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Abstract. The task of discovering dense areas aims at detecting regions
with high concentration of moving objects from trajectory data and it
plays an important role in the development of systems related to traffic
and transport management. The problem has been investigated under
two main assumptions: the representation of the trajectories in the eu-
clidean space and the characterization of the dense areas as pre-defined
cells. However, the adoption of mobile devices enables the generation of
trajectories in a streaming style, which adds another degree of complexity
to the problem. This is an issue not yet addressed in the literature. We
propose a computational solution aiming at detecting dense areas from
trajectory streams in a network. Our proposal adopts a sliding window
strategy which enables the discovery of two types of dense areas, one
based on spatial closeness, the other one based on temporal proximity.
Experiments are conducted on trajectory streams generated by vehicular
objects in a real-world network.

1 Introduction

The recent adoption of the mobile and ubiquitous technologies has enabled the
generation of massive data about moving objects. The development of advanced
applications has greatly benefited from this new source of information. For in-
stance, applications for monitoring fleets of vehicles have been conceived thanks
to the possibility to collect positions recorded by GPS-equipped devices installed
on the moving vehicles. Typically, the generated data are trajectories correspond-
ing to sequences of latitude and longitude positions each associated with the
time-stamp when the object had that position. Analysing trajectories remains a
widely investigated research line due to its impact on prominent fields such as
intelligent traffic management and urban transportation design.

A challenging problem related to the analysis of the trajectories is the identi-
fication of areas (or regions) with high density. An area is dense if the number of
moving objects it contains is above some threshold or if it exhibits a concentra-
tion of objects greater than expected. Usually, it is characterized by its spatial
location and the associated time-interval.

Most of the existing works (e.g.,[3, 4]) follow a database-inspired approach
based on density queries. There, the main problem is to effectively compute an-
swers and it is solved through the simplification of the queries or the integration



of human-specified criteria. Common to these works there is the representation
of the space in form of a grid which forces the dense areas to be fixed-size cells.
In real-world applications, dense areas do not have a pre-defined form and each
area can have a size and shape different from the others. This is typical in
spaces structured as road networks where the areas have a so irregular form that
it would be difficult to discover dense roads in pre-defined cells.

In this paper, we propose an approach to discover dense areas from trajec-
tories of objects moving in a road network. The network-based representation
has a two-fold purpose. First, the consideration of some intrinsic features of
space (such as, the presence of buildings and infrastructures) which constraint
the movements of the objects, while, in the usual euclidean representation the
objects can move freely without particular limitation. Second, the possibility of
dealing with the problem at a lower level of granularity through the discovery of
dense segments (of the roads) which permit to built areas with any shape and
size. Strictly connected with the spatial dimension, we have to take into account
the temporal component. Indeed, ignoring it can make the spatial location alone
not very useful. We propose to consider time both as dimension of analysis, since
the movement and speed of the objects are function of time, and as information
associated to a dense area, since some roads can be particularly dense in some
hours of day only.

In the real-world applications, we cannot forget the streaming activity of the
GPS devices to record the repeated movements of the objects which result in
trajectories generated as unbounded sequences of positions. This raises new chal-
lenges about the storage, acquisition and analysis that make most of the existing
works on dense areas difficult to apply and ineffective. Based on these consider-
ations, we argue that handling trajectory streams becomes necessary, especially
in urban contexts where technologies enabled to process trajectories and detect
dense areas in real-time can be of support in several practical activities.

To face the streaming activity there are basically two alternatives. First,
collecting the trajectories according to a snapshot setting which models the po-
sitions of the objects recorded in a time-stamp. Second, adopting sliding windows
which collect positions recorded in periods of time and enable the analysis of the
data comprised in a window in the meanwhile another window being created.
In this work we follow the second approach since the first one requires that the
positions are regularly recorded over time which is an assumption that could not
be guaranteed in the moving objects. The second approach instead appears ap-
propriate to model a trajectory in its natural conception of sequence of positions
in a time-interval. Coherently to what above illustrated, windows turn out to be
particularly suitable to take into account time both as physical measure (with
velocity and space) in the process of dense area discovery and as annotation in
the representation of those areas. In this work, a sliding window approach is
adopted to discover two types of dense areas, one based on the spatial closeness,
the other one based on the temporal proximity. In particular, overlapping win-
dows are generated to continuously monitor road segments while a technique,
which combines an ad-hoc querying mechanism and rule matching, detects those



dense. The rest of the paper is organized as follows. In the Section 2 we overview
the related literature. The scientific problem is formalized in the Section 3, while
the Section 4 describes the computational solution. Experiments are described
in the section 5. Conclusions in the Section 6 close the paper.

2 Related Work

The problem of discovering dense areas was originally faced through a purely
spatial dimension and later under a spatio-temporal perspective where moving
objects are considered. Two main approaches can be identified: i) density-based
clustering methods, and ii) density querying on grid-based space.

Although dense areas have been investigated with clustering algorithms, the
original problem of the clustering is quite different. In these algorithms, dense
areas are determined as those geographic regions which have particular spatial
properties and which exhibit a particular concentration of objects. Also, they
often work on some assumptions about the data distribution, which is any-
way difficult to estimate a-priori. Wang et al. [8] study the problem through
spatial and multidimensional domains, and the proposed solution permits to
generate hierarchical statistical information from spatial data. A static graph
representation of the road network has been considered in [9] where three dif-
ferent clustering techniques (partitioning, density-based and hierarchical) work
on a network-based distance notion. The dynamic features of the road network
have been instead studied in the research line on the moving objects. Chen et
al. [1] define an effective clustering approach which works in road networks: the
technique first identifies cluster units and then creates different kinds of clus-
ters based on the units by means of a split-and-merge technique. The network
features are exploited to reduce the search space and avoid unnecessary compu-
tation of network distance. A quite similar method is implemented in [5] through
an algorithm which discovers dense areas from cluster units. The latter are gen-
erated as groups of moving objects on the basis of the locations and moving
patterns. A different perspective is provided in [6] where clustering is performed
on sub-trajectories. The idea is that movements can be similar only in segment of
the whose trajectories. The approach first partitions the data into line segments,
then group them with a density-based clustering.

The grid-based representation for dense areas is not new and it was originally
used in [3] in association with the density queries. The original space is mod-
elled in the euclidean framework and partitioned into fixed-size cells to generate
cells efficiently. The accuracy loss, introduced by the pre-defined partitioning, is
mitigated in the work of Jensen [4].

In the literature of trajectory streams, most of the works are based on cluster-
ing. Costa et al [2] propose an effective and accurate solution to find similarities
in trajectories modelled with the Fast Fourier Transform. The approach adopts
a window-based mechanism finalized to merge newly created clusters with those
oldest. A slightly different problem is the grouping of objects moving together
[7]. The method first performs a grouping step at each snapshot of the streamed



trajectories, and then completes an intersection operation among the groups
previously created. The integration of micro-groups of objects and smart inter-
section operations make that method efficient. However, in both these research
lines no paper focused on the discovery of dense areas can be enumerated, so
this work can be considered as the first attempt.

3 Basics and Problem Definition

Before formally defining the problem we intend to solve, some definitions are
necessary. Consider T : {t1, t2, . . . , tk, . . . , } be the discrete time axis, where
t1, t2, . . . , tk are time-points equally spaced, M : {o1, o2, . . . , oi, . . . , om} be the
finite set of unique identifiers of the moving objects, pik ∈ R2 is the latitude
and longitude position of the ith object at the time-point kth. A trajectory
stream Si is the unbounded sequence of positions associated to the object ith,
Si = {pi1, pi2, . . . , pik, . . .}. The time-points of recording of the positions are not
necessarily equally spaced.

A road network is modelled as a directed graph G(V,E), where V is the set of
vertices representing road intersections and terminal points, and E is the set of
edges representing road segments each connecting two vertices. A road segment
is defined by a unique identifier and the latitude and longitude positions of the
terminal points ps, pe. For simplicity, we assume that the speed of an object in a
road segment is constant. Given the positions pih, p

i
k (tk > th), we can compute

the speed of an object in a segment. While, given the speed, the position pih and
the length of a segment, we can compute the time-point tk (tk > th) when the
object is expected to be out of the segment (afterwards, tout), where pik in tk
denotes the position of the object in correspondence to the terminal point of the
segment.

In this work, dense segments and areas are detected from the trajectory
streams.

Definition 1 (Dense Segment). A segment σ ∈ E is dense if the following
conditions hold:

– there exists a set of objects D ⊆ M s.t. ∀oi ∈ D: tiout < tik, t
i
out is the time

in which we expected the object oi is out from the segment. This condition is
true when oi is still in the segment at the time tik and has position pik;

– |D| > δmin, δmin a user-defined minimum density threshold

A dense segment σ is identified by the tuple: 〈ps, pe, D, t0, tmax〉, where
tmax = argmaxoi∈D tiout (t0 < tmax), so [t0, tmax] establishes the interval in
which σ is dense.

Intuitively, a segment is dense when there are objects which have not come
out from the segment within the expected time which is specific for each object.
This notion is coherent with the queueing process.

A collection of dense segments can form a dense area on the basis of the
spatial closeness. It would depict a traffic jam where neighbouring segments
exhibit density at the same time (the objects are fully stopped). More formally,



Definition 2 (Spatial Closeness-based Dense Area). A collection of dense
segments Σ is a dense area of type SC if the following conditions hold:

– ∀σ′, σ′′ ∈ Σ : d(σ′, σ′′) ≤ L, L is a user-defined parameter, d is a network-
based distance;

– ∀σ′, σ′′ ∈ Σ : t′0 = t′′0 (t′0, t
′′
0 are the lower bounds the time-intervals of the

tuple of σ′ and σ′′ respectively);
– ∀σ′, σ′′ ∈ Σ : D′ ∩D′′ = �

A collection of dense segments can form a dense area on the basis of the spa-
tial closeness and temporal proximity. It would depict a traffic congestion where
near segments exhibit density at consecutive times (the objects flow slowly).
More formally,

Definition 3 (Spatial Closeness and Temporal Proximity-based Dense
Area). A collection of dense segments Σ is a dense area of type TP if the
following conditions hold:

– ∀σ′, σ′′ ∈ Σ : t′′0 > t′0;
– ∀σ′, σ′′ ∈ Σ : t′′0 − t′0 < Ω, Ω user-defined parameter;
– ∀σ′, σ′′ ∈ Σ : D′ ∩D′′ 6= �.

The threshold Ω defines the temporal proximity within which the dense areas
of type TP can be seek.

Given the set of moving objects M , the trajectory streams in the form of Si,
the road network G, the problem at the hand is To Detect dense areas as defined
in the Definitions 3 and 4. The parameters δmin, L and Ω are used to filter out
meaningless segments and areas.

4 Dense Areas from Trajectory Streams

4.1 Overview

To illustrate the computational solution we need the notion of trajectory window.
Let Si, Si+1, . . . Sn be a stream of trajectories of objects oi, oi+1, . . . , on. The tra-
jectory window [W ]

u
w of width ω is a sub-sequence of the streams Si, Si+1, . . . Sn

and comprises the positions observed in the time-interval [tu, tw], where ω is a
user-defined parameter.

The streaming setting requires that the phase of analysis is not postponed
to that of acquisition of data. It often precludes the possibility of performing
pre-processing operations on the whole dataset which are instead adopted by
techniques which do not work on data stream (e.g.[5]). We propose a solution
which performs simultaneously a step of data acquisition from trajectories stream
and a step of analysis to discover dense areas.

More precisely, the first step collects data (about the positions and segments)
continuously coming from moving objects and fills partially overlapping windows.



Each window is overlapped with (some of) the windows that precede and follow
it, so it contains part of the positions which are contained in the windows created
before and after. For instance, the windows [W ]

u
w , [W ]

r
s , [W ]

m
n are created in this

order so that the orders tr < tw and tm < ts hold, while the order between tw
and tm cannot be established a-priori since it depends from the rate (defined by
the user) with which the windows are generated.

The organization of the windows by partial overlapping allows to share infor-
mation of the moving objects among different windows and therefore it reduces
the possibility of information loss when analyzing the movements.

The second step proceeds at the level of single windows and at the level
of sequences of windows. More precisely, it processes one window at time and
finds dense areas of type SC from that window: for each segment, the positions
buffered in one window are analyzed in order to determine whether that seg-
ment is dense. The segments identified as dense in a window will be used to
create a dense area of type SC. In the meanwhile one window is processed, the
next window is acquired. When the algorithm turns to process the next win-
dow, it stores i) the dense segments discovered in the past window(s) and ii)
the expected times tout computed in the past window(s). So, when a new win-
dow is processed, the algorithm has the results of the sequence of the windows
since there analyzed. The expected times (computed before) are used to com-
plete, in the current window, the search (started in the past window(s)) of dense
segments. The discovery of dense areas of type TP is performed on the dense
segments obtained from the sequences of windows. Only sequences of windows
whose overall width does not exceed Ω are considered.

4.2 Detection of Dense Segments

The method for discovering dense segments resorts to the queueing process ac-
cording to which the delay of an object (with respect to the expected time) to
leave the queue can be attributed to the increase of the number of the objects
present in the queue or to a demand for resources greater than expected. We
argue that the increase of the moving objects is the most reasonable motivation
of the delay in the road networks.

The algorithm combines two activities. The first one performs the monitoring
of the segments by means of queries submitted in correspondence of the time-
points in which it is expected that the objects will leave the segment. Once a
query has been completed, the second activity checks whether the monitored
objects are still in the segment: if it is so, they will contribute to make that seg-
ment dense. More precisely, the check mechanism adopts heuristics (modelled
in the form of if-then rules) and performs a matching operation between (the
information associated to) each segment and the antecedent parts of the rules.
The consequent parts indicate whether the segment is dense or not. The pos-
sibility to query the trajectory streams only in correspondence of the expected
time-points makes our approach different from the methods in which the queries
have to be periodically (and often more frequently) submitted ([4]).



(a)

(b)

Fig. 1. Estimation of the times tout and application of the check mechanism.

As anticipated in the section 3, the estimation of times requires the speed
of each object, its position inside the segment and length of the segment. In
particular, the speed of the object is determined when starting to process the
current window by submitting two queries (in correspondence of two time-points
t0, t1) that retrieve the objects to be monitored and their positions, while, the
road network G provides the length of the segment. However, the objects can
move with different velocities and can leave the segment at different times. This
may be determinant in the formation of dense segments and, in order to take
into account it, we consider both fast objects and those slow when discovering
dense segments. In this sense, we estimate two kinds of expected times, one,
denoted as tmin

out , which indicates the time within which the fast objects should
be out, the other one, denoted as tmax

out , which indicates the time within which
the slow objects should be out. More precisely, tmin

out refers to the slowest object
out of the fastest objects, while tmax

out is the speed of the slowest object in the
set of monitored objects of that segment. Intuitively, we expect that the those
fastest will be out before (within tmin

out ), while the slowest ones will do it after
(but within tmax

out ). If this does not happen, we could have an high concentration



of objects in that segment. We encode this idea into if-then rules which work as
follows. Once computed tmin

out and tmax
out , two queries are submitted (in the same

order of tmin
out ,t

max
out ) in correspondence of these time-points to check whether the

fastest objects (among those monitored) have left before tmin
out and the slowest

objects (among those monitored) have left before tmax
out : if the number of the

objects in common (|D|) to the time tmin
out and to the time tmax

out is higher than
the minimum threshold δmin, then the segment is dense.

Notice that, since it would be unrealistic that the positions of all objects
are recorded at the same times, the queries submitted with the value of the
time-point could not generate results, so we consider time-intervals with fixed
radius ε centred on tmin

out and tmax
out , and on the first two time-points t0, t1. As

illustrated in the Figure 1a, the fast objects go out before tmin
out + ε (square 1),

while other fast objects remain, although we expect their absence (square 2).
Next, in correspondence of tmax

out + ε (square 3), we expect that the remaining
fast objects and those slow go out: if, even after tmax

out + ε, there are still objects
(whose size exceeds δmin), then the segment is dense (square 4).

However, in while identifying the objects to be monitored (queries on t0
and t1), new objects enter the segment. The check mechanism could provide
wrong results since those objects are not comprised in the initially retrieved set.
The solution consists of i) integrating additional if-then rules able to recognize
the insertion of new objects and ii) adapting the monitoring process since we
expect to retrieve the new objects in the next queries. More specifically, an
additional query on t2 (t1 < t2) is submitted in order to compute the speed and
expected time-points (afterwards, tmin′

out and tmax′

out ) for the new objects. The check
mechanism is updated in order to monitor the new objects in correspondence of
i) the expected time-points tmin′

out and tmax′

out , ii) the expected time-points tmin
out

and tmax
out initially estimated. The values of the new time-points establish the new

order of the queries to be submitted and, dependently on this order, different
rules will be matched. The time-point t0 and the longest estimated time-point
define (tmax

out or tmax′

out ) the time-interval of the tuple of the segment.

For brevity, here we detail (Figure 1b) only the case in which the time-
points tmin′

out , tmax′

out come after tmin
out and tmax

out . As illustrated in the Figure 1b,
the presence of new objects in t1, with respect to t0, forces to run another query
in order to complete the calculation of the speed for the new objects (square
1). In the meanwhile, the algorithm estimates tmin

out and tmax
out which will be the

time-points that the check mechanism will use for the next queries. After the
query t2, also tmin′

out and tmax′

out are estimated, so we have two additional queries
to be included in the check mechanism: the new order of the queries will comply
with the order of the expected times tmin

out < tmax
out < tmin′

out < tmax′

out . Then, the
algorithm checks that the new objects are present in tmin

out and tmax
out (squares

2-5), and that all have left before tmax′

out (square 8). In tmin
out and tmax

out we observe
that the initially monitored objects leave the segment (squares 2,4) and that
other objects remain there (squares 3,5). The latter should leave before tmax′

out ,
while instead the check mechanism detects that from tmin′

out to tmax′

out no object
has left (squares 6-8): if these numerically exceed δmin, the segment is dense.



4.3 Detection of Dense Areas

Dense areas are generated with at least two dense segments which meet the
Definitions 2 and 3. This provides some hints on the technique to use. The
algorithm of the areas of type SC is performed once a window is processed
and operates on the segments already detected and dense areas which are being
generated during the process. Each segment can be associated to only one area
if i) its distance from the segments (already added to that area) is lower than
the parameter L and ii) it has no object in common with those segments. If the
examined segment is added to none of the areas, it will be considered as seed
for a new area. Finally, we will have a collection of segments which begin to be
dense at the time t0, which is common to all segments of that area.

The dense areas of type TP involve the dense segments obtained from a
sequence of overlapping windows. Considering sequences of windows has a two-
fold advantage: i) mitigating the effect that pre-defined windows (as in the case
of areas SC) can have on the final results, and ii) enabling the discovery of
dense segments on consecutive windows. In particular, when the values of tmin

out

and tmax
out exceed the last time-point tw of the window [W ]

u
w, we need to adapt the

check mechanism in order to submit the corresponding queries later, specifically
when the window which contains tmin

out and tmax
out will be processed. The algorithm

acts once a number of windows having a total width less than Ω has been
analyzed and it executes two selection operations. The first one takes one segment
from each window provided that they are temporally ordered: for instance, given
σ′,σ′′, σ′′′ detected in the windows [W ]

u
w,[W ]

r
s , [W ]

m
n respectively, σ′,σ′′, σ′′′ are

taken if the order t′0 < t′′0 < t′′′0 holds. The second one refines the previous
operation by selecting the segments which have moving objects in common.

Searching dense segments which share objects over a finite sequence of win-
dows introduces implicitly a spatial neighbourhood in which those objects move
around. This allows us to attribute the formation of the congestion areas to
specific objects.

For both types of areas, the notion of the distance between two segments
σ′, σ′′ is based on the given network structure and corresponds to the usual
distance of the shortest path in the graphs. More precisely, it is the minimum
summation of the single distances associated to the intermediate segments and
to the segments σ′, σ′′. Each single distance is the spatial distance between the
terminal points of the segment.

5 Experiments

The computational solution was tested on a real-world dataset which com-
prised trajectories produced by taxies moving in the city of Bejing for one week
(02/02/2008-08/02/2008) 1 The original dataset was modified by removing the
positions which could not be associated to segments of the network and by adding
new data in order to maintain the order of magnitude of the size. Modifications

1 http://research.microsoft.com/apps/pubs/default.aspx?id=138035



concern the insertions of i) positions in all segments for all objects, ii) positions
in the segments of the centre of the city, iii) positions for the objects which have
an higher (and lower) number of positions, iv) positions for all objects in peak
hours, v) positions in the roads having many segments. Totally, we have almost
37000 roads, 89900 segments, 98600 moving objects. The dataset is poured in
a traditional relational DBMS and converted into a data stream by taking the
temporal order of the input data as the order of streaming. The road network
of the city of Bejing 2 has 141,380 segments and 106,579 vertices from which we
derive the lengths of the segments.

Experiments are performed to test the influence of the input threshold δmin

on the final dense areas. We report results on the dense segments and dense
areas discovered in each day and in the peak hours, namely 7:00-9:00pm, 12:00-
14:00pm, 18:00-20:00pm (Figures 2). The thresholds and parameters are set as
follows: δmin = 3, 5, 7, L = 1.5km, Ω = 30mins, |t1 − t0| = 1min, |t2 − t1| =
1min, ε = 10secs, ω = 5mins, the rate of generation of the windows equal
to 2.5mins. As to the dense segments, a quite expected behaviour is that the
number of dense segments decreases as the minimal threshold increases, and this
is common to all days for all hours. An analysis done on the basis of the hours
may provide indications of social nature: on the week-end, a greater flow can be
observed only in the time-slot 18:00-20:00, while on the weekdays the highest
numbers of segments is produced from 12:00-14:00. As to the dense areas, the
results basically follow the behaviour of the dense segments. In particular, by
analyzing the time-slots 7:00-9:00 and 18:00-20:00, numerous sets of SC-areas
are detected when we have more dense segments, while the greatest sets of SC-
areas are discovered in correspondence of the highest number of dense segments
(12:00-14:00). Also expected it is the result that associates great sets of SC-
areas to great sets of segments when δmin=3: in that case, the dense segments
can be so numerous to be close to each other with the result to form more
dense areas. Numerous collections of TP-areas are obtained when we have many
dense segments in all configurations (δmin=3,5,7). Indeed, particularly for the
time-slots 12:00-14:00 (on the weekdays) and 18:00-20:00 (on the week-end), the
expected high number of objects can justify a slow movement and therefore the
raising of TP-areas in all configurations.

We evaluated the final results through a quantitative measure which esti-
mates the capacity of the approach to detect segments which have an high
concentration of objects with respect to the neighbourhood. More formally,

Θ(σ) =
∑

j=1...m (σ−σj)

(m∗1)+avgσ , where σj are non-dense segments close to σ in a diame-

ter of 100m3, m is the number of non-dense close segments, avgσ is the average
number of objects per segment. The value of Θ(σ) would tend towards 0 with an
equal distribution of the objects among the segment σ and its neighbours, while
when there is a strong concentration of the objects in the segment σ, the value
of Θ(σ) tends towards 1. The Table 1 reports the mean of the values of Θ on all

2 http://www.openstreetmap.org/
3 This value has been specifically computed of the road network of the city of Bejing
by considering also that two parallel roads can be close within 100m.



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Dense segments when σ=3,5,7 at peak hours 7:00-9:00pm, 12:00-14:00pm,
18:00-20:00pm (a,c,e). Dense areas of type SC and TP discovered when σ=3(SC-3,TP-
3), σ=5(SC-5,TP-5), σ=7(SC-7,TP-7) (b,d,f) .

dense segments discovered in each day: we observe the better performances in
the days from Tuesday to Friday. This is encouraging because it points out the
ability of the method to recognize correctly high concentrations of objects when
the dense segments grow and maintain the robustness with respect to the noise.

6 Conclusions

In this paper we investigated the task of discovering dense areas in a stream of
trajectory defined in a road network. The proposed approach adopts a sliding
window strategy to detect dense segments and use them to form dense area. It
combines knowledge in the form of if-then rules and a querying mechanism to
retrieve information about the segments from the stream. Experiments prove
the applicability to a real-world road network As future direction, we plan to
extend the rule base with additional conditions and validate the approach on
road networks and trajectory data where ground truth is available.



Table 1. Evaluation on the dense segments by day.

Θ
02/02/2008 Saturday 0.52
03/02/2008 Sunday 0.67
04/02/2008 Monday 0.41
05/02/2008 Tuesday 0.54
06/02/2008 Wednesday 0.72
07/02/2008 Thursday 0.68
08/02/2008 Friday 0.64
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