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Abstract. The predictive technique proposed in this project was ini-
tially designed for the indoor smart environment wherein intrusive track-
ing techniques, such as cameras, mobile phone and GPS tracking system,
could not be utilized appropriately. Instead, we installed simple motion
detection sensors in the experimental space and observed occurred move-
ments at each area. However, the movement data recorded with this set-
ting cannot provide as much information about human mobility as the
data from the GPS or mobile phone is capable of. In this paper, we con-
ducted an exhaustive analysis on this specific dataset to determine the
predictability of future users’ mobility using only this limited dataset and
regardless of the predictive technique. Furthermore, we also proposed the
predictive technique, named APP, for long-term human mobility predic-
tion that works well on our limited dataset. Finally, evaluation on the
real dataset collected inside the smart space over 3 months of movements
and daily activities data shows that our model is able to predict future
mobility and activities of participants in the smart environment setting
with high accuracy even for a month ahead.
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1 Introduction

Understanding and predicting human mobility are crucial components in a num-
ber of real world applications. We will mention a few examples here. The PUCK
architecture[4] was introduced to intelligently provide reminders in the smart
environment since it automatically recognizes habitual activities and then re-
minds the occupant if he/she forgot some important tasks, such as forgetting to
take a medicine after a meal. This could be helpful for participants who have
dementia or mind cognitive impairment. Moreover, the ability to predict future
locations of people is also an important element in transportation planning [13,
11], bandwidth provisioning in wireless local area network [18], and targeted
advertisement dissemination [7].

In our specific example, we have an actual office environment built-in with
various sensors and actuators to enable the pervasive computing technology to



2

control different settings of the environment. Our prototype smart office envi-
ronment was initially designed to create a working environment that can learn
users’ behavioral activities and react to these activities smartly. Goals of our
developing smart environment is to simplify mundane repetitive tasks, and to
make the participant live more comfortable. For example, the smart office that
predicts future occupancy of the meeting room and automatically gets electronic
facilities in the room prepared right before the meeting. The smart office that
predicts participants’ needs from their daily activities so that it always has hot
coffee ready to be served at the time they need. All of the applications mentioned
above require the ability to foresee user’s future whereabouts and mobility into
far future, as known as the open problem of long-term human mobility predic-
tion.

A smart environment, normally, has sensors installed to sense activities and
mobilities of participants inside. Different machine learning algorithms are then
employed to explore meaningful information about user behaviors and routines.
These information will be later used to build a predictor that foresees users’
needs and suggest a proper reaction to them. Therefore, one challenging problem
for every anybody who works on smart environments researches would be “to
determine the best approach to observing participants’ mobility with the least
obtrusiveness while providing enough information to build an accurate predictive
model”.

There is apparent trade-off between informativeness and conspicuousness of
the sensing technique. For a concrete example, using colored pictures from cam-
eras with a help from image processing technique and semi-supervised classi-
fication algorithm, Yu et al. [19] was able to create a system that recognizes
people and their positions. Moreover, they were able to map each individual’s
movement directly into a floor map. From this interesting example, rich mobility
information for individual users must be traded with users’ discomfort because
of surrounding cameras. Apart from camera techniques [1, 3] discussed earlier,
mobile phone data [6, 17], GPS [16, 13], and RFID tagging [2, 10] requires users
to carry (or put on) the tracking device while inside the environment, which
is not feasible in real-world implementation. On the other hand, simple sensors
such as infrared distance sensor, ultrasonic distance sensor, and magnetic sensor,
are small enough to blend into the environment, and seamlessly observe human
mobility inside the environment. It is the case, however, that simple sensors’
data is less informative than such high precision sensing technologies and they
limit the capability of the mobility predictive model that was built using their
data.

Therefore, in this paper, we investigated limits of the predictability over this
specific type of mobility dataset. Furthermore, in the latter part of this paper, we
present a novel prediction technique, named APP, particularly for the long-term
human mobility prediction problem. More specifically, the APP predicts future
location of a user at any specific time frame in far future, e.g. 21 days from now
between 10:00 and 10:05. The prediction is obtained by probabilistic models that
compute how likely a certain location will be revisited in the future at the specific
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time frame. The prediction part in APP consists of two probabilistic models.
Both probabilistic models keep track of visited time stamps, extracts contextual
features from each visit (such as what time of the day, what day of the week,
or how long after the last visit), and model their relations. The first predictive
model, named Periodic model, is based on a hypothesis that user keeps visiting
some specific locations periodically, such as every three hours, everyday, or every
month. Firstly, we analyze periodicity at each location and test this hypothesis.
If the hypothesis is accepted, we use the periodic model to predict; otherwise, the
second model is used. The second predictive model does not rely on periodicity
property in human mobility behavior; instead, it extracts significant patterns
of repetitive movements representing user mobility behavior in the past. Hence,
it is called the Aperiodic model. The aperiodic model postulates that the same
(or similar) mobility pattern tends to repeat again at any specific time frame in
the future whenever their contextual features are similar. Combining these two
models (APeriodic and Periodic, abbreviated to APP) results in a predictor that
predicts user’s location with acceptably high accuracy and precision, even for a
month ahead.

2 Limits of Predictability in Collective Human Mobility

The breakthrough analysis of predictability of human mobility has been studied
in [17]. Song et al. explored the limitation in predictability of individual’s move-
ments, disregarding quality of the prediction techniques. Despite the difference
in user’s daily behavior, their analysis over a large population monitored by their
mobile phone data shows 93% potential predictability in individual’s mobility.
In other words, predicting individual’s movements can be achieved effectively
when history data of individual’s movements is available.

When it comes to the situation when historical data of individual’s user is
not provided, but collective mobility data from multi-users, the fundamental
question of predictability on this class of data arises again, i.e.to what degree is
collective mobility predictable?

2.1 Collective Human Mobility Data

For our experimental smart environment, we have a functioning working space,
which includes individuals’ cubicle work stations, recreational space and meet-
ing areas, where a total number of 20 graduate students and faculty staff mem-
bers come to work regularly. Each individual may has different duties, different
class schedules and different daily routine, which result in different mobility pat-
terns directionally and temporally. We installed different types of sensors (see
figure 5(a)) in the environment to monitor activities and movements that hap-
pened inside. Specifically, we used two types of sensors in the experiment. First,
infrared distance sensors were mainly used to detect movement at each specific
location. Second, magnetic sensors were attached to the hinge of the refriger-
ator and the oven to observe their usages. All of these sensors are connected



4

through the lab’s network and continuously feed live streams of mobility data to
a database. By employing these ambient sensors, participants needed not to be
equipped with a tracking device during the experiment period and can normally
move along without any concern of being monitored. We observed visitations and
mobility inside the experimental environment over 24 hours a day, for 3 months
(precisely 92 days) during the autumn semester. The floor plan in figure 5(b)
shows placements of sensors used to capture visitations at each location in the
space. The number of interested locations N is 30. We modeled human mobility
with two representations for different purposes as follows.

As temporal sequences of repeated visitations. Collective mobility, at each
location, is represented with the temporal sequence of repetitive visitations
visited by unknown users during the observing period. State of visitation
at a moment is denoted by a binary value: either 1 for visited, or 0 for not
visited. For instance, a sequence vx represents mobility at location x from
00:00 to 23:59, with the sample rate µ of 1 sample per hour.

vx =
(
(t′0, 0), (t′1, 1), (t′2, 0), . . . , (t′23, 1)

)
when t′i represents the observed time frame from t0 + iµ to t0 + (i+ 1)µ, and
t0 is the starting time, i.e., t0 = 00:00 and t′0 = [00 : 00, 01 : 00).

As trajectories. By increasing sample rate of the sensors µ up to 1 sample
per 200 milliseconds, we were able to count every visitations. Then, from a
temporal sequence of visitations, ((x0, t0), (x1, t1), . . . , (xw−1, tw−1)), we lin-
early searched for each transition point in the sequence where the transition
time ti+1 − ti > 30 seconds to cut it into smaller sequences that represent
trajectories.
Despite unobtrusiveness and simplicity of the ambient sensing method, the
obtained data is primarily noisy. To handle noises (such as false triggered
events, sensors blocked by obstacles, and simultaneous trajectories from dif-
ferent users) and extract movement trajectories from the collective mobility
dataset efficiently, we applied the data mining algorithm, called PrefixS-
pan [9], to extract only sub-trajectories of length-n that appeared in T more
frequently than a certain minimum number of times supportmin during the
experiment.

2.2 Limits of Predictability

Here we evaluated the predictability over the collective mobility dataset using
the same methodologies introduced by Song et al. in [17]. Namely, by employing
Fano’s’ inequality [5, 14], we estimated the upper limit of the probability of the
destination of a moving user can be predicted correctly given the most recent
trajectory and the past collective mobility data.

Let T ′i denote a movement trajectory and let Di be a destination of T ′i from
the observations, T = ((T ′0, D0), (T ′1, D1), . . . , (T ′m, Dm)). Given a predictive
technique f(T ′i ) that works well in predicting future location Di of a moving
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Fig. 1. The predictability of the collective human mobility in the smart environment.
The Πmax is the upper bound of the probability that a particular predictive algorithm
is able to predict user’s location correctly using only the collective dataset.

user based on recent length-n movement trajectory T ′ and a set of length-n
trajectories T from historical mobility data, let e denote the event of failed pre-
diction, i.e. f(T ′) 6= D, and let P (e) be its probability. According to Fano’s
inequality, the lower bound on the error probability P (e) can be found in the
following inequality.

H(D|T ′) ≤ H(e) + P (e) log(N − 1)

Thus, the probability of predicting correctly, denoted by Π, is 1−P (e). Namely,

H(D|T ′) ≤ H(e) + (1−Π) log(N − 1), (1)

where the destination D can take up to N possible locations and H(e) is the
corresponding binary entropy which is defined as follow.

H(e) = −P (e) log(P (e))− (1− P (e)) log(1− P (e))

= −(1−Π) log(1−Π)−Π log(Π) (2)

The conditional entropy H(D|T ′) appeared in the inequality (1) quantifies the
amount of information needed to predict the destination D given the correlated
recent trajectory T ′. Given the probability P (T ′) of the set of past trajectories T
containing T ′ and the joint probability P (T ′, d), the conditional entropyH(D|T ′)
is defined as follow.

H(D|T ′) =
∑

d∈D,T ′∈T

P (T ′, d) log

(
P (T ′)

P (T ′, d)

)
(3)

Then we calculated the entropy H(D|T ′) individually for each length n of
trajectories in T , and analyzed the maximum potential predictability (denoted
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by Πmax) or the probability of predicting correctly destination of a user given
the collective mobility dataset by solving for the Πmax, where Π ≤ Πmax in the
following equation, according to (1), (2) and (3).

H(D|T ′) = −(1−Πmax) log(1−Πmax)−Πmax log(Πmax)+(1−Πmax) log(N−1)

Figure 1(a) shows Πmax as functions of n, where n denotes length of the
considering trajectories. It is unsurprising that n increases the predictability
since longer trajectory gives more evidences to the predictor that help narrowing
down search space of the most probable locations. The supportmin also shows its
potential to eliminate unusual trajectories in the dataset, and gives significantly
higher potential predictability. However, there is a trade-off between the degree
of predictability and the number of predictable locations, as Figure 1(b) shows.
High threshold of the minimum support (supportmin) results less number of
locations N available to the predictive algorithm to predict.

To summarize from the analysis, despite the fact that the collective human
mobility contains cumulative movements and behaviors from different users and
seems diverge to the experimenter in the first place, the accurate prediction
of user’s location is achievable with acceptably high probability. However, this
analysis does not provide any clue about the potential predictability in the long-
term prediction configuration when the inference of user’s mobility cannot rely
on recent movement patterns and frequent historical trajectories. Moreover, a
number of researches [16, 15] have shown that predictive techniques that work
well in the short-term human mobility prediction cannot be extended to the long-
term prediction effectively. Thus, in the next section, we studied the possibility
to employ the periodicity in human behavior to foresee their mobility in far
future instead of directly modeling trajectories.

3 Periodicity in Collective Human Mobility

It can be seen easily even without a guide from data mining tool that most of
human activities are periodic to some degree. If a certain action, or movement
pattern is repeated regularly with a particular interval τ , and if this behavior
is consistent over time, it is certainly predictable with the time period τ . In
addition, the probability in predicting the correct location of a user in the future
depends on the tendency of such mobility patterns recurring at intervals. Thus
we define the periodicity probability to formally quantify this property.

Definition 1. Let Px(τ) denotes the periodicity, which is the probability of a
particular event x reoccurring regularly with the constant time interval τ , where
τ is a positive integer. Given the temporal sequence, as described in section 2.1, of
events from t′0 to t′m in which the location x was visited, the periodicity probability
Px(τ) is defined as follow.

Px(τ) = P
(
vx(t′i+τ ) = 1|vx(t′i) = 1

)
, t′i ∈ {t′0, t′1, . . . , t′m−1} (4)

where vx(t′i) indicates state of the visitation at x during the time frame t′i.
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Fig. 2. The periodicity Px1(τ) and Px2(τ) of repetitive visitations at the location x1
and x2 as a function of time period τ .

To find significant periodicity in the collective human mobility, we searched
for τ that maximizes the periodicity probability at each location separately. Fig-
ure 2 shows two sample locations where periodic behavior can be observed. The
small peaks in these plots reveal relatively high probability that these particular
locations were visited regularly with the time period τ , when τ are multiples
of 24 hours. Moreover, the maximum of predictability probabilities are found
at multiples of 168 hours. Undoubtedly, this indicates firm evidences of daily
and weekly behaviors exist in the collective mobility data. With more algorith-
mic way of finding significant period τ , the Fourier analysis also suggested that
τ = 24 hours and 168 hours correspond to two most significant frequencies of
≈ 4.167× 10−2 Hz and ≈ 5.925× 10−2 Hz respectively.

In the next section, we analyze the possibility of the collective human mobility
being predictable with the periodic behavioral patterns.

3.1 Predictability of The Periodic Model

Intuitively, the periodicity Px(τ) already estimated the precision of a periodic-
based predictive model, which is based on a strong assumption of periodically
repeated visitations. Hence, the periodicity Px(τ) can be considered as a mea-
surement for the predictability of the periodic model. In addition, we also want
to provide another predictability analysis employing an academic concept in
information theory to the periodic model.

Firstly, we assign the periodic entropy to the history data of repetitive visita-
tions at each location to determine the amount of information needed to foresee
future visit given records of repetitive visitations in history. At each location x,
the periodic entropy is computed as follows.

Definition 2. Given the collective mobility data, the entropy Sτx which quanti-
fies the degree of uncertainty of the periodicity Px(τ) in the dataset is

Sτx =
∑

ν∈{0,1}

P (vx)H(vx(t′i+τ |vx(t′i) = ν)), t′i ∈ {t′0, . . . , t′m−1}, (5)
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where P (vx) is the probability of a location x being visited, and the conditional
entropy H(vx(t′i+τ |vx(t′i) = ν) is

H(vx(t′i+τ |vx(t′i) = ν) =
∑

ϕ∈{0,1}

P (ϕ|ν) log

(
1

P (ϕ|ν)

)
, (6)

where P (ϕ|ν) stands for P (vx(t′i+τ ) = ϕ|vx(t′i) = ν).

Additionally, let Sτxf be the entropy of future visitations; namely,

Sτxf = −
∑

ϕ∈{0,1}

P (vx(t′i+τ ) = ϕ) log(P (vx(t′i+τ ) = ϕ)), t′i ∈ {t′0, . . . , t′m−1} (7)

Next, we determine the predictability for each location x of the periodic
model with the probability Πx,τ , which is defined as follow.

Definition 3. Let Πx,τ be the probability that the periodic model predicts times
of future visitations at x correctly by always predicting visited at all moments
that are kτ apart from the last visit, for k = 1, 2, . . .. Thus the associated entropy
H(Πx,τ ) of the predictability Πx,τ is

H(Πx,τ ) = −Πx,τ log2(Πx,τ )− (1−Πx,τ ) log2(1−Πx,τ ). (8)

The maximum predictability Πmax
x,τ can be determined using the Fano’s in-

equality in accordance with (1).

Sτx ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N − 1) (9)

Because Πx,τ ≤ Πmax
x,τ and N = 2 prevents this bound to the binary classifi-

cation, then the following correction is required.

Sτx ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N − 1) ≤ H(Πx,τ ) + (1−Πx,τ ) log2(N)

= −Πmax
x,τ log2(Πmax

x,τ )− (1−Πmax
x,τ ) log2(1−Πmax

x,τ ) + (1−Πx,τ ) log2(N)

(10)

After solving for Πmax
x,τ in (10), the predictability Πmax

x,τ determines the up-
per limit of the probability of predicting future visits of users at location x in
far future given an appropriate periodic model (with the time period τ). We
evaluated Sτ and Πmax

τ separately for each location, and the associated distri-
bution of Πmax

τ is shown in figure 3(a). Both distributions of the predictability
Πmax
τ indicate the average predictability over all locations approximately above

80%, in both daily and weekly model. The average predictability of the weekly
model is slightly higher and has lower variance than the daily model. One may
conclude from the result that the weekly model fit the collective mobility data
better than the daily periodic model.

Figure 3(b) shows differences between the periodic entropy Sτ=24
x and the en-

tropy of future visitations Sτ=24
xf at each location x. Note that as Sτx closer to zero
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Fig. 3. The predictability Πmax
τ and its corresponding periodic entropy.

and further from Sτxf , future visitations are more likely to depend on previous
visitations periodically. Result from this figure clearly suggests that not visiting
behavior at every location in our environment is periodic. For instance, the loca-
tions x7, x14, x17, x23, and x28 were not periodic, while the locations x1, x2, and
x20 appeared to be more periodic than others. Therefore, the periodicity-based
predictive model alone would not work in every location; hence, we have devel-
oped the integrated aperiodic and periodic model for long-term human mobility
prediction.

4 APP: Aperiodic and Periodic model for long-term
human mobility prediction

Our long-term human mobility predictive model combines two predicting paradigms
together. The first approach (Periodic approach) employs the periodic property
in human mobility to foresee future visits. On the other hand, the second ap-
proach (Aperiodic approach) does not rely on the periodicity; instead, it pre-
sumes that mobility patterns are similar to the day in the past that has similar
features. The APP uses either one of the two approaches to predict human mo-
bility at a certain location x depending on the periodicity probability Px(τ) at
that specific location x. If Px(τ) is more than the user-specific threshold P τmin,
then the APP uses the periodic approach. Otherwise, it switches to the aperiodic
approach.

4.1 APP: The Periodic Approach

The APP with the periodic predictive approach was designed to foresee times of
future visitations at each location in the smart space. To predict future locations



10

of multi-users, the predictions are computed independently for each location,
then all the results are combined together providing a set of locations that are
likely to be visited at the specific time in far future.

The fundamental idea behind the prediction is based on the assumption of
periodicity. Say, if the visitations at x recur regularly, again and again, with a
constant time interval τ , and if this periodic behavior appears consistently over
time, then the probability P τx (t′f ) that the future visitation will occur within
the time frame t′f in the future, when the last visit happened at t′m−1, can be
computed as

P τx (t′) = P (vx(t′m−1−(k)τ+δ) = 1|vx(t′m−1−(k+1)τ+δ) = 1), k = 1, 2, . . . , bm/τc

where δ = (f −m+ 1) mod τ .
This simple, yet accurate, predictive approach works well only at certain

locations, where users’ mobility has apparent periodicity. Otherwise, the periodic
approach gets poor prediction because the mobility in those particular locations
are not governed by the periodic behavior. To address this problem, we proposed
the optional predictive approach contributed to the APP that is independent of
the periodic behavior.

4.2 APP: The Aperiodic Approach

In this second predictive technique implemented in the APP, we extract signifi-
cant patterns of repetitive visitations at each location that happened on different
days. Next, the days that have similar visiting pattern are clustered together,
resulting groups of similar days in the past history that users behaved similarly.
Then, we extract contextual features from each group of similar days. In this
project, the interested features consist of: (1) what day of week, (2) whether it
is a holiday or not. Note that unlimited additional features that might relate to
the mobility pattern can be used to characterize the day more comprehensively,
such as temperature, traffic, weather condition, or meeting schedule. However,
due to the limit in the dataset we have, only these two features are applied.

The intuition that supports this predictive approach is derived from the
weekly model in section 4.1, human mobility patterns on the same day of the
week are likely similar. Additionally, human activities on national holidays are
apparently different from normal workdays; so, we need an additional bit to ex-
plicitly specify this property. Hence, mobility pattern of a day can be modeled
individually by the visitations at each location. Recall the temporal sequence vx
in section 2.1, mobility at a certain location x can be represented with a vector:

dx =[vx, dayweek, holiday]

=[vt′0 , . . . , vt′23 , Sun,Mon, . . . , Sat,Hol]

The day vector dx consists of 32 bits. The first 24 bits model visitations at
location x during a specific time frame of a day, which is divided hourly. The
next 7 bits indicate day of week, and the last bit indicates a holiday.
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Fig. 4. Three cluster centroids that represent three mobility patterns.

Similarity between two day vectors is basically measured by the Hamming
distance [8]. Then the k -means clustering algorithm [12] is applied to a set of
day vectors to find clusters of similar days. The parameter k of the algorithm
directly implies to the number of different mobility patterns that happened on
different days. The centroid of each cluster now represents common mobility
pattern that provides predictions (probability) of visitations to be found on any
certain days in the future that have similar features. A concrete example of the
similar day clusters discovered from the real dataset is shown in figure 4. It is
striking that the cluster centroids in figure 4 clearly show 3 different visiting
patterns at that particular location. The cluster (1) contains a set of days in the
past history when the visitations rarely happened, and the majority of this set
are Saturdays, Sundays and the days specified as holiday. On the other hand, the
cluster (2) and (3) contain more active days. The days in the cluster (2), which
most of them are Monday and Wednesday, have very low visitations records
during 11.00-12.00 and 21.00-22.00; moreover, the visitations seems to occur
earlier than on the days in the cluster (3). Interestingly, this follows the fact
that we have meetings arranged in the experimental space every Monday and
Wednesday, and causes the mobility pattern to appear differently to other days.

5 Evaluating Prediction Performance

In this section, we evaluated prediction performance of our proposed long-term
human mobility predictor on a physical dataset of collective human mobility in-
side the working environment. As described in section 2.1, the dataset contains
92 days of mutual movements from every participants in the space. Data are
collected consecutively 24 hours a day, 7 days a week from ∼ 20 users using in-
frared sensors, and magnetic sensors (figure 5(a)). These sensors were installed
at 30 locations over the experimental space to detect activities and mobility at
each area. Outline of the space and installed sensors are shown in figure 5(b).
Movements and activities committed in the experiment were not scripted be-
forehand; all actions happened deliberately regarding each individual’s routine,
work schedule, and needs at that moment.

Firstly, we evaluated the periodic approach for long-term human mobility
prediction. Two months of collective mobility data was used to build the pre-
dictive model and the remaining 30 days of mobility data was used to test the
model. Details of the dataset are summarized in table 1.
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Table 1. Human Mobility Dataset

Dataset Train Test

Sample rate hourly

Number of participants ≤ 20

Observed locations 30

Size of data 62 days
(1,488 hours)

30 days
(720 hours)

(a) Infrared and Magnetic sensors
used to observe mobility in the ex-
perimental space

M
ee

tin
g 

R
oo

m

(b) Floor plan

Fig. 5. (a) Infrared and Magnetic sensors used in the experiment. (b) Placement of the
sensors.

5.1 Periodicity and Prediction Performance

We determined relations between the periodicity probability (Px(τ = 24) and
Px(τ = 168)) and the prediction accuracy, precision, and recall rate at each lo-
cation separately. Figure 6(a) and 6(d) exhibit decreasing trend of prediction
accuracy when the periodicity probability increased; yet, the periodic predictor
gets higher precision and recall rates as the dataset has higher probability of
such movements being repeated periodically. Nevertheless, the measurement of
prediction accuracy is meaningless to us because the datasets, which contain
visitations records at each location in past history, have negative skew. In other
words, naive predictor can achieve at least 60% chance of predicting visitations
(either “visited” or “not visited”) of users at a specific time frame in the future
correctly by always guessing “not visited”. Figure 6(b) and 6(e) show direct rela-
tionship between the precision rate and the periodicity probability. Likewise, the
recall rates in figure 6(c) and 6(f) show that the datasets with higher periodicity
are more predictable than the others. Moreover, when the periodicity probabili-
ties are lower than 0.4, the daily periodic approach (see figure 6(c)) clearly gets
poor results. These confirm our hypothesis that the periodic approach alone is
not effective in predicting with low periodicity probability.
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Fig. 6. Periodicity and Prediction Performance.

5.2 Prediction Performance of the Similar-day Approach

The aperiodic part in the proposed predictive technique, APP, is implemented
with the similar-day predictive approach described in section 4.2. In the previous
experiment, the periodic approach underperformed on the datasets where the
mobility were not really periodic. Especially in the daily periodic model (see
figure 6(a), 6(b), and 6(c)) when most of locations in the experimental space have
lower periodicity probability than 0.4. Hence, in this experiment, the aperiodic
part of the APP is activated where the periodicity is lower than the minimum
threshold P τmin = 0.4, the experimenter-specified threshold.

Figure 7 reveals benefit of implementing the aperiodic part into the APPpre-
dictive model. In figure 7(a), the precision rates of the APP, after implement-
ing the similar-day approach in low-periodicity data, are improved significantly,
comparing with the periodic approach alone. The precision plots of the periodic
approach on the left (periodicity ≤ 0.4) were mostly omitted because the peri-
odic predictor never predicted “visited” on those locations, resulting undefined
precision rates.

The APP also improves the recall rates, as shown in figure 7(b). It is striking
that the recall rates used to get nearly 0.0 in the periodic approach rise up to
0.6 when predicted with the APP predictive technique.

In summary, the aperiodic part in our proposed long-term human mobility
predictive technique helps improving the prediction performance especially when
the periodicity probability is too low to infer future visitations. However, the
similar-day approach that we implemented into the aperiodic part is not effective
enough to improve the predictive technique that employs the weekly periodic
approach (τ = 168). The reason is that the day of week attributes used in the
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Fig. 7. Prediction Performance of the Similar-day Approach.
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Fig. 8. Prediction Performance on Long-term Prediction.

cluster analysis already corresponded to the weekly basis, and the the holiday is
not really significant feature since there were few holidays during only 3 months
of dataset. So, the implementation of the similar-day approach (aperiodic part)
and the weekly periodic approach was not able to achieve much improvement
comparing with the weekly periodic predictive approach alone.

5.3 Performance in Long-term Prediction

In this section, we tested the robustness of the APP, Aperiodic and Periodic
approach for human mobility predictor, over long range of prediction. The set-
tings of this experiment refer to table 1. The results in figure 8 show the steady
prediction performance even when predicting for 30 days ahead. The F1-score,
which is the harmonic mean of the precision and the recall rate (in figure 8(c))
summarizes the prediction performance of 3 proposed predictive techniques as
follows. Firstly, our collective mobility dataset that seems random in the first
place contains enough information to be predicted accurately even in far future.
Activities and corresponding mobility in the dataset are likely to be periodic
on the weekly basis; hence, the weekly periodic predictive approach alone can
get the average F1-score at 0.55. On the other hand, the daily model performs
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relatively poor (average F1-score at 0.37) on this dataset because of low period-
icity probability on the daily basis. However, after implementing the similar-day
approach together with the daily predictive model, the integrated model can
achieve average F1-score at 0.52.

6 Conclusions and Future Work

In this paper, awaiting answer to the question about limitations of the pre-
dictability of the collective human mobility from simple ambient sensors inside
the smart environment has been revealed. We took a challenging decision im-
plementing non-intrusive tracking method. Our choice of tracking method with
ambient simple sensors have bold advantages from its unobtrusiveness and sim-
plicity. The limitation, however, is that they cannot distinguish people’s iden-
tities, such that its data limits a predictive model because it is impossible to
create a predictive model individually for each user’s mobility pattern.

The predictability analysis reveals potential of building a short-term next
location predictive model that predicts next movement of a moving user accu-
rately using only the collective dataset. However, implementing the short-term
predictor is outside the scope of this paper. Furthermore, we also discovered
acceptably high predictability in long-term prediction by modeling periodic be-
haviors hidden in the collective mobility data.

Next, we proposed the APP: Aperiodic and Periodic predictive model for
long-term human mobility prediction. Results from the experiment shows that
performance of the APP predictor improved significantly when predicting in
low periodicity situations using the aperiodic approach. However, the aperiodic
approach implemented in this project is not effective enough to increase the
performance of the weekly periodic predictive approach yet because very limited
features can be extracted from the collective dataset. We leave this to be our
future work.
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