Speeding up the Metabolism in E-commerce by
Reinforcement Mechanism Design*

Hua-Lin Hel [0000—0001—6441—"7700] , Chun-Xiang Panl [0000—0002—1518—4231],
ang Dal [0000—0003—2200—0098]’ and An—Xiang Zengl [0000—0003—3869—5357]

Alibaba Inc., Zone Xixi, No. 969, West WenYi Road, 310000 Hangzhou, China
hualin.hhl@alibaba-inc.com, xuanran@taobao.com,
daging.dg@alibaba-inc.com, renzhong@taobao.com
https://www.taobao.com

Abstract. In a large E-commerce platform, all the participants compete for im-
pressions under the allocation mechanism of the platform. Existing methods mainly
focus on the short-term return based on the current observations instead of the
long-term return. In this paper, we formally establish the lifecycle model for prod-
ucts, by defining the introduction, growth, maturity and decline stages and their
transitions throughout the whole life period. Based on such model, we further
propose a reinforcement learning based mechanism design framework for im-
pression allocation, which incorporates the first principal component based per-
mutation and the novel experiences generation method, to maximize short-term
as well as long-term return of the platform. With the power of trial-and-error, it
is possible to recognize in advance the potentially hot products in the introduc-
tion stage as well as the potentially slow-selling products in the decline stage, so
the metabolism can be speeded up by an optimal impression allocation strategy.
We evaluate our algorithm on a simulated environment built based on one of the
largest E-commerce platforms, and a significant improvement has been achieved
in comparison with the baseline solutions.

Keywords: Reinforcement Learning - Mechanism Design - E-commerce.

1 Introduction

Nowadays, E-commerce platform like Amazon or Taobao has developed into a large
business ecosystem consisting of millions of customers, enterprises and start-ups, and
hundreds of thousands of service providers, making it a new type of economic entity
rather than enterprise platform. In such a economic entity, a major responsibility of the
platform is to design economic institutions to achieve various business goals, which is
the exact field of Mechanism Design [23]. Among all the affairs of the E-commerce
platform, impression allocation is one of the key strategies to achieve its business goal,
while products are players competing for the resources under the allocation mechanism
of the platform, and the platform is the game designer aiming to design game whose
outcome will be as the platform desires.

* Supported by organization Alibaba-Inc.

2 F. Author et al.

Existing work of impression allocation in literature are mainly motivated and mod-
eled from a perspective view of supervised learning, roughly falling into the fields of
information retrieval [2, 6] and recommendation [14, 10]. For these methods, a Click-
Through-Rate (CTR) model is usually built based on either a ranking function or a
collaborative filtering system, then impressions are allocated according to the CTR
scores [8]. However, these methods usually optimize the short-term clicks, by assuming
that the properties of products is independent of the decisions of the platform, which
may hardly hold in the real E-commerce environment. There are also a few work try-
ing to apply the mechanism design to the allocation problem from an economic theory
point of view such as [16, 17, 19]. Nevertheless, these methods only work in very lim-
ited cases, such as the participants play only once, and their properties is statistically
known or doesn’t change over time, etc., making them far from practical use in our sce-
nario. A recent pioneer work named Reinforcement Mechanism Design [22] attempts
to get rid of nonrealistic modeling assumptions of the classic economic theory and to
make automated optimization possible, by incorporating the Reinforcement Learning
(RL) techniques. It is a general framework which models the resource allocation prob-
lem over a sequence of rounds as a Markov decision process (MDP) [18], and solves
the MDP with the state-of-the-art RL methods. However, by defining the impression
allocation over products as the action, it can hardly scale with the number of prod-
ucts/sellers as shown in [4, 3]. Besides, it depends on an accurate behavioral model for
the products/sellers, which is also unfeasible due to the uncertainty of the real world.

Although the properties of products can not be fully observed or accurately pre-
dicted, they do share a similar pattern in terms of development trend, as summarized in
the product lifecycle theory [11,5]. The life story of most products is a history of their
passing through certain recognizable stages including introduction, growth, maturity
and decline stages.

— Introduction: Also known as market development - this is when a new product is
first brought to market. Sales are low and creep along slowly.

— Growth: Demand begins to accelerate and the size of the total market expands
rapidly.

— Maturaty: Demand levels off and grows.

— Decline: The product begins to lose consumer appeal and sales drift downward.

During the lifecycle, new products arrive continuously and outdated products wither
away every day, leading to a natural metabolism in the E-commerce platform. Due to
the insufficient statistics, new products usually attract few attention from conventional
supervised learning methods, making the metabolism a very long period.

Inspired by the product lifecycle theory as well the reinforcement mechanism de-
sign framework, we consider to develop reinforcement mechanism design while taking
advantage of the product lifecycle theory. The key insight is, with the power of trial-
and-error, it is possible to recognize in advance the potentially hot products in the in-
troduction stage as well as the potentially slow-selling products in the decline stage, so
the metabolism can be speeded up and the long-term efficiency can be increased with
an optimal impression allocation strategy.

We formally establish the lifecycle model and formulate the impression allocation
problem by regarding the global status of products as the state and the parameter of a

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 3

scoring function as the action. Besides, we develop a novel framework which incorpo-
rates a first principal component based algorithm and a repeated sampling based expe-
riences generation method, as well as a shared convolutional neural network to further
enhance the expressiveness and robustness. Moreover, we compare the feasibility and
efficiency between baselines and the improved algorithms in a simulated environment
built based on one of the largest E-commerce platforms.

The rest of the paper is organized as follows. The product lifecycle model and rein-
forcement learning algorithms are introduced in section 2. Then a reinforcement learn-
ing mechanism design framework is proposed in section 3. Further more, experimental
results are analyzed in section 4. Finally, conclusions and future work are discussed in
section 5.

2 Preliminaries

2.1 Product Lifecycle Model

In this subsection, we establish a mathematical model of product lifecycle with noises.
At step ¢, each product has an observable attribute vector x; € R? and an unobserv-
able latent lifecycle state z; € £, where d is the dimension of the attribute space, and
L = {0,1,2,3} is the set of lifecycle stages indicating the the introduction, growth,
maturity and decline stages respectively. Let p; € R be the CTR and ¢; € R be the
accumulated user impressions of the product. Without loss of generality, we assume p,
and ¢, are observable, p;, g; are two observable components of z;, the platform allo-
cates the impressions u; € R to the product. The dynamics of the system can be written
as

Gi+1 = ¢ + U
pey1 = pe + f(2, 1) ()
Ze1 = g(Tt, 2, 1)

where f can be seen as the derivative of the p, and g is the state transition function over

L.

According to the product lifecycle theory and online statistics, the derivative of the
CTR can be formulated as

(ch — cl)e_(s(‘h)
fzhq) = ¢ 2= 2)(1+e0(@)
& z € {0,2}

where ¢ ~ N(0,02) is a gaussian noise with zero mean and variance o2, §(q;) =
(gt — G¢, — 6,,)/ 6 is the normalized impressions accumulated from stage z , gy, is the
initial impressions when the product is firstly evolved to the life stage 2, d,,, 0, are two
unobservable parameters for normalization, and ¢y, ¢; € R are the highest CTR and the
lowest CTR during whole product lifecycle, determined through two neural networks,
respectively:

5 +& z€{1,3} @

cr = h(x]0;), cn = h(x¢|6n), 3

4 F. Author et al.

where h(:]0) is a neural network with the fixed parameter 6, indicating that ¢;, ¢, are
unobservable but relevant to attribute vector z;. Intuitively, when the product stays in
introduction or maturity stage, the CTR can be only influenced by the noise. When the
product in the growth stage, f will be a positive increment, making the CTR increased
up to the upper bound ¢;,. Similar analysis can be obtained for the product in the decline
stage.

t>t27Q<Q2

Fig. 1: State transition during product lifecycle

Then we define the state transition function of product lifecycle as a finite state
machine as illustrated in Fig. 1. The product starts with the initial stage z = 0, and
enters the growth stage when the time exceeds ¢;. During the growth stage, a product
can either step in to the maturity stage if its accumulated impressions g reaches g,
or the decline stage if the time exceeds 5 while g is less than ¢3. A product in the
maturity stage will finally enter the last decline stage if the time exceeds ¢3. Otherwise,
the product will stay in current stage. Here, t1,t2, %3, g2 are the latent thresholds of
products.

We simulate several product during the whole lifecycle with different latent param-
eters (the details can be found in the experimental settings), the CTR curves follow the
exact trend described as is shown in Fig. 2.

2.2 Reinforcement Learning and DDPG methods

Reinforcement learning maximizes accumulated rewards by trial-and-error approach
in a sequential decision problem. The sequential decision problem is formulated by
MDP as a tuple of state space S, action space A, a conditional probability distribu-
tion p(-) and a scalar reward function r = R(s,a),R : S x A — R. For states
St, St+1 € S and action a; € A, distribution p(s¢41]8¢, a;) denotes the transition prob-
ability from state s; to s;+1 when action a; is adopted in time step ¢, and the Markov
property p(s¢+1]8¢, at) = p(st41]81,a1, - , ¢, a;) holds for any historical trajectories
S1,a1,--- , S to arrive at status s;. A future discounted return at time step ¢ is defined
as R} = Y77, v* ' R(sk,ar), where 7 is a scalar factor representing the discounted.
A policy is denoted as mg(at|s¢) which is a probability distribution mapping from S to
A , where different policies are distinguished by parameter 6.

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 5

0.14 1 —— Typical Lifecycle

o 0.11 1

CT

0.08 Maturity

0.05 - - . . .
0 20 40 60 80 100 120 140 160

Time Step

Fig.2: CTR evolution with the proposed lifecycle model.

The target of agent in reinforcement learning is to maximize the expected dis-
counted return, and the performance objective can be denoted as

max J = E [R]| 7]
=]Eswd”,awﬂg [R(Sv (I)] (4)

where d™(s) is a discounted state distribution indicating the possibility to encounter a
state s under the policy of 7. An action-value function is then obtained iteratively as

Q(st,at) = E[R(s¢,at) + VEamr, [Q(St41, a41)]] ©)]

In order to avoid calculating the gradients of the changing state distribution in continu-
ous action space, the Deterministic Policy Gradient(DPG) method [21, 20] and the Deep
Deterministic Policy Gradient [12] are brought forward. Gradients of the deterministic
policy 7 is
VQILJ = Eswdu [vgu Qw(s, (Z)]
= Esan [VG“M(S)anw(Sv a)|a:u(s)] (6)

where y is the deep actor network to approximate policy function. And the parameters
of actor network can be updated as

0" = 0" + aE [Voupu(s:)VaQ" (5, at) a=pu(s)] @

where Q" is an obtained approximation of action-value function called critic network.
Its parameter vector w is updated according to

min L = Egoar [y — Q" (1, at))z] ®)

w

6 F. Author et al.

where y; = R(s¢, at) +7Q™ (s41, 1 (se41)), i is the target actor network to approx-
imate policy w, Q" is the target critic network to approximate action-value function.
The parameters w’, 0 are updated softly as

w =71w + (1 —-7)w

0" = 70" + (1 —7)0")

3 A Scalable Reinforcement Mechanism Design Framework

In our scenario, at each step, the platform observes the global information of all the
products, and then allocates impressions according to the observation and some certain
strategy, after which the products get their impressions and update itself with the at-
tributes as well as the lifecycle stages. Then the platform is able to get a feedback to
judge how good its action is, and adjust its strategy based on all the feedbacks. The
above procedures leads to a standard sequential decision making problem.

However, application of reinforcement learning to this problem encounters sever
computational issues, due to high dimensionality of both action space and state space,
especially with a large n. Thus, we model the impression allocation problem as a stan-
dard reinforcement learning problem formally, by regarding the global information of
the platform as the state

s = [x1, 29, ..., x,]T € R4 (10)

where n is the number of the product in the platform, and regarding the parameter of a
score function as the action,

a=n(s|0") € R? an

where 7 is the policy to learn parameterize by 6*, and the action a can be further used
to calculate scores of all products

1

= W, Vi € {172, ,n} (12)
e k3

0;
After which the result of impression allocation over all n products can be obtained by a
softmax layer as
O Vie{l,2,..n} (13)
Ui = S 50 ? y &y ey TV
> €%
Without loss of generosity, we assume at each step the summation of impressions al-
located is 1, i.e., Z:’ u; = 1. By such definition, the dimension of the action space
is reduced to d, significantly alleviating the computational issue in previous work [3],
where the the dimension of the action space is n.
The goal of policy is to speeded up the metabolism by scoring and ranking products
under the consideration of product lifecycle, making the new products grow into ma-
turity stage as quickly as possible and keeping the the global efficiency from dropping

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 7

down during a long term period. Thus, we define the reward related to s and a as

n ti

1 1 dq(t)
R(s,a) = =3 ? / p(t) = ~dt (14)
¢ t=0
where t; is the time step of the i-th product after being brought to the platform. The
physical meaning of this formulation is the mathematical expect over all products in
platform for the average click amount of an product during its lifecycle, indicating the
efficiency of products in the platform and it can be calculated accumulatively in the

online environment, which can be approximately obtained by

n t;
1 1 ~— . .
R(s,a)~ ~ > > pru; (15)
i ' T=0

A major issue in the above model is that, in practices there will be millions or even
billions of products, making combinations of all attribute vectors to form a complete
system state with size n x d computationally unaffordable as referred in essays [4].
A straightforward solution is to applying feature engineering technique to generate a
low dimension representation of the state as s; = G(s), where G is a pre-designed ag-
gregator function to generate a low dimensional representation the statistics. However,
the pre-designed aggregator function is a completely subjective and highly depends on
the the hand-craft features. Alternatively, we attempt to tackle this problem using a
simple sampling based method. Specifically, the state is approximated by ng products
uniformly sampled from all products

§=[v1, 22,0)T €RMX (16)
where § is the approximated state. Then, two issues arise with such sampling method:

— In which order should the sampled ns products permutated in 3, to implement the
permutation invariance?

— How to reduce the bias brought by the sampling procedure, especially when n is
much smaller than n?

To solve these two problem, we further propose the first principal component based per-
mutation and the repeated sampling based experiences generation, which are described
in the following subsections in details.

3.1 First Principal Component based Permutation

The order of each sampled product in the state vector has to be proper arranged, since
the unsorted state matrix vibrates severely during training process, making the parame-
ters in network hard to converge. To avoid it, a simple way for permutation is to make
order according to a single dimension, such as the brought time ¢;, or the accumulated
impressions ¢;. However, such ad-hoc method may lose information due to the lack of
general principles. For example, if we sort according to a feature that is almost the same

8 F. Author et al.

among all products, state matrix will keep vibrating severely between observations. A
suitable solution is to sort the products in an order that keep most information of all
features, where the first principal components are introduced [1]. We design a first
principal component based permutation algorithm, to project each z; into a scalar v;
and sort all the products according to v;

e = arg HmHax (eTsthte) (17)
el|=1

Be+(1—) (er — &)
15+ (1= B) (e — o

v = éTa,i=1,2,- ,ng (19)

(18)

é:

where e; is the first principal component of system states in current step ¢ obtained by
the classic PCA method as in Eq. 17. é is the projection vector softly updated by e; in
Eq. 18, with which we calculate the projected score of each products in Eq. 19. Here
0 < B < 1is ascalar indicating the decay rate of é. Finally, the state vector is denoted
as

§ = [@hy, Thy - s, | (20)

where k1, ks, - - -, kyp, is the order of products, sorted by v;.

3.2 Repeated Sampling based Experiences Generation

We adopt the classic experience replay technique [13, 15] to enrich experiences during
the training phase just as other reinforcement learning applications. In the traditional
experience replay technique, the experience is formulated as (s, at, 7, S¢+1). However,
as what we describe above, there are C]'* observations each step theoretically, since we
need to sample n, products from all the n products to approximate the global statistics.
If ng is much smaller than n, such approximation will be inaccurate.

i

0it; A, Ry, 05.441)

(sts ae, Re,y se41)

at41

’ Sliding Pool H sampling agent ‘ ’ Sliding Pool H sampling agent ‘

Batch Batch

Fig.3: Classical experiences generation(left): One experience is obtained each step by
pair(s¢, at, 7, St+1); Repeated sampling based experiences generation(right): m? experiences
are obtained each step by pair(;, at, ¢, 81, ,)

To reduce the above bias, we propose the repeated sampling based experiences gen-
eration. For each original experience, we do repeated sampling s; and s for m times,
to obtain m? experiences of

(81, ap, 7, 80,1), 4, €1,2,---,m 1)

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 9

as illustrated in Fig. 3.

This approach improves the stability of observation in noise environment. It is also
helpful to generate plenty of experiences in the situation that millions of times repetition
is unavailable.

It is worth noting that, the repeated sampling is conducted in the training phase.
When to play in the environment, the action a; is obtained through a randomly selected
approximated state &, i.e., a; = 7(8}). Actually, since a; does not necessarily equal
to m(8%),Vi € 1,2,--- ,m, it can further help learning a invariant presentation of the
approximated state observations.

Algorithm 1: The Scalable Reinforcement Mechanism Design Framework

Initialize the parameters of the actor-critic network 6%, w, 0 ,w’, Initialize the replay
buffer M, Initialize m observations §{) Initialize the first principal component p by 5o
foreach training step t do

Select action a; = (3 |6%)

Execute action a; and observe reward r;

foreach j € 1,2,--- ;m do
Sample a random subset of n, products
Combine an observation in the order of z} &

i T
Sy < (%17%2,'“ #Ek)
Update first principal component
T 25T 4j
€t < arg max (e 8- e)
llell=1

é <+ norm (Bé+ (1 —) (er — €))

end
foreachi,j € 1,2,--- ,mdo

M + M U{(8},at,7¢,3]1)}
end

Sample ny, transitions from M: (8, ak, Tk, Sk+1)
Update critic and actor networks

w4 w+ %: D (ke — Q¥ (3, ar)) Vu Q™ (3r, ar)

k

0" 0" + Z—: > Vo n(38)Va, Q" (3k, ar)
k

Update the target networks
w' 1w 4+ (1 - 1w
0" 10" +(1— 7)o"

end

The overall procedure of the algorithm is described in Algorithm 1. Firstly, a random
sampling is utilized to get a sample of system states. And then the sample is permutated

10 F. Author et al.

by the projection of the first principal components. After that, a one step action and
multiple observations are introduced to enrich experiences in experience pool. More-
over, a shared convolutional neural network is applied within the actor-critic networks
and target actor-critic networks to extract features from the ordered state observation [7,
24], as is shown in Fig. 4. Finally, the agent observes system repeatedly and train the
actor-critic network to learn an optimized policy gradually.

A — | Critic Net
Action E E

State

|:| Action
________ Shared CNN : @ = “— Y= 1 Actor Net

|:| Data I:I Conv & Pooling Net I:I Dense Net I:I Flatten Net

Fig. 4: Network details of the parameter shared actor-critic network

4 Experimental Results

To demonstrate how the proposed approach can help improve the long-term efficiency
by speeding up the metabolism, we apply the proposed reinforcement learning based
mechanism design, as well as other comparison methods, to a simulated E-commerce
platform built based on the proposed product lifecycle model.

4.1 The Configuration

The simulation is built up based on product lifecycle model proposed in section 2.1.
Among all of the parameters, g is uniformly sampled from [10%, 106], 1, o, t3, O, 0
are uniformly sampled from [5, 30], [35, 120], [60, 180], [10%, 106], [2.5 x 103, 2.5 x 10]
respectively, and parameter o is set as 0.016 . The parameters c;, c;, are generated
by a fixed neural network whose parameter is uniformly sampled from [—0.5,0.5] to
model online environments, with the outputs scaled into the intervals of [0.01,0.05]
and [0.1,0.15] respectively. Apart from the normalized dynamic CTR p and the accu-
mulated impressions g, the attribute vector x is uniformly sampled from [0, 1] element-
wisely with the dimension d = 15. All the latent parameters in the lifecycle model are
assumed unobservable during the learning phase.

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 11

The DDPG algorithm is adopted as the learning algorithm. The learning rates for the
actor network and the critic network are 104 and 103 respectively, with the optimizer
ADAM [9]. The replay buffer is limit by 2.5 x 10*. The most relevant parameters
evolved in the learning procedure are set as table 1.

Table 1: Parameters in learning phase.

Param|Value |[Reference

10® |Number of products in each sample
0.999|First principal component decay rate
0.99 |Rewards discount factor

0.99 |Target network decay rate

5 Repeated observation times

S22 ®3

Comparisons are made within the proposed reinforcement learning based methods.

— CTR-A: The impressions are allocated in proportion to the CTR score.

— T-Perm: The basic DDPG algorithm, with brought time based permutation and a
fully connected network to process the state

— FPC: The basic DDPG algorithm, with first principal component based permuta-
tion and a fully connected network to process the state.

— FPC-CNN: FPC with a shared two-layers convolutional neural network in actor-
critic networks.

— FPC-CNN-EXP: FPC-CNN with the improved experiences generation method.

where CTR-A is the classic supervised learning method and the others are the proposed
methods in this paper. For all the experiments, CTR-A is firstly applied for the first 360
steps to initialize system into a stable status, i.e., the distribution over different lifecycle
stages are stable, then other methods are engaged to run for another 2k steps and the
actor-critic networks are trained for 12.8k times.

4.2 The Results

We firstly show the discounted accumulated rewards of different methods at every step
in Fig. 5. After the initialization with the CTR-A, we find that the discounted accumu-
lated reward of CTR-A itself almost converges to almost 100 after 360 steps (actually
that why 360 steps is selected for the initialization), while that of other methods can fur-
ther increase with more learning steps. It is showed that all FPC based algorithms beat
the T-Perm algorithm, indicating that the FPC based algorithm can find a more proper
permutation to arrange items while the brought time based permutation leads to a loss
of information, making a drop of the final accumulated rewards. Moreover, CNN and
EXP algorithms perform better in extracting feature from observations automatically,
causing a slightly improvement in speeding up the converging process. Both the three
FCP based algorithms converge to same final accumulated rewards for their state inputs
have the same observation representation.

12 F. Author et al.

160
S
2
D 1401
2
-~ e
S 1204 —e— FPC-CNN-EXP
Q
3 —=~ FPC-CNN
° —— FPC
100 1

—— T-Perm

200 400 600 800 1000 1200 1400 1600 1800
step

Fig. 5: Performance Comparison between algorithms

Then we investigate the distribution shift of the impression allocation over the 4
lifecycle stages after the training procedure of the FPC-CNN-EXP method, as shown in
Fig. 6. It can be seen that the percentage of decline stage is decreased and percentage of

T W /W CEN w7

percentage
o
w

—e— Introduction
0.2 1 —=— Growth
01 - —&— Maturity

—— Decline

200 400 600 800 1000 1200 1400 1600 1800
step

Fig. 6: Percentage of impressions allocated to different stages.

introduction and maturity stages are increased. By giving up the products in the decline
stage, it helps the platform to avoid the waste of the impressions since these products
are always with a low CTR. By encouraging the products in the introduction stage, it
gives the changes of exploring more potential hot products. By supporting the products

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 13

in the maturity stage, it maximizes the short-term efficiency since the they are with the
almost highest CTRs during their lifecycle.

We finally demonstrate the change of the global clicks, rewards as well as the av-
eraged time durations for a product to grow up into maturity stage from its brought
time at each step, in terms of relative change rate compared with the CTR-A method,
as is shown in Fig. 7. The global average click increases by 6% when the rewards is

1.4 1
1.2 1

)

&

b= 1.0 §

®

o

o)] "

o 08 —e— Click

Rewards

0.6 1 —— Time cost

200 400 600 800 1000 1200 1400 1600 1800
step

Fig. 7: Metabolism relative metrics

improved by 30%. The gap here is probably caused by the inconsistency of the reward
definition and the global average click metric. In fact, the designed reward contains
some other implicit objectives related to the metabolism. To further verify the guess,
we show that the average time for items to growth into maturity stage has dropped by
26%, indicating that the metabolism is significantly speeded up. Thus, we empirically
prove that, through the proposed reinforcement learning based mechanism design which
utilizes the lifecycle theory, the long-term efficiency can be increased by speeding up
the metabolism.

5 Conclusions and Future Work

In this paper, we propose an end-to-end general reinforcement learning framework to
improve the long-term efficiency by speeding up the metabolism. We reduce action
space into a reasonable level and then propose a first principal component based permu-
tation for better observation of environment state. After that, an improved experiences
generation technique is engaged to enrich experience pool. Moreover, the actor-critic
network is improved by a shared convolutional network for better state representation.
Experiment results show that our algorithms outperform the baseline algorithms.

14

F. Author et al.

For the future work, one of the promising directions is to develop a theoretical guar-

antee for first principal component based permutation. Another possible improvement
is to introduce the nonlinearity to the scoring function for products.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Abdi, H., Williams, L.J.: Principal component analysis. Wiley interdisciplinary reviews:

computational statistics 2(4), 433—459 (2010)

. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.:

Learning to rank using gradient descent. In: Proceedings of the 22nd international conference
on Machine learning. pp. 89-96. ACM (2005)

. Cai, Q., Filos-Ratsikas, A., Tang, P., Zhang, Y.: Reinforcement mechanism design for e-

commerce. CoRR abs/1708.07607 (2017)

. Cai, Q., Filos-Ratsikas, A., Tang, P., Zhang, Y.: Reinforcement mechanism design for fraud-

ulent behaviour in e-commerce (2018)

. Cao, H., Folan, P.: Product life cycle: the evolution of a paradigm and literature review from

1950-2009. Production Planning & Control 23(8), 641-662 (2012)

. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F,, Li, H.: Learning to rank: from pairwise approach to

listwise approach. In: Proceedings of the 24th international conference on Machine learning.
pp. 129-136. ACM (2007)

. Cheng, Y.H., Yi, J.Q., Zhao, D.B.: Application of actor-critic learning to adaptive state space

construction. In: Machine Learning and Cybernetics, 2004. Proceedings of 2004 Interna-
tional Conference on. vol. 5, pp. 2985-2990. IEEE (2004)

. Deng, Y., Shen, Y., Jin, H.: Disguise adversarial networks for click-through rate predic-

tion. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence.
pp. 1589-1595. AAAI Press (2017)

. Kingma, D.P, Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980

(2014), http://arxiv.org/abs/1412.6980

. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender systems handbook,

pp. 77-118. Springer (2015)

Levitt, T.: Exploit the product life cycle. Harvard business review 43, 81-94 (1965)
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,
D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971
(2015)

Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning 8(3-4), 293-321 (1992)

Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item collaborative
filtering. IEEE Internet computing 7(1), 76-80 (2003)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., Riedmiller,
M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Myerson, R.B.: Optimal auction design. Mathematics of operations research 6(1), 58-73
(1981)

Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35(1-
2), 166-196 (2001)

Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of markov decision processes. Mathe-
matics of operations research 12(3), 441-450 (1987)

Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logi-
cal foundations. Cambridge University Press (2008)

20.

21.

22.

23.

24.

Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design 15

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic pol-
icy gradient algorithms. In: Proceedings of the 31st International Conference on Machine
Learning (ICML-14). pp. 387-395 (2014)

Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for rein-
forcement learning with function approximation. In: Advances in neural information pro-
cessing systems. pp. 1057-1063 (2000)

Tang, P.: Reinforcement mechanism design. In: Early Carrer Highlights at Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI pages 5146-5150
(2017)

Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance 16(1), 8-37 (1961)

Wu, Y., Tian, Y.: Training agent for first-person shooter game with actor-critic curriculum
learning (2016)

