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Abstract. Nowadays data sets are available in very complex and het-
erogeneous ways. The mining of such data collections is essential to sup-
port many real-world applications ranging from healthcare to marketing.
In this work, we focus on the analysis of “complex” sequential data by
means of interesting sequential patterns. We approach the problem us-
ing an elegant mathematical framework: Formal Concept Analysis (FCA)
and its extension based on “pattern structures”. Pattern structures are
used for mining complex data (such as sequences or graphs) and are
based on a subsumption operation, which in our case is defined with re-
spect to the partial order on sequences. We show how pattern structures
along with projections (i.e., a data reduction of sequential structures),
are able to enumerate more meaningful patterns and increase the com-
puting efficiency of the approach. Finally, we show the applicability of
the presented method for discovering and analyzing interesting patients’
patterns from a French healthcare data set of cancer patients. The quan-
titative and qualitative results are reported in this use case which is the
main motivation for this work.

Keywords: formal concept analysis, pattern structures, sequential pat-
tern structures, sequences

Introduction

Sequence data is largely present and used in many applications. Consequently,
mining sequential patterns from sequence data has become an important and
crucial data mining task. In the last two decades, the main emphasis has been on
developing efficient mining algorithms and effective pattern representations [1–5].
However, the problem with traditional sequential pattern mining algorithms (and
generally with all pattern enumeration algorithms) is that they generate a large
number of frequent sequences while few of them are truly relevant. To echo this
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challenge, some recent studies try to enumerate patterns using some alternative
interestingness measures or by sampling representative patterns. A general idea,
which is a framework of finding statistically significant patterns, is to extract
patterns whose characteristic on a given measure, such as frequency, strongly
deviates from its expected value under a null model. In this work, we focus on
complementing the statistical approaches with a sound and adequate algebraic
approach. That is, can we develop a framework for enumerating only patterns of
required types based solely on data lattices and its associated measures?

The above question can be answered by addressing the problem of analyzing
sequential data with the formal concept analysis framework (FCA), an elegant
mathematical approach to data analysis [6], and pattern structures, an exten-
sion of FCA that handles complex data [7]. To analyze a dataset of “complex”
sequences while avoiding the classical efficiency bottlenecks, we introduce and
explain the usage of projections which are mathematical functions that respect
certain algebraic properties. This novel usage of projections for sequences allows
one to reduce the computational costs and the volume of enumerated patterns,
avoiding thus the infamous “pattern flooding”. In addition, we provide and dis-
cuss several measures to rank patterns with respect to their “interestingness”,
giving the order in which the patterns may be efficiently analyzed.

In this paper, we develop a novel, rigorous and efficient approach for working
with sequential pattern structures in formal concept analysis. The main contri-
butions of this work can be summarized as follows:

Pattern structure specification and analysis. We propose a novel way of
dealing with sequences based on complex alphabets by mapping them to
pattern structures. The genericity power provided by the pattern structures
allows our approach to be directly instantiated with state-of-the-art FCA
algorithms, making the final implementation flexible, accurate and scalable.

Projections of Sequential Pattern Structures. We introduce and discuss
the notion of “projections” for sequential pattern structures. These math-
ematical objects significantly decrease (i.e., filter) the number of patterns,
while preserving the most interesting ones for an expert. Projections are
easily built to answer questions that an expert may have. Moreover, combi-
nations of projections and concept stability index provide an efficient tool
for the analysis of complex sequential datasets. The second advantage of pro-
jections is its ability to significantly decrease the complexity of a problem,
saving thus computational time.

Experimental evaluations. We evaluate our approach on real sequence dataset
of a regional healthcare system. The data set contains ordered sets of hos-
pitalizations for cancer patients with information about the hospitals they
visited, causes for the hospitalizations and medical procedures. These or-
dered sets are considered as sequences. The experiments reveal interesting
(from a medical point of view) and useful patterns, and show the feasibility
and the efficiency of our approach.

The paper is organized as follows. Section 1 introduces formal concept analy-
sis and pattern structures. The specification of pattern structures for the case of
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sequences is presented in Section 2. Section 3 describes projections of sequential
pattern structures followed in Section 4.1 by the evaluation and experimations.
Finally, related works are discussed before concluding the paper.

1 FCA and Pattern Structures

1.1 Formal Concept Analysis

FCA [6] is a formalism for data analysis. FCA starts with a formal context and
builds a set of formal concepts organized within a concept lattice. A formal
context is a triple (G,M, I), where G is a set of objects, M is a set of attributes
and I is a relation between G and M , I ⊆ G×M . In Table 1, a formal context
is shown. A Galois connection between G and M is defined as follows:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ A | ∀m ∈M, (g,m) ∈ I}, B ⊆M

The Galois connection maps a set of objects to the maximal set of attributes
shared by all objects and reciprocally. For example, {g1, g2}′ = {m4}, while
{m4}′ = {g1, g2, g4}.

m1 m2 m3 m4

g1 x x
g2 x x
g3 x
g4 x x

Table 1: A toy FCA context.

(; {m1,m2,m3,m4})

(g2; g4; {m3,m4})({g1} ; {m1,m4}) ({g3} ; {m2})

({g1, g2, g4} ; {m4})

({g1, g3, g2, g4} ; )

Fig. 1: Concept Lattice for the toy context

A formal concept is a pair (A,B), where A is a subset of objects, B is a subset
of attributes, such that A′ = B and A = B′, where A is called the extent of the
concept, and B is called the intent of the concept. A formal concept corresponds
to a pair of maximal sets of objects and attributes, i.e. it is not possible to add an
object or an attribute to the concept without violating the maximality property.
For example a pair ({g1, g2, g4} , {m4}) is a formal concept.

Formal concepts can be partially ordered w.r.t. the extent inclusion (dually,
intent inclusion). For example, ({g1} ; {m1,m4}) ≤ ({g1, g2, g4} , {m4}). This
partial order of concepts is shown in Figure 1.

1.2 Stability Index of a Concept

The number of concepts in a lattice for real-world tasks can be considerable. To
find the most interesting subset of concepts, different measures can be used such
as the stability of the concept [8] or the concept probability and separation [9].
These measures helps extracting the most interesting concepts and were shown
to be reliable in noisy data [9].
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Definition 1. Given a concept c, the concept stability Stab(c) is the number of
subsets of the concept extent (denoted Ext(c)), whose description is equal to the
concept intent (denoted Int(c)). Hereafter ℘(P ) is a powerset of P .

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

|℘(Ext(c))|
(1)

Stability measures how much the concept depends on the initial dataset. The
bigger the stability the more objects can be deleted from the context without
affecting the intent of the concept, i.e. the intent of the most stable concepts are
likely to be a characteristic pattern of the studied data set.

To the best of our knowledge the fastest algorithm [10] processes a concept
lattice L, in the worse case, in O(|L|2) where |L| is the size of the concept lattice.
For a big lattice, the stability calculation time can be high, and an estimation
of the stability is useful. It should be noted that in a lattice the extent of any
parent of a concept c is a superset of the extent of c, while the extent of any child
is a subset. Given a concept c and its child, ∀s ⊆ Ext(child), s′′ ⊆ Ext(child) ⊂
Ext(c), i.e. s′ 6= Int(c). Thus, any subset of any child of the concept c should
be excluded from the numerator in Equation 1.

Stab(c) ≤ 1− max
ch∈Children

(2−Diff(c,ch)), (2)

where Diff(c, ch) is the extent difference between concept c and its child ch,
Diff(c, child) = |c.Ext \ child.Ext|. Thus, if we would like to find stable con-
cepts, with stability more than 0.97, we should select among concepts with

max
ch∈Children

(Diff(c, ch)) ≥ − log(1− 0.97) = 5.06. (3)

1.3 Pattern Structures

Although FCA applies to binary context, more complex data such as sequences
or graphs can be directly processed as well. For that, pattern structures were
introduced in [7].

Definition 2. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a complete meet-semilattice of descriptions and δ : G → D
maps an object to a description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions. Standard FCA can be presented in terms of a pat-
tern structure. In this case, G is the set of objects, the semilattice of descrip-
tions is (℘(M),u) and a description is a set of attributes, with the u oper-
ation corresponding to the set intersection. If x = {a, b, c} and y = {a, c, d}
then x u y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given by,
δ(g) = {m ∈ M | (g,m) ∈ I}, and returns the description for a given object as
a set of attributes.
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The Galois connection between ℘(G) and D is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

The Galois connection makes a correspondence between sets of objects and
descriptions. Given a set of objects A, A� returns the description which is
common to all objects in A. And given a description d, d� is the set of all
objects whose description subsumes d. More precisely, the partial order (or
the subsumption order) on D (v) is defined w.r.t. the similarity operation u:
c v d⇔ c u d = c, and c is subsumed by d.

Definition 3. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d) where A ⊆ G and d ∈ D such that A� = d and d� = A, A is called the
concept extent and d is called the concept intent.

A pattern concept corresponds to the maximal set of objects A whose descrip-
tion subsumes the description d, where d is the maximal common description for
objects in A. The set of all concepts can be partially ordered w.r.t. partial order
on extents (dually, intent patterns, i.e v), within a concept lattice. The stability
of a pattern concept can be defined or estimated by the same procedure as for
a formal concept, since the stability only depends on extents.

An example of pattern structures is given in Table 2, while the corresponding
lattice is depicted in Figure 2.

2 Sequential Pattern Structures

2.1 An Example of Sequential Data

Patient Trajectory

p1 〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉
p2 〈[H2, {c, d}]; [H3, {b, d}]; [H3, {a, d}]〉
p3 〈[H4, {c, d}]; [H4, {b}]; [H4, {a}]; [H4, {a, d}]〉

Table 2: Toy sequential data on patient medical trajectories.

Imagine that we have medical trajectories of patients, i.e. sequences of hos-
pitalizations, where every hospitalization is described by a hospital name and a
set of procedures. An example of sequential data on medical trajectories with
three patients is given in Table 2. There are a set of procedures P = {a, b, c, d} a
set of hospital names TH = {H1, H2, H3, H4, CL,CH, ∗}, where hospital names
are hierarchically organized (by level of generality), H1 and H2 are central hos-
pitals (CH) and H3 and H4 are clinics (CL), and ∗ denotes the root of this
hierarchy. The least common ancestor in this hierarchy is denoted as h1 u h2,
for any h1, h2 ∈ TH , i.e. H1 uH2 = CH. Every hospitalization is described with
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one hospital name and may contain several procedures. The procedure order
in each hospitalization is not important. For example, the first hospitalization
[H2, {c, d}] for the second patient (p2) was in hospital H2 and during this hos-
pitalization patient underwent procedures c and d. An important task is to find
the “characteristic” sequences of procedures and associated hospitals in order to
improve hospitalization planning, optimize clinical processes or detect anomalies.

The search for characteristic sequences can be performed by finding the most
stable concepts in the lattice corresponding to a sequential pattern structure. For
the simplification of calculations, subsequences are considered without “gaps”,
i.e the order of non consequent elements is not taken into account. It is reasonable
in this task, because a hospitalization is a rather rare situation in the life of a
patient, and, thus, in the most cases a hospitalization has a strong relation to
the previous one. Next subsections define partial order on sequences and the
corresponding pattern structures.

2.2 Partial Order on Complex Sequences

A sequence is constituted of elements from an alphabet. The classical subse-
quence matching task requires no special properties of the alphabet. Several
generalization of the classical case were made by introducing subsequence re-
lation based on itemset alphabet [11] or on multidimensional and multilevel
alphabet [12]. Here, we generalize the previous cases, requiring for an alphabet
to form a semilattice (E,uE)3. This generalization allows one to process in a
unified way all types of complex sequential data.

Definition 4. Given an alphabet lattice (E,uE),

1. 〈〉 is a sequence;
2. for any sequence s = 〈e1; ...; en〉 and any element e ∈ E, s ◦ e = 〈e1; ...; en; e〉

is a sequence.

Definition 5. A sequence t = 〈t1; ...; tk〉 is a subsequence of a sequence s =
〈s1; ...; sn〉, denoted t ≤ s, iff k ≤ n and there exists j1, ..jk such that 1 ≤ j1 <
j2 < ... < jk ≤ n and for all i ∈ {1, 2, ..., k}, ti vE sji .

With complex sequences and such kind of subsequences the computation can
be hard. Thus, for the sake of simplification, only “restricted” subsequences are
considered, where only the order of consequent elements is taken into account,
i.e. given j1 in Definition 5, ji = ji−1 + 1 for all i ∈ {2, 3, ..., k}. Below the word
“subsequence” refers to “restricted” subsequence if not specified otherwise.

In the running example (Section 2.1), the alphabet is E = TH × ℘(P ) with
the similarity operation (h1, P1)u(h2, P2) = (h1uh2, P1∩P2), where h1, h2 ∈ TH
are hospitals and P1, P2 ∈ ℘(P ) are sets of procedures. Thus, the sequence ss1 in

3 It should be noted that in this paper we consider two semilattices, the first one is on
the characters of the alphabet, (E,uE), and the second one is introduced by pattern
structures, (D,u).
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Table 3 is a subsequence of p1 in Table 2 because if we set ji = i+1 (Definition 5)
then ss11 v p1j1 (‘CH’ is more general than H1 and {c, d} ⊆ {c, d}), ss12 v p1j2
(the same hospital and {b} ⊆ {b, a}) and ss13 v p1j3 (‘*’ is more general than H1

and {d} ⊆ {d}).

2.3 Sequential Meet-semilattice

Now, we can precisely define the sequential pattern structure that is used for
representing and managing sequences. For that, we make an analogy with the
pattern structures for graphs [13] where the meet-semilattice operation u re-
spects subgraph isomorphism. Thus, we introduce a sequential meet-semilattice
respecting subsequence relation. Given an alphabet lattice (E,uE), S is the set
of all sequences based on (E,uE). S is partially ordered w.r.t. Definition 5.
(D,u) is a semilattice on sequences S, where D ⊆ ℘(S) such that if d ∈ D
contains a sequence s then all subsequences of s should be included into d,
∀s ∈ d,@s̃ ≤ s : s̃ /∈ d, and similarity operation is the set intersection for two
set of sequences. Given two patterns d1, d2 ∈ D, the set intersection operation
ensures that if a sequence s belongs to d1ud2 then any subsequence of s belongs
to d1ud2 and thus (d1ud2) ∈ D. As the set intersection operation is idempotent,
commutative and associative, (D,u) is a valid semilattice.

However, the set of all possible subsequence for a given sequence can be rather
large. Thus, it is more efficient and representable to keep a pattern d ∈ D as a set
of all maximal sequences d̃, d̃ = {s ∈ d | @s∗ ∈ d : s∗ ≥ s} . Furthermore, every
pattern will be given only by the set of all maximal sequences. For example,{
p2
}
u
{
p3
}

=
{
ss6, ss7, ss8

}
(see Tables 2 and 3), i.e.

{
ss6, ss7, ss8

}
is the

set of all maximal sequences specifying the intersection result of two sets of
sequences specified by sequences p2 and p3, correspondingly

{
ss6, ss7, ss8

}
u{

p1
}

=
{
ss4, ss5

}
. Note that representing a pattern by the set of all maximal

sequences allows for an efficient implementation of the intersection “u” of two
patterns (see Section 4.1 for more details).

Example 1. The sequential pattern structure for our example (Subsection 2.1)
is (G, (D,u), δ), where G =

{
p1, p2, p3

}
, (D,u) is the semilattice of sequential

descriptions, and δ is the mapping associating an object in G to a description in
D shown in Table 2. Figure 2 shows the resulting lattice of sequential pattern
concepts for this particular pattern structure (G, (D,u), δ).

3 Projections of Sequential Pattern Structures

Pattern structures can be hard to process due to the usually large number of
concepts in the concept lattice, the complexity of the involved descriptions and
the similarity operation. Moreover, a given pattern structure can produce a lat-
tice with a lot of patterns which are not interesting for an expert. Can we save
computational time by avoiding to compute useless patterns? Projections of pat-
tern structures “simplify” to some degree the computation and allow one to work
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({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss2, ss3

) ({
p1, p3

}
; ss11, ss12

) ({
p2, p3

}
; ss6, ss7, ss8

)

({
p1, p2, p3

}
; ss4, ss5

)

(∅; ∗)

Fig. 2: The concept lattice for the pattern structure given by Table 2. Concept
intents reference to sequences in Tables 2 and 3.

Subsequences Subsequences
ss1 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉 ss2 〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉
ss3 〈[CH, {}]; [∗, {d}]; [∗, {a}]〉 ss4 〈[∗, {c, d}]; [∗, {b}]〉
ss5 〈[∗, {a}]〉 ss6 〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉
ss7 〈[CL, {d}]; [CL, {}]〉 ss8 〈[CL, {}]; [CL, {a, d}]〉
ss9 〈[CH, {c, d}]〉 ss10 〈[CL, {b}]; [CL, {a}]〉
ss11 〈[∗, {c, d}]; [∗, {b}]〉 ss12 〈[∗, {a}]; [∗, {d}]〉

Table 3: Subsequences of patient sequences in Table 2.

with a reduced description. In fact, projections can be considered as filters on
patterns respecting mathematical properties. These properties ensure that the
projection of a semilattice is a semilattice and that projected concepts have a
correspondence to original ones. Moreover, the stability measure of projected
concepts never decreases w.r.t the original concepts [7].

A possible projection for sequential pattern structures comes from the fol-
lowing observation. In many cases it may be more interesting to analyze long
subsequences. We call these projections Minimal Length Projection (MLP) and
they depend on the minimal allowed length l for the sequences in a pattern. To
project a pattern structure w.r.t. MLP, a pattern should be substituted with the
pattern where any sequence of length less then l is removed.

Example 2. If we set the minimal length threshold to 3, then there is only one
maximal common subsequence ss6 in Table 3 between p2 and p3 in Table 2, while
ss7 and ss8 are too short to be considered. Figure 3a shows the corresponding
projected lattice for the pattern structure in Table 2.

Another important type of projections is connected to a variation of the
lattice alphabet (E,uE). The simplest variation is to ignore of certain fields
in the elements. For example, if a hospitalization is described by a hospital
name and a set of procedures, then procedures can be ignored in similarity
computation. For that, in any element a set of procedures can be substituted by
∗ which is the most general element of the taxonomy of hospitals.

Another variation of the alphabet, is to require that some field(s) should
not be empty. For example, we want to find patterns with non-empty set of
procedures, or we want to have information about hospital (the element ∗ of
hospital taxonomy is not allowed in an element of a sequence). Such variations are



9

easy to realize within our approach. For this, computing the similarity operation
between elements of the alphabet, one should check if the result contains empty
fields and, if yes, should substitute the result by ⊥. This variation is useful, as
shown in the experimental section, but this variation is rather difficult to define
within classical frequent sequence mining approaches.

Example 3. An expert is interested in finding sequential patterns describing how
a patient changes hospitals, without interest in procedures. Thus, any element
of the alphabet lattice containing a non-empty set of procedures is projected to
the corresponding element with the same hospital and an empty set of proce-
dures. Moreover, an expert is interested in finding sequential patterns containing
information about the hospital in every hospitalization, i.e. hospital field in the
patterns cannot be ∗, e.g. ss5 is an invalid pattern, while ss6 is a valid pattern
in Table 3. Figure 3b shows the lattice corresponding to the projected pattern
structure (Table 2) by changing the alphabet semilattice.

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss2, ss3

) ({
p2, p3

}
; ss6

)
({

p1, p2, p3
}

; ∅
)

(∅; ∗)

(a) MLP projection, l = 3

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss9

) ({
p2, p3

}
; ss7, ss8, ss10

)
({

p1, p2, p3
}

; ∅
)

(∅; ∗)

(b) Projection removing ‘*’ hospitals

Fig. 3: The projected concept lattices for the pattern structure given by Table 2.
Concept intents refer to the sequences in Tables 2 and 3.

4 Sequential Pattern Structure Evaluation

4.1 Implementation

Nearly any state-of-the-art FCA algorithm can be adapted to process pattern
structures instead of standard FCA contexts. We adapted AddIntent algo-
rithm [14], as the lattice structure is important for us to calculate stability (see
the algorithm for calculating stability in [10]). To adapt the algorithm to our
needs, every set intersection operation on attributes should be substituted with
semilattice operation u on corresponding patterns, while every subset checking
operation should be substituted with semilattice order checking v, in particular
all (·)′ should be substituted with (·)�.

The next question is how the semilattice operations (u, v) can be imple-
mented. Given two sets of sequences S = {s1, ...sn} and T = {t1, ..., tm}, the
similarity between these sets, S u T , is calculated according to Section 2.3, i.e.
maximal sequences among all common subsequences for any pair of si and tj .

To find all common subsequences of two sequences, the following observations
can be useful. If ss = 〈ss1; ...; ssl〉 is a subsequence of s = 〈s1; ...; sn〉 with
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jsi = ks+i (Definition 5: ks is the index difference from which ss is a subsequence
of s) and a subsequence of t = 〈t1; ...; tm〉 with jti = kt + i (likewise), then for
any index i ∈ {1, 2, ..., l}, ssi vE (sjsi u tjti ). Thus, to find all maximal common
subsequences between s and t, we first align s and t in all possible ways. For
each alignment of s and t we compute the resulting intersection. Finally, we keep
only the maximal intersected subsequences.

Let us consider two possible alignments of s1 and s2:
s1 = 〈{a} ; {c, d} ; {b, a}; {d} 〉
s2 = 〈{c, d};{b, d} ; {a, d}〉
ssl = 〈 ∅ ; {d} 〉

s1 = 〈{a} ; {c, d};{b, a}; {d} 〉
s2 = 〈{c, d};{b, d};{a, d}〉
ssr = 〈{c, d}; {b} ; {d} 〉

The left intersection ssl is not retained, as it is not maximal, while the right
intersection ssr is kept.

4.2 Experiments and Discussion

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under the Ubuntu 12.04 operating
system. The algorithms are not parallelized and are coded in C++.

First, the public available database from UCI repository on anonymous web
data is used as a benchmark data set for scalability tests. This database contains
around 106 transactions, and each transaction is a sequence based on “simple”
alphabet, i.e. with no order on the elements. The overall time changes from
37279 seconds for the sequences of length MLP ≥ 5 upto 97042 seconds for the
sequences of length MLP ≥ 3. For more details see the web-page.4

Our use-case data set comes from PMSI5, a French healthcare system [15].
Each elements of a sequence has a “complex” nature. The dataset contains 2400
patients suffering from cancer. Every patient is described as a sequence of hospi-
talizations without any timestamps. The hospitalization is a tuple with three el-
ements: (i) healthcare institution (e.g. university hospital of Paris (CHUParis)),
(ii) reason of the hospitalization (e.g. a cancer disease), and (iii) set of medical
procedures that the patient underwent. An example of a medical trajectory of a
patient is provided below:

〈[CHUParis,Cancer, {P1, P2}]; [CHLyon,Chemo, {}]; [CHLyon,Chemo, {}]〉 .

.This sequence represents a patient trajectory with three hospitalizations. It
expresses that one patient was first admitted to the university hospital of Paris
(CHUParis) for a cancer problem as reason, and underwent procedures P1 and
P2. Then he had two consequent hospitalizations in Central hospital of Lyon
(CHLyon) for doing chemotherapy with no additional procedures. We substituted
the same consequent hospitalizations by the number of repetitions. With this
substitution, we have shorter and more understandable trajectory. For example,
the above pattern should be transformed into two hospitalizations where the
first hospitalization repeats once and the second twice:

〈[CHUParis,Cancer, {P1, P2}][1]; [CHLyon,Chemo, {}][2]〉 .
4 http://www.loria.fr/~abuzmako/PKDD2013/experiment-uci.html
5 Programme de Médicalisation des Sytèmes d’Information.



11

The healthcare institution was associated with a geographical taxonomy of 4
levels of granularity (i.e. Root, Region, Department and Healthcare institution).
This taxonomy has 304 node. Where hospitalization reasons and medical proce-
dures are simple sets without any associated subsumption relation. The set of
hospitalisation reasons has 1939 items and the set of medical procedures has 723
items. The distribution of sequence lengths’ is shown in Figure 4.
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Fig. 4: The length distribution of sequences in the dataset

For this dataset the computation of the whole lattice is infeasible. However
our medical expert is not interested in all possible patterns, but rather in patterns
which answer his analysis question(s). First of all, an expert may know the
minimal size of sequences he is interested in, i.e. setting the MLP projection. If
an expert is interested in sequential patterns, the patterns of length 1 are unlikely
to be of interest for him (knowing that people go to hospitals when they are sick
is not a valuable new knowledge). Thus, we use the MLP projection of length 2
and 3 and take into account the small average length of the sequences.

Figure 5 shows computational time, the number of concepts in the lattice,
and the number of stable concepts for different projections. For example, com-
putation of the lattice for projection with name “R!PI” takes 400 seconds and
calculation of stability for every concept in the lattice takes 12000 seconds (Fig-
ure 5a), the size of the lattice is 1.8 ·106 concepts (Figure 5b) where around 1000
concepts have stability index more than 0.97 while an approximated solution to
find stable concepts (Formula 3) return only few unstable ones (Figure 5c).

Table 4 shows some interesting concept intents with the corresponding sup-
port and ranking w.r.t. to concept stability. For example the concept #1 is
obtained under the projection R!P for MLP ≥ 2, with the intent containing a
Cancer hospitalization followed by a Chemotherapy. This concept is the most
stable concept in the lattice for the given projection, and the cardinality of the
concept extent is 452 patients.

The first question that the analyst would like to address here is “What are
the sequential relations between hospitalization reasons and corresponding proce-
dures?”. To answer this question, we are not interested about healthcare institu-
tions. Thus, any alphabet element should be projected by substituting healthcare
institution fields by the ‘*’ hospital. As hospitalization reason is important in
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Fig. 5: Parameters of the result for different projections.

# Projection Intent Stab. Rank Support

1 R!P2 〈[Cancer, {}]; [Chemo, {}]〉 1 452
2 R!P2 〈[Cancer, {App.}]; [Ch.Prep, {}]; [Chemo, {}]〉 4 293
3 R!P3 〈[Cancer, {App.}]; [Ch.Prep, {}]; [Chemo, {}]〉 2 293
4 R!PI3 〈[Cancer, {}] ∗ 1; [Ch.Prep, {}] ∗ 1; [Chemo, {}] ∗ [8, 24]〉 4 193
5 G!R!3 〈[Bourgogne, Cancer]; [Bourgogne, Ch.Prep]; [A clinic in Dijon,Chemo]〉 5 29

Table 4: Interesting concepts, for different projections. Chemo is chemotherapy,
Ch.Prep is preparation for chemotherapy, App. is an operation for appendicitis.

each hospitalization so any alphabet element without the hospitalization reason
is of no use and should be projected to the bottom element ⊥ of the alphabet
lattice. This is a projection of the hospitalization alphabet and, thus, gives us
the projection of the pattern structure. Such projections are called R!P2 or R!P3,
meaning that we consider the fields “Reason” and “Procedures”, while the rea-
son should not be empty and the MLP parameter is 2 or 3. Patterns #1 and
#2 are obtained under the R!P2 projection. Pattern #1 trivially states that in
the Bourgogne region, “When a patient has a cancer, he undergoes chemother-
apy” which is one of the standard procedure followed by french physicians. This
pattern gives a general viewpoint about the cancer treatment.

The next accurate question is “How do the doctors detect colon cancer?”.
Pattern #2 and #3 answer our question, they show that cancer is detected
during an appendicitis surgical intervention which is followed by preparation for
chemotherapy and chemotherapy itself. These two patterns highlight a recently
discovered fact that acute appendicitis has been shown to occur antecedent to
cancer [16] within three years because of a carcinoma in colon or rectum. There-
fore, any patient over the age of 40 presenting with acute appendicitis is carefully
checked for carcinoma in the colon. We can also note that patterns #2 and #3
have the same form, but pattern #3 was obtained under R!P3 projection, and
has higher stability rank (2) than pattern #2 (4). Pattern #4 can help health-
care managers and doctors quantify on average the number of usually required
chemotherapies for a patient. It shows that “After detecting cancer, the patients
require chemotherapy between 8 and 24 times in many cases”. This pattern has
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been extracted by the projection R!PI3 (i.e. involving interval information). Fig-
ure 5a and 5b shows that this task is time and memory expensive.

“Where do patients prefer staying (i.e. hospital location) during their treat-
ment, and why ?”. To answer this expert question, we consider only healthcare
institutions and reason fields, requiring both to “have” some information, i.e.
projections G!R!2 and G!R!3. Nearly all patterns show that patients usually
prefer to be treated in the same region, without any preferences about the ex-
act hospital. However, pattern #5 obtained under G!R!3 projection shows us
that a good proportion of patients prefer to undergo Chemotherapy in a precise
private clinic in Dijon6, while cancer detection and preparation is usually done
everywhere in the Bourgogne region, depending on the patient preferences.

Figure 5 shows that with the increase of the minimal length of a pattern
(from 2 to 3), the memory and the time consumption is reduced, in some cases
significantly. Figure 5a shows that the precise stability calculation can take more
time than the calculation of the lattice, correspondingly the lattice computation
for projection R!PI2 takes 400 seconds, while the stability calculation procedure
takes 30 times more (12000). However, the approximation of concept stability
that is presented in the beginning of the paper (Formula 3) is fast and does filter
only few unstable concepts (less then 5%), while finding all stable (Figure 5c).

5 Related Work

The most widely used approach for analyzing sequences is, probably, mining
frequent subsequences [2–4, 12]. The most general type of sequences among them
is described in [12], where every element of the sequence is multidimensional and
multilevel, i.e. every element can be characterized by several components, and
for every component a kind of hierarchy can be applied. Then, every element e
in a sequences is substituted by all the most specific elements, which are more
general than e and, thus, the task is reduced to sequences of itemsets. In our
approach, the elements of sequences are considered to be even more general, for
example, beside multidimensional and multilevel sequences, sequences of graphs
fall under the definition. Moreover, frequent subsequences mining gives birth to
a lot of subsequences which can be hardly analyzed by an expert.

Formal Concept Analysis (FCA) [6] allows one to measure several indexes,
related to the importance of a pattern. One of the FCA approaches is [17], where
authors process sequential dataset based on “simple” alphabet without involving
any partial order on it, in this approach maximal common subsequences (with
no gaps) were mined and analyzed with FCA. In the work [11] only sequences
of itemsets were considered. All closed subsequences were, first, mined and then
regrouped by specialized algorithm in order to obtain a lattice similar to the
FCA lattice. Comparing with both approaches, our approach suggests a more
general definition of sequences and, thanks to pattern structures, there is no
‘premining’ step to find frequent (or maximal) subsequences. This allows us to
apply different “projections” specializing the request of an expert and simplifying

6 the name of the clinic is anonymized.
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the calculation. In addition, in our approach nearly all state-of-the-art FCA
algorithms can be used in order to efficiently process a dataset.

Another type of the FCA generalization is based on well-known LCM al-
gorithm [18]. Authors of [19] process multirelational databases by extending
LCM. Although this approach perfectly works for special kinds of multirela-
tional databases, it cannot process sequential datasets for the same reason why
it cannot process graph datasets in the settings of frequent graph mining.

Projections is an essential part of our approach and can be considered as a
special kind of constraints. Many constraints that do not change subsequence
relation have a corresponding projection. Authors of survey [20] (Section 5)
enumerate 8 types of constraints, two of them, i.e. “item constraint” and “length
constraint”, correspond the introduced projections.

Conclusion

In this paper, we present a novel approach for analyzing complex sequential data.
This kind of data is a generalization of data considered in previous approaches.
The approach is based on the formalism of sequential pattern structures and
projections. Our work complements the general orientations towards statisti-
cally significant patterns by presenting strong formal results on the notion of
interestingness from a concept lattice point of view. Using pattern structures
leads to the construction of a pattern concept lattice, which does not require the
setting of a support threshold, as usually needed in classical sequential pattern
mining. Moreover, the use of projections gives a lot of flexibility especially for
mining and interpreting special kinds of patterns.

Our framework was tested on a large-scale benchmark dataset and on a
real-world dataset with patient hospitalization trajectories. Interesting patterns
answering to the questions of an expert are extracted and interpreted, showing
the feasibility and usefulness of the approach and the importance of the stability
as a pattern-selection procedure.

For future work, we are planning to more deeply investigate projections, their
potentialities w.r.t. the types of patterns. Finally, another research direction is
mining of association rules or building a Horn approximation [21] from the stable
part of the pattern lattice.
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