept (Section 4), we have experimented with different network sizes on a
10-class task stemming from the frequently referenced dataset of Ballroom Dances [7].

2 FEATURE EXTRACTION

Each music recording is divided into highly overlapping long-term windows (10 s long, 9
s overlap). At each long-term window, a short-term feature extraction process extracts a
sequence, F = {F (i), i = 1, . . . , N}, of chroma-basedMFCCs [4]. Recommended values for
the length and step of the short-term moving window are 100 ms and 5 ms, respectively.
At a next step, the averaged Euclidean distance, D(k), between F and its shifted versions
is computed over a range of lags, k, k = 1, . . . , L:

D(k) =
1

N − k

N∑

i=k

|| F (i)− F (i − k) ||, k = 1, . . . , L (1)

In MML 2013: International Workshop on Machine Learning and Music, ECML/PKDD, Prague, 2013.

Assuming that in popular music slow music meters can be up to 4 s long, the maximum
lag, L, for computingD(k) is L = 4

0.005 = 800. Figure 1(a) presents the extracted sequence
D from an excerpt of a Samba recording. Strong local minima (valleys) indicate dominant
signal periodicities in the music recording.

At a next stage, we quantify the sharpness (depth) of the local minima. As a measure
of sharpness, we have adopted the estimate of the second-order derivative, D2, of D. To
compute this estimate, we first approximate the first-order derivative, D1, and use the
result to estimate the second-order derivative:

D1(k) =

3∑

l=−3

D(k), k = 1, . . . , L and D2(k) =

3∑

l=−3

D1(k), k = 1, . . . , L (2)

Finally,D2 is softmax normalized to yieldDn, i.e.,Dn(k) =
1

1+exp(−D̂2(k))
, where D̂2(k) =

D2(k)−µ

σ
and µ and σ are the mean value and standard deviation of D2, respectively. The

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Averaged Euclidean Distance (left) and Rhythmic Signature (right).

values of Dn (right part of Figure 1) lie in the range [0, 1] and Dn(k), k = 1, . . . , L, can be
interpreted as the probability that k corresponds to an inherent signal periodicity. Dn is
the rhythmic signature (pattern) of the long-term window. The demand for a probabilistic
interpretation raises from the fact that the patterns will be eventually used to feed the
layer of visible nodes of a Restricted Boltzmann Machine (RBM) [8]. Note that although
some of the extracted signatures may turn out to be outliers, it is beyond the scope of this
study to filter out any such cases, even though they introduce noisy data to our datasets.

3 Deep-learning architecture

The architecture that we propose is based on the guidelines that have been set in [8] and
[9]. Specifically, we have experimented with a stack of Restricted Boltzmann Machines
(RBMs), RBMi, i = 1, . . . , R, where the output of the hidden layer of the i-th RBM
is clamped to the visible (input) layer of the next RBM. Note that the patterns of the
training set feed the visible nodes of the first RBM. On top of the stack of RBMs lies
an associative memory, whose role is to produce a vector of soft outputs by means of
a softmax operation. Each soft output is interpreted as the posterior probability that the
rhythmic signature belongs to the respective class of the problem at hand. Before the actual
training procedure begins, the patterns are shuffled and form batches. We now provide
an outline of the training steps:
- Each RBM is trained separately using the CD1 algorithm [8]. CD1 stands for a version
of the Contrastive Divergence (CD) algorithm, according to which a single iteration of
alternate Gibbs sampling is used to compute the contribution of each training vector in
the equation that updates the weights of the RBM. During a training epoch, all data

batches are processed and in the end of each batch an update of the weights takes place.
The training of the i-th RBM starts after the training of the (i − 1)-th RBM has been
completed.
- After all RBMs have been trained, an iterative back propagation algorithm that min-
imizes the cross-entropy error takes place for the deep network as a whole. During the
back-propagation training stage, the output nodes of the associative memory are clamped
to the binary representation of the pattern labels. In other words, the weights of the pre-
viously trained RBMs only serve for the initialization of the back-propagation training
procedure. Several studies have shown that this approach outperforms the direct appli-
cation of back-propagation on a randomly initialized deep architecture [9].

After the deep architecture has been trained, it is used for the classification of sig-
natures. Specifically, each recording of the test set goes through the feature extraction
stage. Each extracted pattern is clamped to the nodes of the visible layer of the first RBM
and alternate Gibbs sampling is employed to determine the states of the hidden layer of
the first RBM. The results propagate in the stack of RBMs until the softmax nodes of
the associative memory are activated. For each signature, the maximum soft output is
selected and the class which corresponds to this soft output is the class to which the
signature is assigned.

4 Experiments

Our experimental setup evolves around the Ballroom Dataset (BD) [7], which consists
of 10 dance styles: Cha Cha Cha, Jive, Quickstep, three Rumba styles, Samba, Tango,
Viennese Waltz and Waltz. Each genre consists in turn of a varying number of 30 s
excerpts. Overall the dataset is class-imbalanced which poses an extra challenge for any
classification algorithm. For example, the Cha Cha Cha style consists of 111 excerpts,
whereas a compilation of 60 segments forms the Jive genre.

A repeated hold-out scheme is applied on the BD and at each hold-out iteration
80% of the recordings of each genre are randomly selected for training and the rest for
testing. The feature extraction stage produces, on the average, 22 patterns per file and
over 12000 patterns for the training set as a whole. Each signature is associated with a
10-bit class label, e.g., [0 1 0 0 0 0 0 0 0 0] for the Jive genre. The generated signatures
are randomly shuffled and grouped to batches (100 signatures per batch). Each RBM is
individually trained for 100 epochs and the back-propagation procedure lasts 200 epochs.
We have experimented with several architectures, with 1 up to 10 RBMs (layers) and
with a varying size of hidden layers (50− 2000 nodes).

Figure 2 presents the overall classification error for selected network sizes and for
increasing decision threshold. The use of a decision threshold implies that we only trust
a decision if the maximum soft output exceeds a user defined threshold, Th. As a result,
some patterns are left unclassified. The dotted curves present the percentage of patterns
that have been left unclassified and the curves with squares present the classification error.
Each curve has been tagged with the respective network size. Each tag is a description of
the number of hidden nodes of the RBMs. For example, the tag (500×500×2000) implies
that 3 RBMs are used. The size of the first RBM is (800× 500) (800 is the length of the
signature) and the sizes of the two remaining RBMs are (500 × 500) and (500 × 2000),
respectively. Obviously, the size of the associative memory is (2000× 10).

The error is computed over the patterns whose soft output exceeds the threshold.
It can be seen that for the 10-class task, the probability of error is always less than
20% irrespective of the size of the network and the confidence threshold. An example of
interpretation of the presented curves is the following: if a random signature is drawn
from the test set, there exists a 12% error probability that it is misclassified by the 500×

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

E
rr

or
 (

%
),

 U
nc

la
ss

ifi
ed

 (
%

)

Decision Threshold [0.6 − 0.9]

(10x400)

(10x400)

(500x500x2000)

(5x400)

(5x400)

(500x500x2000)

Fig. 2. Overall Accuracy and Unclassified Patterns vs decision threshold.

500×2000 network, given that the decision threshold is equal to 0.75 and that unclassified
patterns have been ignored. Another interesting observation is that the (10×400) network
is less sensitive to the decision threshold to the expense of a higher classification error. We
have observed a similar behaviour with other networks that consist of at least 10 layers
(which are however not presented here due to space restrictions).

5 Conclusions

The proposed modelling approach provides supporting evidence that deep-learning net-
works can be adopted for discriminating between genres based on extracted rhythmic
signatures. Future research is expected to shed light on the impact of the training set
on the performance measurements and on the generalization capabilities of the networks
with respect to their depth and the number of classes which are involved.

References

1. Battenberg, E., Wessel, D.: Analyzing drum patterns using conditional deep belief networks.
In: Proc. ISMIR. (2012) 37–42

2. Bickerman, G., Bosley, S., Swire, P., Keller, R.: Learning to create jazz melodies using deep
belief nets. In: Proc. International Conference On Computational Creativity, Lisbon, Portugal.
(2010)

3. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks. In: Proc.
ISMIR, Utrecht, The Netherlands (2010) 339–344

4. Pikrakis, A., Antonopoulos, I., Theodoridis, S.: Music meter and tempo tracking from raw
polyphonic audio. In: Proc. ISMIR. (2004) 192–197

5. Holzapfel, A., Stylianou, Y.: Rhythmic similarity in traditional turkish music. In: Proc.
ISMIR. (2009) 99–104

6. Gouyon, F., Dixon, S.: A review of automatic rhythm description systems. CMJ 29(1) (2005)
7. Gouyon, F., Klapuri, A., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., Cano, P.: An

experimental comparison of audio tempo induction algorithms. Audio, Speech, and Language
Processing, IEEE Transactions on 14(5) (2006) 1832–1844

8. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
computation 18(7) (2006) 1527–1554

9. Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1)
(2010)

