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Dimension reduction

Technique for mapping objects from a
large space into a small space, while
preserving essential relations.
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Oblivious dimension reduction

Technique for mapping objects from a large
space into a small space, while preserving
essential relations, that is data-independent
and does not need to be trained.

Generally applicable.
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Oblivious dimension reduction

Technique for mapping objects from a large
space into a small space, while preserving
essential relations, that is data-independent
and does not need to be trained.

Generally applicable.
e T | 11010
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Next: Three tools

7~ Random projection
X Random feature mapping

7 1-bit minwise hashing
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[Johnson & Lindenstrauss ‘84]

Johnson-Lindenstrauss Transformation

* To preserve n Euclidean distances?

T — Zjl]2 = (L £ e)||zi — 4|2



[Johnson & Lindenstrauss ‘84]

Johnson-Lindenstrauss Transformation

* To preserve n Euclidean distances?

|2 = Zjll2 = (L £ &)l[ws — 2|2

» Use a random’ linear mapping]!

| I m = O(log(n)/ €?)
A = . .
dimensions



[Johnson & Lindenstrauss ‘84]

Johnson-Lindenstrauss Transformation

* To preserve n Euclidean distances? Dot products?

i = ]l2 = (1 3

* Use a random’ linear mapping]!

= e)||zi — ]2

A R
B dimensions



[Johnson & Lindenstrauss ‘84]

Johnson-Lindenstrauss Transformation

* To preserve n Euclidean distances? Dot products?

|25 — 24l = (L L e)||xs — 252

* Use a random’ linear mapping]!

- B dimensions
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[Johnson & Lindenstrauss ‘84]

Johnson-Lindenstrauss Transformation

* To preserve n Euclidean distances? Dot products?

T — Zjl|2 = (1 -

» Use a random’ linear mapping]!

Optimality of the

- e)|xi — |2 Yes, but error
depends on
vector 1ength5

N _ I m = O(log(n)/ €2)

dimensions

Johnson-Lindenstrauss Lemma
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Oblivious subspace embeddings

* Do better if data has nice structure?
For example constrained to d-dim. subspace.


https://www.computer.org/csdl/proceedings/focs/2006/2720/00/27200143.pdf
http://locus.siam.org/doi/pdf/10.1137/1.9781611974331.ch21

Oblivious subspace embeddings

* Do better if data has nice structure?
For example constrained to d-dim. subspace.

- Principal component analysis (PCA) works,
but mapping is data-dependent.
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Oblivious subspace embeddings

* Do better if data has nice structure?
For example constrained to d-dim. subspace.

- Principal component analysis (PCA) works,
but mapping is data-dependent.

- A suitable random linear map works with
m = O(d/ €2) dimensions! [Sarlés “06]
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Oblivious subspace embeddings

* Do better if data has nice structure?
For example constrained to d-dim. subspace.

- Principal component analysis (PCA) works,
but mapping is data-dependent.

- A suitable random linear map works with
m = O(d/ €2) dimensions! [Sarlés ‘06]

- Sparse matrices almost as good [Cohen "16].

Key tool in randomized
~umerical linear algebra
(RandNLA) methods
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[Rahimi & Recht ‘07]

Random feature mappings

O
data vectors \&i&@o feature space
Q:\:Q’
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Random feature mappings

O
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[Rahimi & Recht ‘07]

Random feature mappings

O
data vectors \&i&@o feature space
Q:\:Q
0o0101110111010101 =——» 0010000001010000 .. 00001000100000010
X (x)

Efficient mappings:
 Random kitchen sinks (2007)

Can use linear
Y kernel methods
X (e.g.linear SVM)

X 1= ) oy)
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Random feature mappings

O
data vectors \&i&@o feature space
Q:\:Q
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X (x)

Efficient mappings: Can use linear
 Random kitchen sinks (2007) ernel methods

+ FastFood (2013) ¥ (e linear SVM)
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Sparse vectors

Optimality of the Johnson-Lindenstrauss Lemma

Kasper Green Larsen i Nelson'

rtember 8

For any integers d,n > 2 and 1/(min{n, d})** - we show the existence of a set of n v

2? such that any embedding f : X — R™ satisfying

If () = FWIE < (1 + &)z —yll3

must have

This lower bound matches the upper bound rdenstrauss lemma [JL84]. Further-

more, our lower bound holds for nearly the full ra of interest, since there is always an isometric
X))

limension min{d,n} (either the identity map, or projection onto spa
T bound w only known to hold against linear maps f, and not for such
16]. The best previous r bound for general f was

which is suboptimal for any < = o(1)

1 Introduction
T e TS 0 0 1 o o o o O O 1 0 1 0 0 0 0 0 0 0 o 1 o o o 1 O O O 0 O O 1 O
via some dimensionality reduction scheme that pre ometry in such a way that is acceptable for [ XX ]

particular applications. The lower-dimensional embedded data has the benefit of requiring less storage.
communication bandwith to be transmitted over a network, and less time to be ar
Such schemes have been applied to good effect in a diverse range of areas, such as streaming algorithms
Mut05], numerical linear algebra [Wool4], compressed sensing [CRT06, Don06], graph sparsification [SS11]
clustering [BZMD15, CEM*15], nearest neighbor search [HIM12], and many others

A cornerstone dimensionality reduction result is the following Johnson-Lindenstrauss (JL) lemma [JL84].

(] (]
Theorem 1 (JL lemma). Let X C RY be any set of size n, and let € € (0,1/2) be arbitrary. Then there
ezists a map f : for some m = C n) such that
yll3 < |1 f@) - <( . 1)

en though the JL lemma has found applications in a plethora of different fields over the past three
decades, its optimality has still not been settled. In the original paper by Johnson and Lindenstrauss [JL84],
it was proved that for & smaller than some universal constant <o, there exists n point sets R" for
which any embedding X — R providing (1) must have m = Q(lgn). This was later improved by
tence of an n point set X . such that any f providing (1) must have
m= £)}). This lower bound can also be obtained from the Welch bound [Wel74]
which state: A for 2 > int k, by choosing 2k = [lgn/lg(1/¢)]
The lower bound can also be extended to hold for any n < ¢**¢ for some constant ¢ > 0. This bound falls
short of the JL lemma for any & = o(1)
*Aarhus University. lar -au.dk. Supported by ¢ r Massive Data Algorithmics, a Center of the Danish National
arch Foundation, grant DNRFS4, a Villum Young Investigator Grant and an AU «
1 University. minil harvard.edu. Supported by CA 0670, NSF grant 11S-

R Young Investigator award N0OO14- and a C
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Sparse vectors

Term vector (or TF/IDF)

- 0010000001010000 .. 00001000100000010

> 10° dimensions

0010111011101010101001010

dimension-reduced representation
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Sparse vectors

Sparse, non-negative entries
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* Min-wise hashing (1997)
* b-bit min-wise hashing (2010)
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dimension-reduced representation
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[Li & Konig ‘10]

1-bit minwise hashing

Zi min(xia yz)

* Min-max kernel: k(x,y) = S max( )
; INAX\ Ty, Y;

12


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/wfc0398-liPS.pdf

[Li & Konig ‘10]
1-bit minwise hashing
 Min-max kernel: k(z,y) = 2_i in(2;, yi)

B Zz HlaX(.CIZ‘@', y’b)
Now: Binary vectors/Jaccard similarity
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1-bit minwise hashing

 Min-max kernel: k(z,y) = 2 min(zs, yi)
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« Random hash functions hi: N — [0;1]

- Min-hash: z{(x) = arg Iglin hi()
x]';é
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[Li & Konig ‘10]

1-bit minwise hashing

> . min(x;, y;)
> . max(x;, Y;)
Now: Binary vectors/Jaccard similarity

Min-max kernel: k(z,y) =

Random hash functions h;: N — [0;1]
- Min-hash: zi(x) = arg mm hi()
- 1-bit min-hash: b; (zz(x)) for random b;: N — {0,1}
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1-bit minwise hashing

> . min(x;, y;)
> . max(x;, Y;)
Now: Binary vectors/Jaccard similarity

 Min-max kernel: k(z,y) =

« Random hash functions hi: N — [0;1]
- Min-hash: zi(x) = arg mm hi()
- 1-bit min-hash: b; (zz(x)) for random b;: N — {0,1}

* Binary dimension-reduced representation:

b1(z1(x)) ... bulzm(x))
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TheoryandApplication S
¢ Hashing

of H-Bit Minwig

By Ping Liand Arnd Christian Konig

Abstract
Efficient (approximate) computation of set similarity in very
large datasets is a common task with many applications

We give both theoretical characterizations of the per-
formance of the new algorithm as well as a Practical evaly-
datasets and show that these match

points are prohibitive,
ing data representations that allow Compact storage and effi-
cient approximate distance computation necessary.

b-bit minwise hashing, which

corresponds to a string of w con-
tiguous words occurring on the page. Now, given two such
Sets S, 8, C O, |Q| =D, the normalized similarity known as
resemblance or Jaccard similarity, denoted byR, is

R:ﬁ%:#, wheref, =5, £, =|s,).

Duplicate detection now becomes the task of detecting
pairs of pages for which R exceeds a threshold value. Here,
W is a tuning barameter and was set to be W=5 in severa]
Studies.> 47 Clearly, the total number of possible shingles
is huge. Considering 105 unique English words, the total
number of possible 5-shingles should be D:(105)5:0(1025).
A prior study” used p = 9

D=2% Due to the size of D and the number of pages crawled

L1. Minwise hashing

To address this issue, Broder and his colleagues developed
minwise hashing in their seminal work,> 4 Here, we give a
brief introduction to this algorithm. Suppose a random
bermutation 7is performed on (), that s,

T:Q - Q) where 2=Ao, L,...,D-1}.

An elementary probability argument shows that

. o _1sns,|
pr(mm(n(sm—mm(”“z”)‘M‘R

After k minwise independent peérmutations, T, R, 1,
one can estimate R without bias, as a binomial probability:

(1

k
R, =%Z1{min(nj(s1 ))=min(r (s,))}, (2)
J=1

Var(}%M):]lRu—R). (3)
k

We will frequently use the terms “sample” and “sample
size” (i.e., k). For minwige hashing,

minwise hashing work,> ¢ there
have been considerable theoretica] and methodological
developments.S,S,ll14,16,17,22

Applications: As a general technique for estimating set
similarity, minwige hashing has been applied to a wide

range of applications, for example, content matching for
online advertising,23

detection of redundancy in enterprise

The previous version of this paper, entitled “b-Bit
Minwise Hashing for Estimating Three-way Similarities,”
was published in Proceedings of the Neural Information
Processing - Systems: NIPS 2010 (Vancouver, British
Columbia, Canada).
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EU regulations on algorithmic decision-making and a *‘right to explanation”

Bryce Goodman
Oxford Internet Institute, Oxford

Seth Flaxman
Department of Statistics, Oxford

Abstract

We summarize the potential impact that the Euro-
pean Union’s new General Data Protection Reg-
ulation will have on the routine use of machine
learning algorithms. Slated to take effect as law
across the EU in 2018, it will restrict automated
individual decision-making (that is, algorithms
that make decisions based on user-level predic-
tors) which “significantly affect” users. The
law will also create a “right to explanation,’
whereby a user can ask for an explanation of an
algorithmic decision that was made about them.
We argue that while this law will pose large chal-
lenges for industry, it highlights opportunities for
machine learning researchers to take the lead in
designing algorithms and evaluation frameworks
which avoid discrimination.

1. Introduction

On 14 April 2016, for the first time in over two decades,
the European Parliament adopted a set of comprehen-
sive regulations for the collection, storage and use of

norcnnal infarmatinnn the (oanoaral NData Praftert1ian RPoo

BRYCE.GOODMAN@STX.0X.AC.UK

FLAXMAN@STATS.OX.AC.UK

However, while the bulk of language deals with how data
is collected and stored, the regulation contains a short
article entitled “Automated individual decision-making”
(see figure 1) potentially prohibiting a wide swath of
algorithms currently in use in, e.g. recommendation sys-
tems, credit and insurance risk assessments, computational
advertising, and social networks. This raises important
issues that are of particular concern to the machine learning
community. In its current form, the GDPR’s requirements
could require a complete overhaul of standard and widely
used algorithmic techniques. The GDPR’s policy on the
right of citizens to receive an explanation for algorithmic
decisions highlights the pressing importance of human
interpretability in algorithm design. If, as expected, the
GDPR takes effect in its current form in mid-2018, there
will be a pressing need for effective algorithms which can
operate within this new legal framework.

Article 11. Automated individual decision making

I. Member States shall provide for a decision based
solely on automated processing, including profiling,
which produces an adverse legal effect concerning the

0




We summarize the potential impact that the Euro-
pean Union’s new General Data Protection Reg-
ulation will have on the routine use of machine
learning algorithms. Slated to take effect as law
across the EU 1n 2018, 1t will restrict automated
individual decision-making (that 1s, algorithms
that make decisions based on user-level predic-
tors) which “significantly affect” users. The
law will also create a ‘“‘right to explanation,’
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machine learning researchers to take the lead in

£9



We summarize the potential impact that the Euro-
pean Union’s new General Data Protection Reg-
ulation will have on the routine use of machine
learning algorithms. Slated to take effect as law
across the EU 1n 2018, 1t will restrict automated
individual decision-making (that 1s, algorithms
that make decisions based on user-level predic-
tors) which “significantly affect” users. The
law will also create a “‘right to explanation,’
whereby a user can ask for an explanation of an
algorithmic decision that was made about them.
We argue that while this law will pose large chal-
lenges for industry, it highlights opportunities for
machine learning researchers to take the lead in

£9



Biff Tannen in Back to the Future
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Issues for dimension reduction

« Dimension reduction creates features that are not
easy to describe in terms of original data.
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Issues for dimension reduction

« Dimension reduction creates features that are not
easy to describe in terms of original data.

e Use of randomization causes issues oOf:

- Trust. “Is it a coincidence that my feature vector is
similar to Donald Trump’s, or was this arranged?”

- Fairness. “Would I have gotten a loan if the random
choices had been different?”
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kNN classifier

“Explanation”
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Getting rid of randomness?

A

 Easy to argue that a deterministic dimension
reduction cannot work without assumptions on
data (“incompressibility”).

20



Getting rid of randomness?

 Easy to argue that a deterministic dimension
reduction cannot work without assumptions on
data (“incompressibility”).

 Second best option? Randomized algorithms
whose output is guaranteed, but may fail to
produce result within a given time/space usage.
(“Las Vegas”, a la quicksort.)

20
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ABSTRACT

Locality-sensitive hashing (LSH) has emerged as the domi-
nant algorithmic technique for similarity search with strong
performance guarantees in high-dimensional spaces. A draw-
back of traditional LSH schemes is that they may have false
negatives, i.e., the recall is less than 100%. This limits
the applicability of LSH in settings requiring precise per-
formance guarantees. Building on the recent theoretical

“CoveringLSH” construction that eliminates false negatives,

we propose a fast and practical covering LSH scheme for
Hamming space called Fast CoveringLSH (fcLSH). Inherit-
ing the design benefits of CoveringL.SH our method avoids
false negatives and always reports all near neighbors. Com-
pared to CoveringLSH we achieve an asymptotic improve-
ment to the hash function computation time from @ (dL) to
O (d + Llog L), where d is the dimensionality of data and L
is the number of hash tables. Our experiments on synthetic
and real-world data sete demonstrate that fel.SH i com.-

Rasmus Pagh
IT University of Copenhagen
Denmark
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data [7]. The emergence of big data adds to both research
and commercial applications the challenges of scale and ac-
curacy for efficient similarity search.

In most such applications data can be represented or ap-
proximated as high-dimensional binary vectors, and Ham-
ming distance is used as a similarity measure. For instance,
a near-duplicate detection system uses hashing techniques [6,
17, 23] to represent documents as binary vectors, and identi-
fies them as near-duplicates if their Hamming distances are
smaller than a threshold radius. In content-based image re-
trieval systems, a standard approach is to learn short binary
codes to represent image objects such that the Hamming dis-
tance between codes reflects their neighborhood or semantic
similarity in the original space [16, 30, 36, 38]. Retrieving
similar images can be efficiently done by simply returning
all images with codes within a small Hamming distance of
the code of the query image.

Similarity search in Hamming space dates back to Min-

|CIKM “16]
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Bloom filters
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Bloom filters

e Use cases:

- Detecting identical data in a remote server.

- Make it possible to test for inclusion in S while
revealing very little about S.
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Bloom filters

Allow ¢ fraction g
ufalse positives”

e Use cases:

- Detecting identical data in a remote server.

- Make it possible to test for inclusion in S while
revealing very little about S.
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Distance sensitive Bloom filters

Allow ¢ fraction S
ufalse positives”

e Use cases:

- Detecting nearly identical vectors in a remote
server.

- Make it possible to test for proximity to a
vector x in S while revealing very little about S.
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[Kirsch & Mitzenmacher “06]

Distance sensitive Bloom filters

* Store collection of S bit vectors
» Given query vector y determine distinguish
1. exists x € S within distance r from v, and

2. all vectors in S have distance at least cr from y

24
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[Kirsch & Mitzenmacher “06]

Distance sensitive Bloom filters

» Store collection of S bit vectors :
 Given query vector y determine distinguish

1. exists x € S within distance r from 1, and

2. all vectors in S have distance at least cr from y

» No requirement outside of these cases; also, in
case 2 we allow probability ¢ of “false positive”

25
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[Kirsch & Mitzenmacher “06]

Distance sensitive Bloom filters

» Store collection of S bit vectors :
 Given query vector y determine distinguish

1. exists x € S within distance r from 1, and

2. all vectors in S have distance at least cr from y

* No requirement outside of these cases; also, in
case 2 we allow probability ¢ of “false positive”
But: Existing
solutions also have
29 false negatives...


https://www.eecs.harvard.edu/~michaelm/postscripts/alenex2006.pdf

|Goswami et al. “16]

Distance sensitive Bloom filters

without false negatives

 Consider the single-item case, S={x}

* Basicidea: For random a e {-1,+1}d, store a - x

Query y: If la-x-a yl<ranswer ‘1", otherwise ‘2’

26
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probability

distance r
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Distance sensitive Bloom filters

without false negatives

 Consider the single-item case, S={x}

* Basicidea: For random a e {-1,+1}d, store a - x

Query y: If la-x-a-yl<ranswer ‘1", otherwise "2’

probability

distance r

Space usage
essentially

distance r2 optima1

a-x-a-y
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| Karppa et al. “16]

Deterministic feature mappings
for the polynomial kernel

data vectors feature space

ooio01110111010101 = 0010000001010000 .. 00001000100000010

X p(x)

A dimension-reduced
X representation


https://arxiv.org/pdf/1606.05608.pdf
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Deterministic feature mappings
for the polynomial kernel

data vectors feature space

ooio01110111010101 = 0010000001010000 .. 00001000100000010

X p(x)

deterministic!

dimension-reduced

pOSSlble‘-? X  representation


https://arxiv.org/pdf/1606.05608.pdf

[Karppa et al. “16]

How it works

* Considers the kernel k(x,y) = (x "y )
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How it works

* Considers the kernel k(x,y) = (x "y )

« Feature space:

1 tfeature per

edge in constant
degree expander

graph
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[Karppa et al. “16]

How 1t works

Proofs only for

. d
vectors in {-1,+1]

* Considers the kernel k(x,y) = (x v)

« Feature space: x;

1 teature per

edge in constant
degree expander

graph
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Some open questions
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Some open questions

—

What distance [kernel

approximations are
possible with one-sided

error?
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Some open questions

—

What distance [kernel

approximaticns are
have efficient deterministic possible with one-sided

approximations?

What kernels expansions

error?

29



Thank you for
your attention'

Acknowledgement of economic support:

SCALABLE
Lerc SiiaRiv

doc to start in 2017!

European Research Council

Established by the European Commission

PS. Seeking a post-



http://sss.projects.itu.dk

