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Abstract

For any integers d, n ≥ 2 and 1/(min{n, d})0.4999 < ε < 1, we show the existence of a set of n vectors
X ⊂ R

d such that any embedding f : X → R
m satisfying

∀x, y ∈ X, (1− ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22

must have
m = Ω(ε−2 lgn).

This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Further-
more, our lower bound holds for nearly the full range of ε of interest, since there is always an isometric
embedding into dimension min{d, n} (either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold against linear maps f , and not for such
a wide range of parameters ε, n, d [LN16]. The best previously known lower bound for general f was
m = Ω(ε−2 lg n/ lg(1/ε)) [Wel74, Alo03], which is suboptimal for any ε = o(1).

1 Introduction

In modern algorithm design, often data is high-dimensional, and one seeks to first pre-process the data
via some dimensionality reduction scheme that preserves geometry in such a way that is acceptable for
particular applications. The lower-dimensional embedded data has the benefit of requiring less storage, less
communication bandwith to be transmitted over a network, and less time to be analyzed by later algorithms.
Such schemes have been applied to good effect in a diverse range of areas, such as streaming algorithms
[Mut05], numerical linear algebra [Woo14], compressed sensing [CRT06, Don06], graph sparsification [SS11],
clustering [BZMD15, CEM+15], nearest neighbor search [HIM12], and many others.

A cornerstone dimensionality reduction result is the following Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1 (JL lemma). Let X ⊂ Rd be any set of size n, and let ε ∈ (0, 1/2) be arbitrary. Then there
exists a map f : X → Rm for some m = O(ε−2 lgn) such that

∀x, y ∈ X, (1 − ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22. (1)

Even though the JL lemma has found applications in a plethora of different fields over the past three
decades, its optimality has still not been settled. In the original paper by Johnson and Lindenstrauss [JL84],
it was proved that for ε smaller than some universal constant ε0, there exists n point sets X ⊂ Rn for
which any embedding f : X → Rm providing (1) must have m = Ω(lg n). This was later improved by
Alon [Alo03], who showed the existence of an n point set X ⊂ Rn, such that any f providing (1) must have
m = Ω(min{n, ε−2 lg n/ lg(1/ε)}). This lower bound can also be obtained from the Welch bound [Wel74],
which states ε2k ≥ (1/(n− 1))(n/

(

m+k−1
k

)

− 1) for any positive integer k, by choosing 2k = ⌈lg n/ lg(1/ε)⌉.
The lower bound can also be extended to hold for any n ≤ ecε

2d for some constant c > 0. This bound falls
short of the JL lemma for any ε = o(1).
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Abstract

Recent work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a sparse Johnson-Lindenstrauss
transform and left as a main open question whether their construction could be e�ciently
derandomized. We answer their question a�rmatively by giving an alternative proof of their
result requiring only bounded independence hash functions. Furthermore, the sparsity bound
obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound
for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, FOCS 2010].

1 Introduction

The Johnson-Lindenstrauss lemma states the following.

Lemma 1 (JL Lemma [17]). For any integer d > 0, and any 0 < ", � < 1/2, there exists a
probability distribution on k ⇥ d real matrices for k = ⇥("�2 log(1/�)) such that for any x 2 Rd

with kxk
2

= 1,
PrA[|kAxk2

2

� 1| > "] < �.

Several proofs of the JL lemma exist in the literature [1, 7, 11, 14, 16, 17, 20], and it is known
that the dependence on k is tight up to an O(log(1/")) factor [5]. Though, these proofs of the JL
lemma give a distribution over dense matrices, where each column has at least a constant fraction
of its entries being non-zero, and thus näıvely performing the matrix-vector multiplication is costly.
Recently, Dasgupta, Kumar, and Sarlós [10] proved the JL lemma where each matrix in the support
of their distribution only has ↵ non-zero entries per column, for ↵ = ⇥("�1 log(1/�) log2(k/�)). This
reduces the time to perform dimensionality reduction from the näıve O(dk) to being O(d↵).

The construction of [10] involved picking two random hash functions h : [d↵] ! [k] and � :
[d↵] ! {�1, 1}, and thus required ⌦(d↵ · log k) bits of seed to represent a random matrix from their
JL distribution. They then left two main open questions: (1) derandomize their construction to
require fewer random bits to select a random JL matrix, for applications in e.g. streaming settings
where storing a long random seed is prohibited, and (2) understand the dependence on � that is
required in ↵.

We give an alternative proof of the main result of [10] that yields progress for both (1) and
(2) above simultaneously. Specifically, our proof yields a value of ↵ that is improved by a log(k/�)
factor. Furthermore, our proof only requires that h be rh-wise independent and � be r�-wise
independent for rh = O(log(k/�)) and r� = O(log(1/�)), and thus a random sparse JL matrix can
be represented using only O(log(k/�) log(d↵+ k)) = O(log(k/�) log d) bits (note k can be assumed
less than d, else the JL lemma is trivial, in which case also log(d↵) = O(log d)). We remark that [10]

1Harvard University, Department of Mathematics. dankane@math.harvard.edu.
2MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.
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The construction of [10] involved picking two random hash functions h : [d↵] ! [k] and � :
[d↵] ! {�1, 1}, and thus required ⌦(d↵ · log k) bits of seed to represent a random matrix from their
JL distribution. They then left two main open questions: (1) derandomize their construction to
require fewer random bits to select a random JL matrix, for applications in e.g. streaming settings
where storing a long random seed is prohibited, and (2) understand the dependence on � that is
required in ↵.

We give an alternative proof of the main result of [10] that yields progress for both (1) and
(2) above simultaneously. Specifically, our proof yields a value of ↵ that is improved by a log(k/�)
factor. Furthermore, our proof only requires that h be rh-wise independent and � be r�-wise
independent for rh = O(log(k/�)) and r� = O(log(1/�)), and thus a random sparse JL matrix can
be represented using only O(log(k/�) log(d↵+ k)) = O(log(k/�) log d) bits (note k can be assumed
less than d, else the JL lemma is trivial, in which case also log(d↵) = O(log d)). We remark that [10]

1Harvard University, Department of Mathematics. dankane@math.harvard.edu.
2MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.

1

 

ISSN 1433-8092 

0010111011101010101001010

0110111010101010101101010

Generally applicable.

As good as data-dependent 

methods in many cases

Technique for mapping objects from a large 
space into a small space, while preserving 

essential relations, that is data-independent 
and does not need to be trained.



Oblivious dimension reduction

5

ar
X

iv
:1

60
9.

02
09

4v
1 

 [c
s.I

T]
  7

 S
ep

 2
01

6

Optimality of the Johnson-Lindenstrauss Lemma

Kasper Green Larsen∗ Jelani Nelson†

September 8, 2016

Abstract

For any integers d, n ≥ 2 and 1/(min{n, d})0.4999 < ε < 1, we show the existence of a set of n vectors
X ⊂ R

d such that any embedding f : X → R
m satisfying

∀x, y ∈ X, (1− ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22

must have
m = Ω(ε−2 lgn).

This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Further-
more, our lower bound holds for nearly the full range of ε of interest, since there is always an isometric
embedding into dimension min{d, n} (either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold against linear maps f , and not for such
a wide range of parameters ε, n, d [LN16]. The best previously known lower bound for general f was
m = Ω(ε−2 lg n/ lg(1/ε)) [Wel74, Alo03], which is suboptimal for any ε = o(1).

1 Introduction

In modern algorithm design, often data is high-dimensional, and one seeks to first pre-process the data
via some dimensionality reduction scheme that preserves geometry in such a way that is acceptable for
particular applications. The lower-dimensional embedded data has the benefit of requiring less storage, less
communication bandwith to be transmitted over a network, and less time to be analyzed by later algorithms.
Such schemes have been applied to good effect in a diverse range of areas, such as streaming algorithms
[Mut05], numerical linear algebra [Woo14], compressed sensing [CRT06, Don06], graph sparsification [SS11],
clustering [BZMD15, CEM+15], nearest neighbor search [HIM12], and many others.

A cornerstone dimensionality reduction result is the following Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1 (JL lemma). Let X ⊂ Rd be any set of size n, and let ε ∈ (0, 1/2) be arbitrary. Then there
exists a map f : X → Rm for some m = O(ε−2 lgn) such that

∀x, y ∈ X, (1 − ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22. (1)

Even though the JL lemma has found applications in a plethora of different fields over the past three
decades, its optimality has still not been settled. In the original paper by Johnson and Lindenstrauss [JL84],
it was proved that for ε smaller than some universal constant ε0, there exists n point sets X ⊂ Rn for
which any embedding f : X → Rm providing (1) must have m = Ω(lg n). This was later improved by
Alon [Alo03], who showed the existence of an n point set X ⊂ Rn, such that any f providing (1) must have
m = Ω(min{n, ε−2 lg n/ lg(1/ε)}). This lower bound can also be obtained from the Welch bound [Wel74],
which states ε2k ≥ (1/(n− 1))(n/

(

m+k−1
k

)

− 1) for any positive integer k, by choosing 2k = ⌈lg n/ lg(1/ε)⌉.
The lower bound can also be extended to hold for any n ≤ ecε

2d for some constant c > 0. This bound falls
short of the JL lemma for any ε = o(1).

∗Aarhus University. larsen@cs.au.dk. Supported by Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation, grant DNRF84, a Villum Young Investigator Grant and an AUFF Starting Grant.

†Harvard University. minilek@seas.harvard.edu. Supported by NSF CAREER award CCF-1350670, NSF grant IIS-
1447471, ONR Young Investigator award N00014-15-1-2388, and a Google Faculty Research Award.

1

A Derandomized Sparse Johnson-Lindenstrauss Transform

Daniel M. Kane

†
Jelani Nelson

‡

Abstract

Recent work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a sparse Johnson-Lindenstrauss
transform and left as a main open question whether their construction could be e�ciently
derandomized. We answer their question a�rmatively by giving an alternative proof of their
result requiring only bounded independence hash functions. Furthermore, the sparsity bound
obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound
for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, FOCS 2010].

1 Introduction

The Johnson-Lindenstrauss lemma states the following.

Lemma 1 (JL Lemma [17]). For any integer d > 0, and any 0 < ", � < 1/2, there exists a
probability distribution on k ⇥ d real matrices for k = ⇥("�2 log(1/�)) such that for any x 2 Rd

with kxk
2

= 1,
PrA[|kAxk2

2

� 1| > "] < �.

Several proofs of the JL lemma exist in the literature [1, 7, 11, 14, 16, 17, 20], and it is known
that the dependence on k is tight up to an O(log(1/")) factor [5]. Though, these proofs of the JL
lemma give a distribution over dense matrices, where each column has at least a constant fraction
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We give an alternative proof of the main result of [10] that yields progress for both (1) and
(2) above simultaneously. Specifically, our proof yields a value of ↵ that is improved by a log(k/�)
factor. Furthermore, our proof only requires that h be rh-wise independent and � be r�-wise
independent for rh = O(log(k/�)) and r� = O(log(1/�)), and thus a random sparse JL matrix can
be represented using only O(log(k/�) log(d↵+ k)) = O(log(k/�) log d) bits (note k can be assumed
less than d, else the JL lemma is trivial, in which case also log(d↵) = O(log d)). We remark that [10]
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2MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.
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Randomization offers new benefits  
for large-scale linear algebra computations.BY PETROS DRINEAS AND MICHAEL W. MAHONEY

MATRICES ARE UBIQUITOUS in computer science, 
statistics, and applied mathematics. An m × n 
matrix can encode information about m objects 
(each described by n features), or the behavior of a 
discretized differential operator on a finite element 
mesh; an n × n positive-definite matrix can encode 
the correlations between all pairs of n objects, or the 
edge-connectivity between all pairs of nodes in a social 
network; and so on. Motivated largely by technological 
developments that generate extremely large scientific 
and Internet datasets, recent years have witnessed 
exciting developments in the theory and practice of 
matrix algorithms. Particularly remarkable is the use of 
randomization—typically assumed to be a property of the 
input data due to, for example, noise in the data

generation mechanisms—as an algo-rithmic or computational resource for the develop ment of improved algo-rithms for fundamental matrix prob-lems such as matrix multiplication, least-squares (LS) approximation, low-rank matrix approxi mation, and Lapla-cian-based linear equ ation solvers.Randomized Numerical Linear Algebra (RandNLA) is an interdisci-plinary research area that exploits randomization as a computational resource to develop improved algo-rithms for large-scale linear algebra problems.32 From a foundational per-spective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathemat-ics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear algebra). From an applied perspec-tive, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implemen-tations have already outperformed highly optimized software libraries for ubiquitous problems such as least-squares,4,35 with good scalability in par-allel and distributed envi ronments.52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis.

RandNLA: Randomized Numerical Linear 
Algebra

 key insights
 ! Randomization isn’t just used to model 

noise in data; it can be a powerful computational resource to develop algorithms with improved running times and stability properties as well as 
algorithms that are more interpretable in 
downstream data science applications. ! To achieve best results, random sampling 

of elements or columns/rows must be done 
carefully; but random projections can be 
used to transform or rotate the input data 
to a random basis where simple uniform 
random sampling of elements or rows/
columns can be successfully applied. ! Random sketches can be used directly 

to get low-precision solutions to data 
science applications; or they can be used 
indirectly to construct preconditioners for 
traditional iterative numerical algorithms 
to get high-precision solutions in scientific computing applications.
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Optimality of the Johnson-Lindenstrauss Lemma

Kasper Green Larsen∗ Jelani Nelson†

September 8, 2016

Abstract

For any integers d, n ≥ 2 and 1/(min{n, d})0.4999 < ε < 1, we show the existence of a set of n vectors
X ⊂ R

d such that any embedding f : X → R
m satisfying

∀x, y ∈ X, (1− ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22

must have
m = Ω(ε−2 lgn).

This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Further-
more, our lower bound holds for nearly the full range of ε of interest, since there is always an isometric
embedding into dimension min{d, n} (either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold against linear maps f , and not for such
a wide range of parameters ε, n, d [LN16]. The best previously known lower bound for general f was
m = Ω(ε−2 lg n/ lg(1/ε)) [Wel74, Alo03], which is suboptimal for any ε = o(1).

1 Introduction

In modern algorithm design, often data is high-dimensional, and one seeks to first pre-process the data
via some dimensionality reduction scheme that preserves geometry in such a way that is acceptable for
particular applications. The lower-dimensional embedded data has the benefit of requiring less storage, less
communication bandwith to be transmitted over a network, and less time to be analyzed by later algorithms.
Such schemes have been applied to good effect in a diverse range of areas, such as streaming algorithms
[Mut05], numerical linear algebra [Woo14], compressed sensing [CRT06, Don06], graph sparsification [SS11],
clustering [BZMD15, CEM+15], nearest neighbor search [HIM12], and many others.

A cornerstone dimensionality reduction result is the following Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1 (JL lemma). Let X ⊂ Rd be any set of size n, and let ε ∈ (0, 1/2) be arbitrary. Then there
exists a map f : X → Rm for some m = O(ε−2 lgn) such that

∀x, y ∈ X, (1 − ε)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ε)∥x− y∥22. (1)

Even though the JL lemma has found applications in a plethora of different fields over the past three
decades, its optimality has still not been settled. In the original paper by Johnson and Lindenstrauss [JL84],
it was proved that for ε smaller than some universal constant ε0, there exists n point sets X ⊂ Rn for
which any embedding f : X → Rm providing (1) must have m = Ω(lg n). This was later improved by
Alon [Alo03], who showed the existence of an n point set X ⊂ Rn, such that any f providing (1) must have
m = Ω(min{n, ε−2 lg n/ lg(1/ε)}). This lower bound can also be obtained from the Welch bound [Wel74],
which states ε2k ≥ (1/(n− 1))(n/

(

m+k−1
k

)

− 1) for any positive integer k, by choosing 2k = ⌈lg n/ lg(1/ε)⌉.
The lower bound can also be extended to hold for any n ≤ ecε

2d for some constant c > 0. This bound falls
short of the JL lemma for any ε = o(1).

∗Aarhus University. larsen@cs.au.dk. Supported by Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation, grant DNRF84, a Villum Young Investigator Grant and an AUFF Starting Grant.

†Harvard University. minilek@seas.harvard.edu. Supported by NSF CAREER award CCF-1350670, NSF grant IIS-
1447471, ONR Young Investigator award N00014-15-1-2388, and a Google Faculty Research Award.
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• Min-wise hashing (1997)
• b-bit min-wise hashing (2010)
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Abstract
Efficient (approximate) computation of set similarity in very large datasets is a common task with many applications in information retrieval and data management. One com-mon approach for this task is minwise hashing. This paper describes b-bit minwise hashing, which can provide an order of magnitude improvements in storage requirements and computational overhead over the original scheme in practice.

We give both theoretical characterizations of the per-formance of the new algorithm as well as a practical evalu-ation on large real-life datasets and show that these match very closely. Moreover, we provide a detailed comparison with other important alternative techniques proposed for  estimating set similarities. Our technique yields a very sim-ple algorithm and can be realized with only minor modifica-tions to the original minwise hashing scheme.

1. INTRODUCTION
With the advent of the Internet, many applications are faced with very large and inherently high-dimensional datasets. A common task on these is similarity search, that is, given a high-dimensional data point, the retrieval of data points that are close under a given distance function. In many scenarios, the storage and computational requirements for computing exact distances between all data points are prohibitive, mak-ing data representations that allow compact storage and effi-cient approximate distance computation necessary.In this paper, we describe b-bit minwise hashing, which leverages properties common to many application scenarios to obtain order-of-magnitude improvements in the storage space and computational overhead required for a given level of accuracy over existing techniques. Moreover, while the theoretical analysis of these gains is technically challenging, the resulting algorithm is simple and easy to implement.To describe our approach, we first consider the con-crete task of Web page duplicate detection, which is of critical importance in the context of Web search and was one of the motivations for the development of the origi-nal minwise hashing algorithm by Broder et al.2, 4 Here, the task is to  identify pairs of pages that are textually very sim-ilar. For this purpose, Web pages are modeled as “a set of shingles,” where a shingle corresponds to a string of w con-tiguous words occurring on the page. Now, given two such sets S

1, S
2 ⊆ Ω, |Ω| = D, the normalized similarity known as  resemblance or Jaccard similarity, denoted by R, is

Duplicate detection now becomes the task of detecting pairs of pages for which R exceeds a threshold value. Here, w is a tuning parameter and was set to be w = 5 in several  studies.2, 4, 7 Clearly, the total number of possible shingles is huge. Considering 105 unique English words, the total number of possible 5-shingles should be D = (105)5 = O(1025). A prior study7 used D = 264 and even earlier studies2, 4 used D = 240. Due to the size of D and the number of pages crawled as part of Web search, computing the exact similarities for all pairs of pages may require prohibitive storage and com-putational overhead, leading to approximate techniques based on more compact data structures.

1.1. Minwise hashing
To address this issue, Broder and his colleagues developed minwise hashing in their seminal work.2, 4 Here, we give a brief introduction to this algorithm. Suppose a random permutation p is performed on Ω, that is,

p : Ω  → Ω,  where Ω = {0, 1, . . . , D – 1}.
An elementary probability argument shows that
 

 (1)
After k minwise independent permutations, p

1, p
2, . . . , p

k, one can estimate R without bias, as a binomial probability:
 

 (2)

 
 (3)

We will frequently use the terms “sample” and “sample size” (i.e., k). For minwise hashing, a sample is a hashed value, min(p
j(S

i)), which may require, for example, 64 bits.7Since the original minwise hashing work,2, 4 there have been considerable theoretical and methodological developments.3, 5, 12, 14, 16, 17, 22

Applications: As a general technique for estimating set similarity, minwise hashing has been applied to a wide range of applications, for example, content matching for online advertising,23 detection of redundancy in enterprise 

The previous version of this paper, entitled “b-Bit Minwise Hashing for Estimating Three-way Similarities,” was published in Proceedings of the Neural Information Processing Systems: NIPS 2010 (Vancouver, British Columbia, Canada).

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/wfc0398-liPS.pdf
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Abstract
We summarize the potential impact that the Euro-
pean Union’s new General Data Protection Reg-
ulation will have on the routine use of machine
learning algorithms. Slated to take effect as law
across the EU in 2018, it will restrict automated
individual decision-making (that is, algorithms
that make decisions based on user-level predic-
tors) which “significantly affect” users. The
law will also create a “right to explanation,”
whereby a user can ask for an explanation of an
algorithmic decision that was made about them.
We argue that while this law will pose large chal-
lenges for industry, it highlights opportunities for
machine learning researchers to take the lead in
designing algorithms and evaluation frameworks
which avoid discrimination.

1. Introduction
On 14 April 2016, for the first time in over two decades,
the European Parliament adopted a set of comprehen-
sive regulations for the collection, storage and use of
personal information, the General Data Protection Reg-
ulation (GDPR) (Council of the European Union, 2016)1.
The new regulation has been described as a “Copernican
Revolution” in data protection law, “seeking to shift its
focus away from paper-based, bureaucratic requirements
and towards compliance in practice, harmonization of the
law, and individual empowerment” (Kuner, 2012). Much
of the regulations are clearly aimed at perceived gaps
and inconsistencies in the EU’s current approach to data
protection. This includes, for example, the codification of
the “right to be forgotten” (Article 16), and regulations for
foreign companies collecting data from European citizens
(Article 35).

1Note that the GDPR is not yet final. We base our analysis on
this version (revision 1, dated 8 April 2016) and all indications
are that something close to it will ultimately be adopted.

2016 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2016), New York, NY, USA. Copyright by the
author(s).

However, while the bulk of language deals with how data
is collected and stored, the regulation contains a short
article entitled “Automated individual decision-making”
(see figure 1) potentially prohibiting a wide swath of
algorithms currently in use in, e.g. recommendation sys-
tems, credit and insurance risk assessments, computational
advertising, and social networks. This raises important
issues that are of particular concern to the machine learning
community. In its current form, the GDPR’s requirements
could require a complete overhaul of standard and widely
used algorithmic techniques. The GDPR’s policy on the
right of citizens to receive an explanation for algorithmic
decisions highlights the pressing importance of human
interpretability in algorithm design. If, as expected, the
GDPR takes effect in its current form in mid-2018, there
will be a pressing need for effective algorithms which can
operate within this new legal framework.

Article 11. Automated individual decision making

1. Member States shall provide for a decision based
solely on automated processing, including profiling,
which produces an adverse legal effect concerning the
data subject or significantly affects him or her, to
be prohibited unless authorised by Union or Member
State law to which the controller is subject and which
provides appropriate safeguards for the rights and
freedoms of the data subject, at least the right to obtain
human intervention on the part of the controller.

2. Decisions referred to in paragraph 1 of this Article
shall not be based on special categories of personal
data referred to in Article 10, unless suitable measures
to safeguard the data subject’s rights and freedoms and
legitimate interests are in place.

3. Profiling that results in discrimination against natural
persons on the basis of special categories of personal
data referred to in Article 10 shall be prohibited, in
accordance with Union law.

Figure 1. Excerpt from the General Data Protection Regulation,
Council of the European Union (2016)
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Issues for dimension reduction

• Dimension reduction creates features that are not 
easy to describe in terms of original data.
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Getting rid of randomness?

• Easy to argue that a deterministic dimension 
reduction cannot work without assumptions on 
data (“incompressibility”).
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Getting rid of randomness?

• Easy to argue that a deterministic dimension 
reduction cannot work without assumptions on 
data (“incompressibility”).

• Second best option? Randomized algorithms 
whose output is guaranteed, but may fail to 
produce result within a given time/space usage.  
(“Las Vegas”, a la quicksort.)
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Bloom filters

• Use cases:

- Detecting identical data in a remote server.

- Make it possible to test for inclusion in S while 
revealing very little about S.

22

📱 ➟ 🖥
S

h(S)



Bloom filters

• Use cases:

- Detecting identical data in a remote server.

- Make it possible to test for inclusion in S while 
revealing very little about S.

22

📱 ➟ 🖥
S

h(S)
Allow ε fraction 

“false positives”



• Use cases:

- Detecting nearly identical vectors in a remote 
server.

- Make it possible to test for proximity to a 
vector x in S while revealing very little about S.
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• Store collection of S bit vectors

• Given query vector y determine distinguish

1. exists x ∈ S within distance r from y, and

2. all vectors in S have distance at least cr from y

• No requirement outside of these cases; also, in 

Distance sensitive Bloom filters
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• Consider the single-item case, S={x}

• Basic idea: For random a ∈ {-1,+1}d, store a･x 

Query y: If |a･x - a･y|≤ r answer ‘1’, otherwise ‘2’
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How it works
• Considers the kernel k(x,y) = (x･y)2

• Feature space:  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What distance/kernel 

approximations are 

possible with one-sided 

error?

What ML/KDD 
algorithms can be sped up 
by RandNLA methods?

What kernels expansions 
have efficient deterministic 
approximations?
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