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Abstract. Docker is on the rise in today’s enterprise IT. It permits
shipping applications inside portable containers, which run from so-called
Docker images. Docker images are distributed in public registries, which
also monitor their popularity. The popularity of an image impacts on its
actual usage, and hence on the potential revenues for its developers. In
this paper, we present a solution based on interpretable decision tree and
regression trees for estimating the popularity of a given Docker image,
and for understanding how to improve an image to increase its popularity.
The results presented in this work can provide valuable insights to Docker
developers, helping them in spreading their images.

1 Introduction

Container-based virtualization provides a simple yet powerful solution for run-
ning software applications in isolated virtual environments, called containers [29].
Containers are rapidly spreading over the spectrum of enterprise information
technology, as they feature much faster start-up times and less overhead than
other existing visualization approaches, e.g., virtual machines [13].

Docker is the de-facto standard for container-based virtualization [20]. It
permits building, shipping and running applications inside portable containers.
Docker containers run from Docker images, which are the read-only templates
used to create them. A Docker image permits packaging a software together
with all the dependencies needed to run it (e.g., binaries, libraries). Docker
also provides the ability to distribute and search (images of) Docker contain-
ers through so-called Docker registries. Given that any developer can create and
distribute its own created images, other users have at their disposal plentiful
repositories of heterogeneous, ready-to-use images. In this scenario, public reg-
istries (e.g., Docker Hub) are playing a central role in the distribution of images.

DockerFinder [6] permits searching for existing Docker images based on
multiple attributes. These attributes include (but are not limited to) the name
and size of an image, its popularity within the Docker community (measured
in terms of so-called pulls and stars), the operating system distribution they
are based on, and the software distributions they support (e.g., java 1.8 or
python 2.7). DockerFinder automatically crawls all such information from
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the Docker Hub and by directly inspecting the Docker containers that run from
images. With this approach, DockerFinder builds its own dataset of Docker
images, which can be queried through a GUI or through a RESTful API.

The popularity of an image directly impacts on its usage [18]. Maximising
the reputation and usage of an image is of course important, as for every other
kind of open-source software. The higher is the usage of an open-source software,
the higher are the chances of revenue from related products/services, as well as
the self-marketing and the peer recognition for its developers [12].

In line with [9], the main objectives of this paper are (i) to exploit the features
retrieved by DockerFinder to understand how the features of an image impact
on its popularity, and (ii) to design an approach for recommending how to update
an image to increase its popularity. In this perspective, we propose:

(i) DARTER (Decision And Regression Tree EstimatoR), a mixed hierarchi-
cal approach based on decision tree classifiers and regression trees, which
permits estimating the popularity of a given Docker image, and

(ii) DIM (Docker Image Meliorator), an explainable procedure for determining
the smallest changes that can be made to a Docker image to improve its
popularity and usage.

It is worth highlighting that our approach is explainable by design [10]. That
is, we can understand which features delineate an estimation, and we can exploit
them to improve a Docker image. Besides being a useful peculiarity of the model,
comprehensibility of models is becoming crucial, as the European Parliament in
May 2018 adopted the GDPR for which a “right of explanation” will be required
for automated decision making systems [8].

Our results show that (i) DARTER outperforms state-of-the-art estimators
and that popular images are not obtained “by chance”, and that (ii) DIM rec-
ommends successful improvements while minimizing the number of required
changes. Thanks to the interpretability of both DARTER and DIM, we can
analyze not-yet-popular images, and we can automatically determine the most
recommended, minimal sets of changes allowing to improve their popularity.

The rest of the paper is organized as follows. Sect. 2 provides background on
Docker. Sects. 3 and 4 illustrate the popularity problems we aim to target and
show our solutions, respectively. Sect. 5 presents a dataset of Docker images and
some experiments evaluating our solutions. Sects. 6 and 7 discuss related work
and draw some conclusions, respectively.

2 Background

Docker is a platform for running applications in isolated user-space instances,
called containers. Each Docker container packages the applications to run, along
with all the software support they need (e.g., libraries, binaries, etc.).

Containers are built by instantiating so-called Docker images, which can be
seen as read-only templates providing all instructions needed for creating and
configuring a container (e.g., software distributions to be installed, folders/files
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to be created). A Docker image is made up of multiple file systems layered over
each other. A new Docker image can be created by loading an existing image
(called parent image), by performing updates to that image, and by committing
the updates. The commit will create a new image, made up of all the layers of
its parent image plus one, which stores the committed updates.

Existing Docker images are distributed through Docker registries, with the
Docker Hub (hub.docker.com) being the main registry for all Docker users. In-
side a registry, images are stored in repositories, and each repository can contain
multiple Docker images. A repository is usually associated to a given software
(e.g., Java), and the Docker images contained in such repository are different
versions of such software (e.g., jre7, jdk7, open-jdk8, etc.). Repositories are di-
vided in two main classes, namely official repositories (devoted to curated sets
of images, packaging trusted software releases — e.g., Java, NodeJS, Redis) and
non-official repositories, which contain software developed by Docker users.

The success and popularity of a repository in the Docker Hub can be mea-
sured twofold. The number of pulls associated to a repository provides informa-
tion on its actual usage. This is because whenever an image is downloaded from
the Docker Hub, the number of pulls of the corresponding repository is increased
by one. The number of stars associated to a repository instead provides signif-
icant information on how much the community likes it. Each user can indeed
“star” a repository, in the very same way as eBay buyers can “star” eBay sellers.

DockerFinder is a tool for searching for Docker images based on a larger set
of information with respect to the Docker Hub. DockerFinder automatically
builds the description of Docker images by retrieving the information available
in the Docker Hub, and by extracting additional information by inspecting the
Docker containers. The Docker image descriptions built by DockerFinder are
stored in a JSON format3, and can be retrieved through its GUI or HTTP API.

Among all information retrieved by DockerFinder, in this work we shall
consider the size of images, the operating system and software distributions they
support, the number of layers composing an image, and the number of pulls
and stars associated to images. A formalization of data structure considered is
provided in the next section. Moreover, in the experimental section we will also
observe different results for official and non-official images.

3 Docker Images and Popularity Problems

We hereafter provide a formal representation of Docker images, and we then
illustrate the popularity problems we aim to target.

A Docker image can be represented as a tuple indicating the operating system
it supports, the number of layers forming the image, its compressed and actual
size, and the set of software distributions it supports. For the sake of readability,
we shall denote with Uos the finite universe of existing operating system distri-
butions (e.g., “Alpine Linux v3.4”, “Ubuntu 16.04.1 LTS”), and with Usw

the finite universe of existing software distributions (e.g., “java”, “python”).

3 An example of raw Docker image data is available at https://goo.gl/hibue1.

hub.docker.com
https://goo.gl/hibue1
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Definition 1 (Image). Let Uos be the finite universe of operating system dis-
tributions and Usw be the finite universe of software distributions. We define a
Docker image I as a tuple I = 〈os, layers, sized, sizea,S〉 where
- os ∈ Uos is the operating system distribution supported by the image I,
- layers ∈ N is the number of layers stacked to build the image I,
- sized ∈ R is the download size of I,
- sizea ∈ R is the actual size4 of I, and
- S ⊆ Usw is the set of software distributions supported by the image I.

A concrete example of Docker image is the following:
〈Ubuntu 16.04.1 LTS, 6, 0.78, 1.23, {python,perl,curl,wget,tar}〉.

A repository contains multiple Docker images, and it stores the amount of pulls
and stars associated to the images it contains.

Definition 2 (Repository). Let UI be the universe of available Docker images.
We define a repository of images as a triple R = 〈p, s, I〉 where
- p ∈ R is the number (in millions) of pulls from the repository R,
- s ∈ N is the number of stars assigned to the repository R, and
- I ⊆ UI is the set of images contained in the repository R.

For each repository, the number of pulls and stars is not directly associated
with a specific image, but it refers to the overall repository. We hence define the
notion of imager, viz., an image that can be used as a “representative image”
for a repository. An imager essentially links the pulls and stars of a repository
with the characteristic of an image contained in such repository.

Definition 3 (Imager). Let R = 〈p, s, I〉 be a repository, and let I = 〈os,
layers, sized, sizea,S〉 ∈ I be one of the images contained in R. We define an
imager IR as a tuple directly associating the pulls and stars of R with I, viz.,

IR = 〈p, s, I〉 = 〈p, s, 〈os, layers, sized, sizea,S〉〉.
A concrete example of imager is the following:
〈1.3, 1678, 〈Ubuntu 16.04.1 LTS, 6, 0.7, 1.2, {python,perl,curl,wget}〉〉.

An imager can be obtained from any image I contained in R, provided that I
can be considered a “medoid” representing the set of images contained in R.

We can now formalize the popularity estimation problem. As new Docker
images will be released from other users, image developers may be interested in
estimating the popularity of a new image in terms of pulls and stars.

Definition 4 (Popularity Estimation Problem). Let IR = 〈p, s, I〉 be an
imager, whose values p and s of pulls and stars are unknown. Let also IR be
the context5 where IR is considered (viz., IR ∈ IR). The popularity estimation
problem consists in estimating the actual values p and s of pulls and stars of IR
in the context IR.

4 Images downloaded from registries are compressed. The download size of an image
is hence its compressed size (in GBs), while its actual size is the disk space (in GBs)
occupied after decompressing and installing it on a host.

5 As IR is the representative image for the repository R, IR may be (the set of imagers
representing) the registry containing the repository R.
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Notice that, due to the currently available data, the popularity estimation prob-
lem is not considering time. For every image we only have a “flat” representation
and, due to how DockerFinder currently works, we cannot observe its pop-
ularity evolution in time. However, the extension of the problem that considers
also the temporal dimension is a future work we plan to pursue.

Image developers may also be interested in determining the minimum changes
that could improve the popularity of a new image. This is formalized by the
recommendation for improvement problem.

Definition 5 (Recommendation for Improvement Problem). Let IR =
〈p, s, I〉 be an imager, whose values p and s of pulls and stars have been estimated
in a context X (viz., IR ∈ X). The recommendation for pulls improvement
problem consists in determining a set of changes C∗ such that

- IR
C∗−−→ I∗R = 〈p∗, ·, ·〉,with I∗R ∈ X ∧ p∗ > p, and

- 6 ∃C† s.t . |C†| < |C∗| and IR
C†−−→ I†R = 〈p†, ·, ·〉,with I†R ∈ X ∧ p† > p∗

(where x
C−→ y denotes that y is obtained by applying the set of changes C to x).

The recommendation for stars improvement problem is analogous.

In other words, a solution of the recommendation for improvement problem is an
imager I ′R obtained from IR such that I ′R is more likely to get more pulls/stars
than IR and that the number of changes to obtain I ′R from IR is minimum.

4 Proposed Approach

We hereby describe our approaches for solving the popularity estimation problem
and the recommendation for stars/pulls improvement problem.

4.1 Estimating Popularity

We propose DARTER (Decision And Regression Tree EstimatoR, Algorithm 1)
as a solution of the popularity estimation problem6. From a general point of view
the problem can be seen as a regression problem [30]. However, as we show in the
following, due to the fact that few imagers are considerably more popular than
the others and most of the imagers are uncommon, usual regression methods
struggle in providing good estimation (popularity distributions are provided in
Sect. 5.1). DARTER can be used to estimate both pulls p and stars s. We present
the algorithm in a generalized way by considering a popularity target u.

DARTER can be summarized in three main phases. First, it estimates a pop-
ularity threshold pt (line 2) with respect to the known imagers IR. Then, it labels
every image as popular or uncommon (equals to 1 and 0 respectively) with re-
spect to this threshold (line 3). Using these labels, DARTER trains a decision tree
Ψ (line 4). This phase could be generalized using multiple threshold and labels.

6 DARTER is designed to simultaneously solve multiple instances of the popularity
estimation problem, given a set X of imagers whose popularity is unknown.
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Algorithm 1: DARTER(IR,X , u)

Input : IR - context/set of imagers, X - set of images to estimate, u -
popularity type (can be equal to “pulls” or to “stars”)

Output: Y - popularity estimation

1 T ← getPopularity(IR, u); // extract imagers popularity

2 pt← estimatePopularityThreshold(T ); // estimate popularity threshold

3 L← {l | l = 0 if t < pt else 1, ∀ t ∈ T}; // label a target value as popular or not

4 Ψ ← trainDecisionTree(IR, L); // train decision tree

5 I−R ← {IR | if isPopular(Ψ, IR) = 0 ∀ IR ∈ IR}; // classify uncommon imagers

6 I+R ← {IR | if isPopular(Ψ, IR) = 1 ∀ IR ∈ IR}; // classify popular imagers

7 X− ← {IR | if isPopular(Ψ, IR) = 0 ∀ IR ∈ X}; // classify uncommon imagers

8 X+ ← {IR | if isPopular(Ψ, IR) = 1 ∀ IR ∈ X}; // classify popular imagers

9 T− ← getPopularity(I−R , u); T+ ← getPopularity(I+R , u); // extract popularity

10 Λ− ← trainRegressionTree(I−R , T
−); // train decision tree uncommon

11 Λ+ ← trainRegressionTree(I+R , T
+); // train decision tree popular

12 Y − ← estimatePopularity(Λ−,X−); // estimate popularity for uncommon

13 Y + ← estimatePopularity(Λ+,X+); // estimate popularity for popular

14 Y ← buildResult(X ,X−,X+, Y −, Y +); // build final result w.r.t. original order

15 return Y ;

In the second phase (lines 5-9), DARTER exploits the decision tree to classify
both the imagers IR and the images to estimate X as popular (+) or uncom-
mon (−). In this task, DARTER exploits the function isPopular(Ψ, IR), which
follows a path along the decision tree Ψ according to the imager IR to estimate
whether IR will be popular or uncommon (see Figure 1 (left)).

In the third phase (lines 10-14), DARTER trains two regression trees Λ−, Λ+

for uncommon and popular images, respectively. These regression trees are spe-
cialized to deal with very different types of images, which may have very different
estimations on the leaves: High values for the popular regression tree, low val-
ues for the uncommon regression tree (see Figure 1 (center) & (right)). Finally,
DARTER exploits the two regression trees to estimate the popularity of the
images in X and returns the final estimation Y .

In summary, DARTER builds a hierarchical estimation model. At the top of
the model, there is a decision tree Ψ that permits discriminating between popular
and uncommon imagers. The leaves of Ψ are associated with two regression
trees Λ+ or Λ−. Λ+ permits estimating the level of popularity of an imager,
while Λ− permits estimating the level of uncommonness of an imager. It is
worth noting that specialized regression trees for each leaf of Ψ could be trained.
However, since in each leaf there are potentially few nodes, this could lead to
model overfitting [30] decreasing the overall performance. On the other hand,
the two regression trees Λ+, Λ− result to be much more general since they are
trained on all the popular/uncommon imagers.
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Ψ Λ+ Λ−

Fig. 1: Decision tree discriminating between popular and uncommon imagers
(left), regression trees evaluating the popularity (center), and the degree of un-
commonness (right). The regression trees are linked to corresponding leaves of
Ψ : Regression trees like Λ+ are linked to leaves marked with P (popular), while
those like Λ− to leaves marked with U (uncommon). (Best view in color.)

As an example we can consider the imager IR = 〈?, ?, 〈Ubuntu 16.04.1

LTS, 6, 0.78, 1.23, {python, perl, curl, wget, tar}〉〉. Given Ψ,Λ+, Λ− we
can have that isPopular(Ψ, IR) = 0. The latter means that IR is uncommon,
hence requiring to estimate its popularity with Λ−, viz., the popularity of IR is
estimated as y = estimatePopularity(Λ−, IR) = 0.56 millions of pulls.

More in detail, we realized Algorithm 1 as follows. Function estimatePopulari
tyThreshold(·) is implemented by the so-called “knee method” [30]. The knee
method sorts the target popularity T and then, it selects the point threshold
pt on the curve which has the maximum distance with the closest point on
the straight line passing through the minimum and the maximum of the curve
described by the sorted T (examples in Figure 4 (bottom)). As models for decision
and regression trees we adopted an optimized version of CART [5]. We used the
Gini criteria for the decision tree and the Mean Absolute Error for the regression
trees [30]. We used a cost matrix for training the decision tree in order to improve
the tree recall and precision in identifying popular images.

Finally, besides the good performance reported in the experimental section,
the choice of decision and regression tree as estimation models lies in the fact
that these models are easily interpretable [10]. Indeed, as shown in the follow-
ing, we can extract from these trees an explanation of the estimation, and this
explanation can be exploited to understand which are the changes that can lead
to an improvement of the popularity of an image.

4.2 Recommending Improvements

To solve the recommendation for improvement problem we propose DIM (Docker
Image Meliorator, Algorithm 2). First, DIM estimates the popularity y of the
imager under analysis IR in the context given by the decision tree Ψ (lines 1-
2). The path along the tree leading to y constitutes the explanation for such
estimation. In such terms, the proposed model is a transparent box which is
both local and global explainable by design [10]. Then, it extracts the paths Q
with a popularity higher than the one estimated for IR (line 3), and it selects
the shortest path sp among them (line 4). Finally, it returns an updated imager
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Algorithm 2: DIM (IR, Ψ, Λ
−, Λ+)

Input : IR - imager to improve, Ψ - decision tree, Λ−, Λ+ - regression trees.
Output: I∗R - updated imager.

1 if isPopular(Ψ, IR) = 0 then y ← estimatePopularity(Λ−, IR) ;
2 else y ← estimatePopularity(Λ+, IR) ;
3 Q← getPathsWithGreaterPopularity(IR, y, Ψ, Λ

−, Λ+); // get improving paths

4 sp ← getShortestPath(Q, IR, y, Ψ, Λ
−, Λ+); // get shortest path

5 I∗R ← updateImager(IR, sp); // update docker image

6 return I∗R;

Fig. 2: The tree on the left shows the explanation of an estimation (viz., the
yellow path). The tree on the right shows an example of recommendations for
improvement, which is given by the shortest path leading to a leaf with a higher
popularity (highlighted in blue). The latter indicates the minimum number of at-
tribute changes that can lead to a popularity improvement. (Best view in color.)

I∗R built from the input imager IR by applying it the changes composing the
improvement shortest path sp (lines 5-6).

Functions getPathsWithGreaterPopularity and getShortestPath respectively
collects all the paths in the tree ending in a leaf with a popularity higher than
y, and selects the shortest path among them (see Figure 2). When more than a
shortest path with the same length is available, DIM selects the path with the
highest overlap with the current path and with the highest popularity estimation.

Getting back to our example we have an estimation of y = 0.56 millions
of pulls, viz., IR = 〈0.56, ., 〈Ubuntu 16.04.1 LTS, 6, 0.78, 1.23, {python,
perl, curl, wget, tar}〉〉. By applying DIM on I a possible output is IR =
〈0.64, ., I∗R = 〈Ubuntu 16.04.1 LTS, 7, 0.78, 1.23, {python, perl, curl,

java}〉〉. That is, DIM recommends to update IR by adding a new layer, which
removes wget and tar, and which adds the support for java.

5 Experiments

5.1 Dataset

DockerFinder autonomously collects information on all the images available
in the Docker Hub that are contained in official repositories or in repositories
that have been starred by at least three different users. The datasets collected by
DockerFinder7 ranges from January 2017 to March 2018 at irregular intervals.

7 Publicly available at https://goo.gl/ggvKN3.

https://goo.gl/ggvKN3
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sized sizea layers |S| pulls stars

x̃ 0.16 0.41 10.00 8.00 0.06 26.0
µ 0.27 0.64 12.67 7.82 6.70 134.46
σ 0.48 1.11 9.62 2.26 46.14 564.21

Fig. 3: Statistics of imagers, viz., median
x̃, mean µ and standard deviation σ.
The most frequent OSs and softwares
are Debian GNU/Linux 8 (jessie),
Ubuntu 14.04.5 LTS, Alpine Linux

v3.4, and erl, tar, bash, respectively. Fig. 4: Semilog pulls and stars distri-
butions (top). Knee method (bottom).

If not differently specified in this work we refer to the most recent backup where
132,724 images are available. Since the popularity estimation problem require a
notion of popularity, i.e., pulls or stars, from the available images we select 1,067
imagers considering for each repository the “latest” image (i.e., the most recent
image of each repository). We leave as future work the investigation of the effect
of considering other extraction of imagers. Some examples can be the smallest
image, the one with more softwares, or a medoid or centroid of each repository.

Details of the imagers extracted from the principal dataset analyzed can
be found in Figure 3. sized, sizea, p and s follow a long tailed distribution
highlighted by the large difference between the median x̃ and the mean µ in
Figure 3. The power-law effect is stronger for pulls and stars (see Figure 4).
There is a robust Pearson correlation between pulls and stars of 0.76 (p-value
1.5e-165). However, saying that a high number of pulls implies a high number
of stars could be a tall statement. For this reason we report experiments for
both target measures. There are no other relevant correlations. There are 50
different os and the most common ones are Debian GNU/Linux 8 (jessie),
Ubuntu 14.04.5 LTS and Alpine Linux v3.4. The most common softwares
among the 28 available (without considering the version) are erl, tar and bash.

5.2 Experimental Settings

The experiments reported in the following sections are the results of a 5-fold cross
validation [30] repeated ten times. We estimate the goodness of the proposed
approach by using the following indicators to measure regression performance
[15,27,35]: Median absolute error (MAE ), and mean squared logarithmic error
(MSLE ). These indicators are more relevant than mean absolute error, mean
squared error or explained variance because we are in the case when target val-
ues have an exponential growth. MSLE penalizes an under-predicted estimate
greater than an over-predicted estimate, which is precisely what we are inter-
ested in, as there are only few popular images. Besides aggregated statistics
on these measures on the ten runs, we report (a sort of) area under the curve
plot [30], which better enhances the overall quality of the estimation in terms
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Table 1: Mean and standard deviation of MAE and MSLE for pulls and stars.
pulls stars

Model MAE MSLE MAE MSLE

Darter 0.222 ± 0.066 1.606 ± 0.268 19.925 ± 1.904 2.142 ± 0.171
RegTree 0.355 ± 0.092 1.857 ± 0.430 22.650 ± 3.223 2.416 ± 0.233
RegKnn 0.748 ± 0.084 2.251 ± 0.195 30.020 ± 1.679 3.419 ± 0.445

Lasso 7.051 ± 1.207 4.978 ± 0.813 95.423 ± 13.445 4.767 ± 0.631
LinReg 7.998 ± 1.874 84.611 ± 123.256 112.794 ± 17.435 48.180 ± 69.352
Ridge 7.575 ± 1.736 8.236 ± 1.283 107.305 ± 15.207 5.169 ± 0.599
Null 3.471 ± 0.367 6.814 ± 1.023 3.122 ± 0.236 117.969 ± 13.459

of quantification [19], i.e., how good is the method in estimating the popularity
of a set of images. We do not report learning and prediction times as they are
negligible (less than a second for all the methods analyzed), and also because
the experiments are more focused in highlighting the quality of the results.

For the popularity estimation problem we compare DARTER against the
following baselines: Regression tree (RegTree) [5], k-nearest-neighbor (RegKnn)
[1], linear regression model (LinReg) [36], Lasso model [31], and Ridge model
[32], besides the Null model estimating the popularity using the mean value. We
selected these approaches among the existing one because (i) they are adopted in
some of the works reported in Section 6, (ii) they are interpretable [10] differently
from more recent machine learning methods. On the other hand, as (to the best of
our knowledge) no method is currently available for solving the recommendation
for improvement problem, we compare DIM against a random null model8.

5.3 Estimating Image Popularity

We hereby show how DARTER outperforms state-of-the-art methods in solving
the popularity estimation problem. Table 1 reports the mean and standard de-
viation of MAE and MSLE for pulls and stars. The Null model performs better
than the linear models (Lasso, LinReg and Ridge). This is probably due to the
fact that linear models fail in treating the vectorized sets of softwares, which
are in the image descriptions used to train the model. DARTER has both a
lower mean error than all the competitors and a lower error deviation in term
of standard deviation, i.e., it is more stable when targeting pulls and/or stars.
The results in Table 1 summarize the punctual estimation of each method for
each image in the test sets. In Figure 5 we observe the overall quantification of
the estimation for the best methods. It reports the cumulative distribution of
the estimation against the real values. The more a predicted curve is adherent
to the real one, the better is the popularity estimation. All the approaches are
good in the initial phase when uncommon images are predicted. Thus, the image
difficult to estimate are those that somehow lay in the middle, and DARTER is
better than the others is assessing this challenging task.

8 The python code is available here https://goo.gl/XnJ7yD

https://goo.gl/XnJ7yD
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Fig. 5: Cumulative distribution of the estimations.

Fig. 6: Estimators stability for different datasets.

Fig. 7: MAE varying the portion of training set used: pulls first row, stars second row.

Further evidence on the stability of DARTER is provided by the fact that its
MSLE keeps stable even when considering different datasets extracted by Doc-
kerFinder in different times, and steadily better than all other estimators.
These results are highlighted in Figure 6 for both pulls and stars. Moreover, in
Figure 7 we show the performance of the estimators in terms of MAE (pulls first
row, stars second row) for increasing size of the training set in order to test the
so called “cold start” problem [26]. Results show that DARTER suffer less than
the other approaches when using less data for the training phase9.

9 The non-intuitive fact that with 50% training data MAE seems to be best for some
algorithms can be explained with overfitting and partial vision of the observations.
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Fig. 8: Upper part: mean and standard deviation of the number of changes. Error
plot: mean and standard deviation of the popularity improvement ∆.

5.4 Recommending Image Improvements

We now show that the recommendation for stars/pulls improvement problem
cannot be solved by simply using a null model approach. We build a random null
model (RND) that, given in input an imager IR, changes a feature of IR (e.g., os,
layers, sized) with probability π by selecting a new value according to the
distribution of these values in the dataset, hence creating a new imager I∗R. Then
we apply RND and DIM on a test set of images. For each updated imager I∗R
we keep track of the number of changes performed to transform IR into I∗R, and
of the variation ∆ between the original popularity and the estimated popularity
of I∗R. We estimate the popularity of the improved images using DARTER since
it is the best approach as we observed in the previous section.

Figure 8 reports the results of these experiment for pulls and stars. For
the null model we vary π ∈ [0.1, 0.9] with step 0.1. Every point in Figure 8
represents the mean popularity improvement ∆, while the vertical lines are one
fourth of the standard deviation. The numbers in the upper part are the means
and standard deviations of the number of changes. We notice that a random
choice of the features to change can lead to an average improvement comparable
to the one of DIM (π=0.7 for pulls, π=0.4 for stars). However, two aspects must
not be neglected. The first one is that when RND has a higher ∆ it also has a
higher variability. The second one is that on average DIM uses just one or two
changes to improve the image, while RND requires a consistently higher number
of changes. This allows us to conclude that, given an imager IR, DIM provides
can effectively suggest how to build an imager I∗R whose estimated popularity
will be higher, and which can be obtained by applying very few changes to IR.

5.5 Explaining Improvement Features

In this section we exploit the fact that DARTER and DIM are explainable to
retrieve the most important features that should be changed to obtain the im-
proved imager. We focus on the analysis of the most uncommon imagers by an-
alyzing the tree Λ− of uncommon imagers. In particular, among them we signal
the subsequent: (i) required presence of one of the following oss: Alpine Linux

v3.7, Alpine Linux v3.2, Ubuntu 16.04.3 LTS, (ii) having a size sized lower
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than 0.0241, (iii) having sizea ≤ 0.319 or sizea > 0.541 (depending on the other
features), (iv) having less than six software avoiding tar but including ruby.

Since the images realized by private developers can rarely reach the popu-
larity of official imager repositories (e.g., java, python, mongo, etc.) we repeated
the previous analysis by excluding official imagers. Results highlights that again
Alpine Linux v3.2, Ubuntu 16.04.3 LTS are the required oss, but it is also
generally recommended by DIM of having sizea > 0.301, sized ≤ 0.238 and to
support the following software distributions: gunicorn, go and ping.

5.6 Portability of our approach

To show the portability of DARTER, we analyzed a musical Spotify-based
dataset, where artists are associated with a popularity score and to the set of
their tracks [25]. In this scenario, the artists play the role of “repositories”, and
tracks that of “images”. Also in this context DARTER provids better estima-
tions than state-of-the-art baselines (DARTER’s MAE: 12.80±0.58, DARTER’s
MSLE: 4.36±0.175, RegTree’s MAE: 13.91±0.57, RegTree’s MSLE: 4.57±0.14).

6 Related Work

The problem of estimating and analysing popularity of Docker images resembles
the discovery of success performed in various other domains.

A well-known domain is related to quantifying the changes in productivity
throughout a research career in science. [34] defines a model for the citation
dynamics of scientific papers. The results uncover the basic mechanisms that
govern scientific impact. [24] points out that, besides dependent variables, also
contextual information (e.g., prestige of institutions, supervisors, teaching and
mentoring activities) should be considered. The latter holds also in our con-
text, where we can observe that official images behave differently with respect
to non-official images. Sinatra et al. [28] recently designed a stochastic model
that assigns an individual parameter to each scientist that accurately predicts
the evolution of her impact, from her h-index to cumulative citations, and inde-
pendent recognitions (e.g., prizes). The above mentioned approaches (viz., [34],
[24] and [28]) model the success phenomena using the fitting of a mathematical
formulation given from an assumption. In our proposal, we are not looking for
just an indicator but for an explainable complex model that not only permits
analyzing a population, but also to reveal suggestions for improvements.

Another domain of research where the study of success is relevant is sport.
The level of competitive balance of the roles within the four major North Amer-
ican professional sport leagues is investigated in [2]. The evidence suggests that
the significance of star power is uncovered only by multiplicative models (rather
than by the commonly employed linear ones). As shown by our experiments,
this holds also in our context: our complex model outperforms ordinary linear
ones. Franck et al. [7] provide further evidence on contextual factors, by showing
that the emergence of superstars in German soccer depends not only on their
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investments in physical talent, but also on the cultivation of their popularity.
An analysis of impact of technical features on performances of soccer teams is
provided in [21]. The authors find that draws are difficult to predict, but they
obtain good results in simulating the overall championships. Instead, the authors
of [22] try to understand which are the features driving human evaluation with
respect to performance in soccer. Like us, they use a complex model to mimic
an artificial judge which accurately reproduces human evaluation, which permits
showing how humans are biased towards contextual features.

Another field of research where the study of success and popularity is quite
useful is that of online social networks, like Twitter, Instagram, Youtube, Face-
book, etc. In [17], the authors propose a method to predict the popularity of
new hashtags on Twitter using standard classification models trained on con-
tent features extracted from the hashtag and on context features extracted from
the social graph. The difference with our approach is that an explanation is not
required, neither a way to produce a more popular hashtag. For understanding
the ingredients of success of fashion models, the authors of [23] train machine
learning methods on Instagram images to predict new popular models. Instead,
Trzciński and Rokita [33] present a regression method to predict the popularity
of an online video (from YouTube or Facebook) measured in terms of its number
of views. Results show that, despite the visual content can be useful for popular-
ity prediction before content publication, the social context represents a much
stronger signal for predicting the popularity of a video.

Some forms of analytics have been recently applied to GitHub repositories.
The authors of [14] present a first study on the main characteristics of GitHub
repositories, and on how users take advantage of their main features, e.g., com-
mits, pull requests, and issues. A deeper analysis is provided in [3], where the
authors analyze various features of GitHub with respect to the impact they have
on the popularity of a GitHub repository. A model for predicting such popularity
is then described in [4], where multiple linear regressions are used to predict the
number of stars assigned to a GitHub repository. The crucial difference between
the approach in [4] and ours is that we exploit features that concretely describe
a Docker image (such as the operating system and software distributions it sup-
ports, for instance), while in [4] the authors build models based only on the time
series of the amounts of stars previously assigned to repositories.

Further domains where the analysis and prediction of success is a challenging
task are music [25], movies [16] and school performances [11]. However, to the
best of our knowledge, our approach is the first that is based on complex descrip-
tions such as those of Docker images, and which tries to estimate success and to
provide recommendations for improvements based on an explainable model.

7 Conclusion

In this paper we have proposed DARTER and DIM, two methods specifically
designed to analyze the popularity of Docker images. In particular, DARTER is
a mixed hierarchical model formed by a decision tree and by two regression trees
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able to outperform state-of-the-art approaches in understanding the degree of
popularity an image will get (in terms of pulls and stars). Moreover, DARTER
predictions are explainable in terms of the characteristics of Docker images. This
aspect is exploited by DIM to determine how to improve the popularity of a given
image performing by applying it a minimal set of changes.

It is worth noting that DARTER and DIM are focused on the technical
content of images, as their ultimate objective is to provide explainable mod-
els helping developers in analyzing and improving their Docker images. Hence,
other factors that can orthogonally impact on the popularity of images (e.g., the
previous reputation of a developer, or external endorsements by widely known
experts in the field) are outside of the scope of this paper, as they could not lead
to technical updates on images geared towards improving their popularity.

Besides testing the proposed method on other domains, we would like to
strengthen the experimental section by means of a real validation. The idea is
to release on Docker Hub a set of images and their improved versions and to
observe how good are the prediction of DARTER and the recommendation of
DIM in a real case study, and how long it takes to reach the estimated values.
Time is indeed another crucial component that was not considered because the
current version of DockerFinder is not updating the status of a repository at
constant time intervals. The extension of our approach to also consider time is
in the scope of our future work. Finally, another interesting direction for future
work is to extend DIM by allowing users to indicate the desired popularity for an
image and constraints on acceptable image updates (e.g., software that cannot
be removed from an image, or its minimum/maximum acceptable size).
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