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Abstract. Dining is an important part in people’s lives and this explains
why food-related microblogs and reviews are popular in social media.
Identifying food entities in food-related posts is important to food lover
profiling and food (or restaurant) recommendations. In this work, we
conduct Implicit Entity Linking (IEL) to link food-related posts to food
entities in a knowledge base. In IEL, we link posts even if they do not
contain explicit entity mentions. We first show empirically that food
venues are entity-focused and associated with a limited number of food
entities each. Hence same-venue posts are likely to share common food
entities. Drawing from these findings, we propose an IEL model which
incorporates venue-based query expansion of test posts and venue-based
prior distributions over entities. In addition, our model assigns larger
weights to words that are more indicative of entities. Our experiments
on Instagram captions and food reviews shows our proposed model to
outperform competitive baselines.
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1 Introduction

In social media, food-related topics are highly popular. Many users post food-
related microblogs or reviews on various platforms such as Instagram, Foursquare,
Yelp, etc. Such user generated content can be mined for profiling food lovers or for
food and dining venue recommendations. In fact, identifying the local cuisines in
posts has been justified [13] as useful for helping tourists in their dining choices.
In this work, we propose to link food-related posts to a knowledge base of food
entities. Given a test post that mention or merely imply some food entity, the
task is to rank food entities in order of relevance.

We refer to this problem of linking posts as Implicit Entity Linking (IEL) [14,
11]. In IEL, one links each test post to one or more related entities, without the
need for mention extraction. This contrasts with the Explicit Entity Linking (EL)
problem [10, 19, 9, 18, 17] which links mentions of named entities. Notably IEL
circumvents the challenge of mention extraction in social media where posts are
often grammatically noisy and colloquial. IEL also generalizes easily to various
content scenarios. For example, consider the text snippets “XX Chicken Rice”,
“rice with chicken” and “having lunch”. These are cases where food entities are
respectively mentioned via proper nouns, improper nouns and merely implied.
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All snippets can be processed via IEL while EL is mention-dependent and will
process only the first snippet comprising proper nouns. Lastly, IEL is also easier
to conduct if one is only focused on a certain entity type, e.g. food entities. There
is no need to ensure that only mentions of the right type are extracted.

Problem Setting. We formulate IEL as a ranking problem. For each post,
we rank candidate food entities such that high ranking entities are more likely to
be related. We assume that posts are not labeled with food entities for training,
but are associated with posting venues. Both assumptions are realistic. Firstly
labeled data are typically expensive to obtain. Secondly venue information is
often available for platforms such as Foursquare, Instagram, review websites etc.
We use Wikipedia as the knowledge base to link against.

Contributions. Our contributions are (1) an empirical analysis whereby
we highlight that venues are focused around a limited set of food entities each,
i.e., entity-focused characteristic and (2) a series of models for IEL. Our best
performing model comprises the following aspects:

– Entity-Indicative Weighting: We propose a weighting scheme in our
model to assign more weights to entity-indicative words. The intuition is
that such words are more important for inferring entities than other words.

– Query Expansion: The entity-focused characteristic implies that a test
post is likely to share common food entities as other same-venue posts. Hence
we augment each test post via query expansion to include words from other
same-venue posts.

– Venue-based Prior: Leveraging the same entity-focused characteristic, we
generate venue-based prior distribution over food entities in an initial entity
linking stage. This prior is used to bias the entity scores for the next stage.

By combining all above aspects, our best model EW-EWQE(v) outperforms
state-of-the-art baselines that have been adapted for implicit entity linking.

2 Empirical Analysis

2.1 Datasets

In our empirical analysis and subsequent experiments, we use data from Insta-
gram and Burpple 1. The latter is a popular food review website in Singapore.
Both datasets are generated by users from Singapore, a city well known for its
wide range of food choices. Since both datasets are from Singapore users, we link
their posts against a list of 76 food entities derived from the Wikipedia page on
Singapore’s cuisines2. Further details are discussed in Section 4.1.

For Instagram, we collect highly popular food-related captions from 2015
using hashtags of food e.g. ‘#foodporn’ 3, or food entities e.g. ‘#chillicrab’.
Following data cleaning and venue deduplication, we obtained 278,647 Instagram

1 https://www.burpple.com/sg
2 https://en.wikipedia.org/wiki/Singaporean cuisine
3 the most popular food related hashtag on our Instagram dataset
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posts from 79,496 distinct venues. For Burpple, all its posts are food reviews
and filtering by hashtags is not required. From Burpple, we obtained 297,179
posts over 13,966 venues. Table 1 illustrates four sample posts, two each from
Instagram and Burpple. Clearly some posts are more informative about food
entities than others. For example, the first instagram example does not reveal
the food entity explicitly while the second example mentions fish ball noodle.

Table 1. Sample posts comprising Instagram captions and Burpple reviews.

Instagram
“super heavy lunch. and spicy! but its a must-try cafe!
#food #foodporn #foodie #foodgasm #badoquecafe #instagood”
“yesterday’s lunch! #fishballnoodle #food #foodporn the soup was damn good”

Burpple

“Signature Lamb Rack ($46++) Very neat rectangular bricks of lamb, which we
requested to be done medium-well.Nothing too impressive.. hurhur. Service
is top -notch though”
“Good morning! One of my favourite old school breakfast but he not his fav”

2.2 Analysis

A food venue typically focuses on some cuisines or food themes and is unlikely
to serve an overly wide variety of dishes. For example, it is more probable for a
restaurant to serve either Western or Asian cuisines, rather than both. Conse-
quently, each food venue is likely to be associated with a limited number of food
entities. We termed this as the entity-focused characteristic. To verify this char-
acteristic, we compare the number of distinct food entities per venue against
a null model where the characteristic is absent. We expect food venues to be
associated with fewer food entities when compared against the null model.

For each venue v with multiple posts, we first compute the number of distinct
entities over its posts. We then compute the expected number of distinct entities
under the null model following the steps below:

– For each post from v, sample an entity e based on global entity probability
i.e. entity popularity. Add to entity set Enull(v).

– Compute |Enull(v)|, the distinct entity count under the null model.

We conduct our analysis on 2308 venues from Instagram and 362 venues from
Burpple which have at least two user-labeled posts each. Such posts contain
hashtags with food entity names, e.g. ‘#chillicrab’, ‘#naan’ etc. As sampling is
required for the null model, we conduct 10 runs and take the average expected
food entity count for each venue. For further analysis, we also repeat a similar
procedure for users to compare their actual and expected food entity count. The
intuition is that users may possess the entity-focused characteristic as well due to
food preferences or constraints e.g vegetarian. The user statistics are computed
over 2843 Instagram users and 218 Burpple users.
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(a) CDF (Instagram venues) (b) CDF (Instagram users)

(c) CDF (Burpple venues) (d) CDF (Burpple users)

Fig. 1. CDFs of actual and expected distinct food entities for venues and users. F(x)
on y-axis is probability of venues or users with ≤ x distinct food entities.

Figure 1 plots the Cumulative Distribution Function (CDF) of distinct food
entities for venues and users on both Instagram and Burpple, whereby distinct
entity counts are on a per venue or user basis. In each graph, the blue line
represents the actual count while the red line is for counts from the null model
(averaged over 10 runs). For Figures 1(a) and (c) venues are shown to be focused
around specific food entities such that on average, each venue has fewer distinct
food entities than expected under the null model. For example in Figure 1(a),
around 98% of the Instagram venues are associated with 10 distinct food entities
or less in the actual data. In contrast, the null model has a corresponding pro-
portion of around 91%. A similar trend can be observed for Burpple venues as
shown in Figure 1(c). Thus, the entity-focused characteristic is clearly evident
for the venues of both datasets.

Figures 1(b) and (d) plot for Instagram and Burpple users respectively. There
is much less difference between the actual and null model count, as both the
blue and red lines overlap substantially in both figures. Comparing the plots
for venues and users, we conclude that users are relatively less focused on food
entities when compared to venues. These findings have implications for entity
linking and should be considered when designing models. In particular, given
a test post with both user and venue information, it may be easier to improve
linking accuracy by exploiting other posts from the same venue rather than from
the same user. In Section 3.2, we shall introduce a query expansion approach
based on exploiting the entity-focused characteristic of venues.
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3 Models

In this section, we present a series of models for IEL, culminating in a final best
performing model. We start with the naive Bayes model. This can be regarded
as a standard information retrieval baseline. Let w be the set of words in a post,
where for notation simplicity, we assume each unique word w ∈ w occurs only
once in the post. In our problem setting, we assume the entity probability p(e) to
be uniform as labeled posts are unavailable for estimating p(e). The probability
of food entity e given w is:

p(e|w) ∝
∏

w∈w
p(w|e) =

∏
w∈w

f(e, w) + γ∑
w′ f(e, w′) +Wγ

(1)

whereby f(e, w) is the number of co-occurrences of word w with entity e, γ is the
smoothing parameter and W is the vocabulary size. In the absence of labeled
posts, the co-occurrences are estimated solely from the Wikipedia knowledge
base. For each food entity e, we derive f(e, w) by the count of w occurrences in
the Wikipedia page of e and in Wikipedia text snippets around hyperlinks to e
(refer Section 4.1). Finally entities are ranked by p(e|w). The naive Bayes model
is efficient and highly amenable to extensions.

3.1 Entity-Indicative Weighting (EW)

The naive Bayes model multiplies word probabilities without considering which
words are more important for entity linking. Intuitively, some words are more
indicative of food entities than others and should be assigned greater importance
in entity linking models. Formally, an entity-indicative word w has relatively
high p(e|w) for some entity/entities in comparison with other words, e.g. ‘sushi’
is more entity-indicative than ‘dinner’.

An entity-indicative word is different from a high probability word given an
entity. For example, a food entity e may have high probability of generating
the word ‘rice’, i.e. p(‘rice’|e) is high. However if many other food entities are
also related to rice, then the word may not indicate e with high probability
i.e. low p(e|‘rice’). If a post w mentions other more entity-indicative words, e.g.
related to ingredients or cooking style, then such words should be assigned more
importance when computing p(e|w).

To capture the above intuition, we propose the entity-indicative weighting
(EW) model. This assigns continuous weights to words and incorporates easily
into the naive Bayes model. Let β(w) be the entity-indicative weight for word
w. This weight β(w) is added as an exponent to the term p(w|e) in Equation 1.
By taking the log to avoid underflow errors, we obtain the EW model:

ln p(e|w) ∝
∑

w∈w
β(w) ln p(w|e) (2)

Interestingly, Equation (2) is similar in form to the weighted naive Bayes model
proposed in prior work [22, 7] for classification tasks. Here, we use it for IEL.
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To compute the weights β(w), we apply the vector space model and treat
entities as documents. By definition, entity-indicative words are associated with
fewer entities and have large weights. Weights are defined by:

β(w) = log(1 + E/df(w)) (3)

where E is the number of distinct food entities considered and df(w) counts
number of food entities with at least one occurrence of w.

3.2 Query Expansion with Same-Venue Posts

Based on the entity-focused characteristic, we expect that as a venue accumu-
lates posts over time, its set of entities will be discussed repeatedly over different
posts. This implies that for a test post discussing some entity e, there may exist
other same-venue posts related to e. Hence if we augment the test post appro-
priately with words from other same-venue posts, we can potentially overcome
information sparsity in one post and improve entity linking accuracy. This strat-
egy is also known as query expansion.

Let test post w be posted from venue v. The idea is then to score candidate
words w′ appearing in other posts from v and whereby w′ 6∈ w. The expanded
words w′s aim to provide additional information for inferring the latent entity
in w. Among the many scoring schemes in the literature, we adopt a relatively
simple cosine similarity scheme from [4]. This scheme scores each candidate word
w′ by its average relatedness 0 ≤ αv(w′,w) ≤ 1 to the test post as:

αv(w′,w) =
1

|w|
∑

w∈w

dv(w′, w)√
dv(w′)dv(w)

(4)

where |w| is the number of words in w, dv(w′, w) is the count of v’s posts
containing both w′ and w; and dv(w) is the count of v’s posts with w. Intuitively,
if w′ co-occurs more with each word from w on average, then average relatedness
is higher. However, relatedness can be over-estimated for common words. To
mitigate this, Equation (4) includes in the denominator the product of word
frequencies as the normalization term.

Following query expansion using same-venue posts, we combine two different
word sets in a weighted naive Bayes model, which we refer to as QE(v):

ln p(e|{w,w’}, v) ∝
∑

w∈w
ln p(w|e) +

∑
w′∈w’

αv(w′,w) ln p(w′|e) (5)

where w’ is the set of added words for post w from venue v. Since 0 ≤ αv(w′,w) ≤
1, Equation (5) illustrates that the original query words w ∈ w have greatest
importance in the model while the importance of newly added words w′ ∈ w’
vary based on how related they are to the query.

In our experiments, we shall also compared against a model variant QE(u),
which selects augmenting words from same-user posts. As conjectured in Section
2.2, this model may be less likely to improve linking accuracy.
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3.3 Fused Model (EWQE)

We now combine the EW and QE(v) models to create a new fused model called
EWQE. Intuitively, we consider a word as important only when it is both entity-
indicative and highly related to the test post. For example, if a word is not
indicative of any entities, then it is less useful for entity linking even if it is
present in the test post or is a highly related word based on Equation (4) . On
the other hand, a non-related word may be indicative of some entity which is
unrelated to the test post, such that test post augmentation with it introduces
noise and lowers accuracy.

To model the discussed conjunction logic, we multiply the weights from
entity-indicative weighting and query expansion to obtain the model EWQE(v):

ln p(e|{w,w’}, v) ∝
∑
w∈w

β(w) ln p(w|e) +
∑

w′∈w’

β(w′)αv(w′,w) ln p(w′|e) (6)

Alternatively, one can combine entity-indicative weighting with user-based
query expansion. We denote such a model as EWQE(u) and include it for ex-
periments.

3.4 Venue-based Prior

In our final model, we augment the probabilistic generative process in Equation
(6) with a venue-based prior distribution over entities p(e|v). Let joint probability
p(e, {w,w’}, v) be factorized as p(v)p(e|v)p({w,w’}|e). We now need to compute
p(e|v) while p({w,w’}|e) can be computed as before with the EWQE(v) model.
Assuming uniform venue probability p(v) and incorporating a weighting term η
(0 ≤ η ≤ 1), we have:

ln p(e|{w,w’}, v) ∝ η ln p(e|v)+

(1− η)

(∑
w∈w

β(w) ln p(w|e) +
∑

w′∈w’

β(w′)αv(w′,w) ln p(w′|e)

)
(7)

Basically p(e|v) bias the entity score in a venue-specific manner, rather than a
post-specific manner as prescribed by query expansion. Given a set of training
posts labeled with food entities, p(e|v) is computed trivially. However in our
setting, we assume no labeled posts for training. Hence we compute Equation
(7) in a 2-stage process as follows:

– Stage 1: With a desired IEL model, link the training posts. For each venue
v, compute the aggregated entity scores p̃(e|v), eg. if using the EW model,
we compute p̃(e|v) =

∑
w∈v p(e|w). Normalize p̃(e|v) to obtain p(e|v).

– Stage 2: Combine p(e|v) with the scores from the EWQE(v) model as detailed
in Equation (7) to derive the final entity scores for ranking.
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4 Experiments

4.1 Setup

Our experiment setup is weakly supervised. Training posts are assumed to be
unlabeled with respect to food entities. These training posts are used only for
query expansion and for computing the venue prior over entities, but not for com-
puting the entity profile p(w|e). The entity profile p(w|e) and entity-indicative
weights β(w) are computed using only Wikipedia pages. However, we retain a
small validation set of entity-labeled posts for tuning model parameters with re-
spect to the ranking metrics. Also, all posts are associated with posting venues,
regardless of whether they are in the training, test or validation set.

For discussion ease, denote posts with food entity hashtags e,g, ‘#chillicrab’
as type A posts and post without such hashtags as type B posts. Type A posts are
easily associated with Wikipedia food entities, which facilitates the construction
of test and validation sets. Our datasets contain a mixture of both post types. For
Instagram, we have 18,333 type A vs 216,881 type B posts4 whereas for Burpple,
we have 1944 type A vs 200,293 type B posts. We conduct 10 experiment runs
for each dataset, whereby in each run, we mask the food entity hashtags of type A
posts and randomly assign 50% of them to the training set, 20% to the validation
set and 30% to the test set. The type B posts are all assigned to the training
set. Lastly, most of our type A posts contain only one food entity hashtag each,
hence we use such single-entity posts for evaluation in our test set.

Food Entities. We consider 76 food entities that are defined by Wikipedia as lo-
cal cuisines of Singapore5, as well as associated with distinct pages/descriptions.
For each entity e, we construct its profile, i.e. p(w|e) from its Wikipedia descrip-
tion page and Wikipedia text snippets with hyperlinks to e. For example, the
Wikipedia page ‘Pakistani cuisine’ contains many hyperlinks to the food entity
‘Naan’ 6. When building the profile for ‘Naan’, we include the preceding and
succeeding 10 words around each hyperlink.

Models to be Evaluated. We evaluate the following models:

– NB: The naive Bayes model from Equation (1).
– EW: Entity-indicative weighting as indicated in Equation (2).
– QE(v): Venue-based query expansion whereby each test post is augmented

with words from other same-venue posts, as indicated in Equation (5).
– QE(u): User-based query expansion whereby each test post is augmented

with words from other same-user posts.
– EWQE(v): Fusion of venue-based query expansion and entity-indicative weight-

ing as shown in Equation (6).

4 Filtering by vocabulary has been applied, hence the numbers sum to less than the
total food-related posts in Section 2.1.

5 https://en.wikipedia.org/wiki/Singaporean cuisine
6 oven-baked flatbread
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– EWQE(u): Fusion of user-based query expansion and entity-indicative weight-
ing.

– NB-EWQE(v): In stage 1, we compute p(e|v) with the NB model, which is
then combined with the EWQE(v) model in stage 2. See Equation (7).

– EW-EWQE(v): In stage 1, we use the EW model to compute p(e|v). In stage
2, the computed p(e|v) is combined with EWQE(v) model to score entities.

For each model, we use the validation set to tune γ, the smoothing parameter for
p(w|e), based on the grid [0.01, 0.1, 1, 10]. For NB-EWQE(v) and EW-EWQE(v),
γ is jointly tuned with η whereby η is varied in steps of 0.1 from 0 to 1.

For further comparison, we introduce three other baselines. We adapt two EL
models from [6, 5] such that they can be used for IEL. Without any adaptation,
it is impossible for the vanilla EL models to link posts directly to entities. Our
adaptations also aim to exploit the entity-focused characteristic of venues, or
other related characteristics. Lastly, we include a word embedding baseline [20]
that does not require any adaptation. The baselines are:

– TAGME: In the TAGME model [6, 15], candidate entities for a mention
are voted for by candidate entities from other mentions in the same post.
Adapting the idea to IEL, candidate entities for a post are voted for by
candidate entities from other posts in the same venue. Since a candidate
entity gathers larger votes from the same or related entities, this voting
process exploits the entity-focused characteristic of venues as well. Let wi,v

denote the i-th post from venue v. Then candidate entity ei for wi,v gathers
a vote from wj,v computed as

vote(wj,v → ei) =
1

|ej : p(ej |wj,v) > 0|
∑

ej :p(ej |wj,v)>0

sr(ei, ej)p(ej |wj,v)

(8)
where sr(ei, ej) is the Jaccard similarity of incoming Wikipedia links [15]
between ei, ej , and p(ej |wj,v) can be based on any implicit entity linking
models. Finally for ranking entities, we compute the final score for entity ei
as p(ei|wi,v)

∑
j vote(wj,v → ei).

– LOC: Locations in the form of grid cells can be entity-focused as well. To
exploit this, we implement the framework from [5]. For each grid cell, the
distributions over entities are inferred via EM learning and integrated with
implicit entity linking models. Unlike [5], we omit the dependency on posting
time as our targeted posts include food reviews which are usually posted
after, rather than during meal events. We tune grid cell lengths based on
grid [200m, 500m, 1km, 2km].

– PTE: This is a graph embedding method [20] that learns continuous vector
representation for words, posts and entities over a heterogeneous graph. The
graph consists of word nodes, post nodes and entity nodes, connected via the
following edge types: word-word, post-word and entity-word. For each test
post, we compute its vector representation by averaging over the represen-
tations of its constituent words. We then compute the cosine similarities to
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entity representations for ranking. As in [20], we use an embedding dimension
of 100. We set the number of negative samples to be 200 million.

For the baselines TAGME and LOC, we integrate the implicit entity linking
models NB, EW and EW-EWQE(v). For each model, we replace the relevant
mention-to-entity computations with post-to-entity computations. For example,
TAGME(NB) computes p(ej |wj,v) in Equation (8) using the NB model. Such in-
tegration leads to the following baseline variants: TAGME(NB), TAGME(EW),
TAGME(EW-EWQE(v)), LOC(NB), LOC(EW) and LOC(EW-EWQE(v)).

Metrics. We use the Mean Reciprocal Rank (MRR) as our evaluation metric.
Given a post wi, let the rank of its food entity be r(wi), where r(wi) = 0 for
the top rank. Over N test cases, MRR is defined as:

MRR = N−1
∑N

i=1
(r(wi) + 1)−1 (9)

The above MRR definition is a micro measure. In a sample of test posts, more
popular food entities contribute more to MRR. For further analysis, we consider
treating all entities as equally important, regardless of their popularities. Thus
we introduce Macro-MRR, the macro-averaged version of MRR. For all test posts
related to the same food entity, we compute the MRR of the food entity. We
then average the MRRs over distinct food entities. Formally:

Macro-MRR = E−1
∑E

i=1
MRR(ei) (10)

where MRR(ei) is MRR values averaged over all test posts about entity ei and
E is the number of distinct food entities.

4.2 Results

Table 2 displays the MRR and Macro-MRR values averaged over 10 runs for
each dataset. In subsequent discussions, a model is said to perform better or
worse than another model only when the differences are statistically significant
at p-level of 0.05 based on the Wilcoxon signed rank test.

EW and QE(v) easily outperform NB, which affirms the utility of entity-
indicative weighting and venue-based query expansion. EW also outperforms
QE(v), e.g. EW’s MRR is 0.461 on Instagram posts, higher than QE(v)’s MRR
of 0.403. By combining both models together in EWQE(v), we achieve even bet-
ter performance than applying EW or QE(v) alone. This supports EWQE(v)’s
modeling assumption that a word is important if it is both entity-indicative and
highly related to the test post.

While venue-based query expansion is useful, user-based query expansion
is less promising. Over the different datasets and metrics, QE(u) is inferior or
at best on par with NB. This may be due to the entity-focused characteristic
being weaker in users. This observation is consistent with our earlier empirical
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Table 2. MRR and Macro-MRR values averaged over 10 runs for each dataset. The
best performing model is bolded.

Instagram Burpple

Model MRR Macro-MRR MRR Macro-MRR

NB 0.344 0.218 0.335 0.259
EW 0.461 0.301 0.467 0.377

QE(v) 0.403 0.236 0.389 0.252
QE(u) 0.326 0.215 0.336 0.237

EWQE(v) 0.543 0.323 0.503 0.388
EWQE(u) 0.449 0.284 0.419 0.329

NB-EWQE(v) 0.543 0.323 0.500 0.389
EW-EWQE(v) 0.593 0.340 0.537 0.401
TAGME(NB) 0.368 0.233 0.344 0.259
TAGME(EW) 0.462 0.293 0.446 0.363

TAGME(EW-EWQE(v)) 0.520 0.296 0.507 0.390
LOC(NB) 0.409 0.236 0.357 0.259
LOC(EW) 0.472 0.254 0.413 0.315

LOC(EW-EWQE(v)) 0.520 0.271 0.467 0.333
PTE 0.288 0.216 0.291 0.274

findings that users are less focused on food entities when compared to venues.
Consequently user-based query expansion may augment test posts with noisy
words less related to their food entities. Combining user-based query expansion
with entity-indicative weighting also leads to mixed results. Although EWQE(u)
outperforms QE(u), the former still underperforms EW.

Our results also show that the venue-based prior distribution over enti-
ties is useful, but only if it is computed from a reasonably accurate linking
model. Over all dataset-metric combination, the best performing model is EW-
EWQE(v) which incorporates a prior computed using the EW model. Although
NB-EWQE(v) incorporates a prior as well, it utilizes the less accurate NB model.
For Instagram, the tuning procedure consistently indicates in each run that the
optimal η is 0 for NB-EWQE(v), thus it is equivalent to the model EWQE(v). For
Burpple, the optimal η is non-zero for some runs, but NB-EWQE(v) performs
only on par with EWQE in terms of statistical significance.

The TAGME variants exploit the entity-focused characteristic of venues via
a voting mechanism. Performance depends on the voting mechanism as well
as the underlying entity linking models. Intuitively better underlying models
should lead to higher ranking accuracies in the corresponding variants. For exam-
ple, TAGME(EW-EWQE(v)) outperforms TAGME(EW) while TAGME(EW)
outperforms TAGME(NB). However comparing the variants against their un-
derlying models, we note that only TAGME(NB) consistently improves over
NB, while TAGME(EW) and TAGME(EW-EWQE(v)) fails to outperform EW
and EW-EWQE(v) respectively. The same observation applies to the LOC vari-
ants. LOC(NB) consistently outperforms NB. LOC(EW) only outperforms EW
for MRR on Instagram and is inferior in other dataset-metric combination.
LOC(EW-EWQE(v)) is also inferior to EW-EWQE(v). Such mixed results of
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LOC variants may be due to grid cells being less entity-focused than venues.
Lastly, PTE performs poorly. We note that each entity has only one Wikipedia
description page and appears in a limited number of Wikipedia contexts. Hence
the Wikipedia content of food entities may be overly sparse for learning good
entity representations. There are also language differences between Wikipedia
pages and social media posts. This may impact cross-linking if embeddings are
trained on only one source, but not the other. In conclusion, our proposed model
EW-EWQE(v) performs well, despite its conceptually simple design.

4.3 Case Studies

Tables 3 to 5 illustrate different model aspects by comparing model pairs on In-
stagram posts. Comparison is based on the ranked position of the ground truth
food entity (under column e) for each post. The ranked position is denoted as
rX for model X and is 0 for the top ranked. The ground truth entities can be in-
spected by appending the entity name to the URL ‘https://en.wikipedia.org/wiki/’.

Table 3. Sample test posts to illustrate entity-indicative weighting. Words in larger
fonts indicate larger weights under the EW model.

e rNB rEW

S1 “#singapore we already ate claws .” Chilli crab 2 0

S2 “finally got to eat rojak !!!” Rojak 5 0

S3 “#singapore #tourist ” Hainanese chicken rice 18 2

Entity-indicative Weighting. Table 3 compares the models NB and EW.
For each test post, words with larger weights under the EW model are in larger
fonts. For S1 with food entity ‘Chilli crab’7, the largest weighted word is ‘claws’,
referring to a crab body part. This word is rarely mentioned with other food enti-
ties, but appears in the context around the ‘Chilli crab’ anchor in the Wikipedia
page for ‘The Amazing Race 25’, hence it is highly indicative of ‘Chilli crab’.
By assigning ‘claws’ a larger weight, EW improves the entity ranking over NB,
from a position of 2 to 0. For S2, the word ‘rojak’ is indicative of the food entity
‘Rojak’ 8. While NB does well with a ranked position of 5, EW further improves
the ranked position to 0 by weighting ‘rojak’ more relative to other words. For
S3, the food entity ’Hainanese chicken rice’9 is described in the Wikipedia page
‘Singaporean cuisine’ as the most popular dish for tourists in the meat category.
Thus by assigning a larger weight to ‘tourist’, EW improves the linking of S3.

Query Expansion. Table 4 illustrates posts where the QE model improves
over the NB model. While S4 mentions dinner, the food entity is not evi-
dent. However the word ‘dinner’ co-occurs with more informative words such

7 crabs stir-fried in chilli-based sauce
8 a traditional fruit and vegetable salad dish
9 roasted or steamed chicken with rice cooked in chicken stock
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Table 4. Sample test posts with added words (in brackets) from query expansion (QE
model). The top 5 added words with largest weights are listed.

e rNB rQE

S4
“last night dinner at #singapore #foodporn” Hainanese

19 3
(rice,0.25),(chicken,0.23),(late,0.21),(food,0.21),(to,0.20) chicken rice

S5
“indian feast #daal #palakpaneer #mangolassi

Naan 1 0@rebekkariis du vil elske det!”
(pakistani,0.17),(cuisine,0.17)(buffet,0.17)(lunch,0.17)(team,0.17)

Table 5. Sample test posts for comparing models EWQE(v) and EW-EWQE(v). rp(e|v)
corresponds to ranking with the venue prior p(e|v).

e rp(e|v) rEWQE(v) rEW−EWQE(v)

S6 “life’s simple pleasures. #gastronomy” Mee pok 0 56 0

S7
“the black pepper sauce is robust and quite Black

1 9 2
spicy, one of my favourite in singapore.” pepper crab

as ‘chicken’ and ‘rice’ in other posts from the same venue. Such words are re-
trieved with query expansion and used to augment the post. The augmented
post is then linked more accurately by the QE model. For S5, query expansion
augments the post with 6 words of which 5 words share similar weights. Out of
the 5 words, the word ‘pakistani’ is indicative of the food entity ‘Naan’, helping
to improve the ranked position further from 1 to 0.

Venue-based Prior. Table 5 compares EWQE(v) and EW-EWQE(v). S6
is posted from a food venue which serves ‘Mee pok’ 10 as one of its food enti-
ties. This food entity is mentioned explicitly in other same-venue posts. Hence
on applying the EW model, we infer this venue as having a high prior proba-
bility for this entity. In fact if we rank food entities by the venue prior p(e|v)
alone, ‘Mee pok’ is ranked at position 0. Integrating the prior distribution with
other information as done in EW-EWQE(v), the same rank position of 0 is
obtained. For S7, the ingredient black pepper sauce is mentioned, which is in-
dicative to some extent of ‘Black pepper crab’ 11. However EWQE(v) manages
only a ranked position of 9. From other same-venue posts, the venue prior is
computed and indicates the food entity to be highly probable at S7’s venue.
Integrating this information, EW-EWQE(v) improves the ranked position to 2.

4.4 Parameter Sensitivity

For models with γ as the sole tuning parameter, we compare their sensitivity with
respect to γ. Figure 2 plots the performance of NB, EW, EWQE and EWQE(v),
averaged over 10 runs for different γ values. It can be seen that EWQE(v)
outperforms NB over most of the applied γ values, i.e. 0.1, 1 and 10. Although
EWQE(v) is simply a product combination of the EW and QE(v) models, it
easily outperforms its constituent models, validating our combination approach.

10 a Chinese noodle dish
11 crabs stir-fried in black pepper sauce
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(a) Instagram MRR (b) Instagram Macro-MRR

(c) Burpple MRR (d) Burpple Macro-MRR

Fig. 2. Model performance (Y-axis) with different γ values (X-axis).

This trend is consistent across both metrics and datasets. We also note that in
the absence of a validation set for tuning, a natural option is to use Laplace
smoothing, i.e. γ = 1. In this perfectly unsupervised setting, it is reassuring that
EWQE(v) remains the best performing model. Lastly when γ is very small at
0.01, EW and EWQE(v) are under-smoothed and perform worse than NB. In
this setting where smoothing is limited, QE(v) outperforms all other models,
possibly because augmenting each test post with additional words is analogous
to additional smoothing for selected words.

5 Related Work

Explicit Entity Linking. Compared to IEL, there has been more work in
EL [10, 19, 9, 2]. In [10], Liu et al. constructed an objective function based on
mention-entity features, mention-mention features etc. When linking mentions,
entities are assigned via a decoding algorithm. In [2], the objective function is de-
fined over a graph that connects tweets close in space and time. The assumption
is that such tweets are likely to mention closely-related entities. In [19], Shen et
al. propagate users’ interest scores over an entity graph built from inter-entity
semantic-relatedness [12]. Given a test mention, candidate entities with higher
interest scores are preferred. Huang et al. [9] proposed label propagation over
graphs with mention-entity tuples as nodes. After label propagation, high scor-
ing tuples provide the mention-entity assignments. Finally, our baselines include
extensions of EL models [5, 6]. Fang and Chang [5] learned entity distributions
over time and grid cells and integrate them into a base linking system. We use
their learning framework and integrate grid cell information into our model. In
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[6], the idea is to let candidate entities across intra-document mentions vote for
each other. For each mention, top k entities with the most votes are then filtered
again by entity probability. In our extension, our voting entities are candidates
for posts from the same venue, not mentions from the same document.

Implicit Entity Linking. For IEL, Perera et al. [14] built information net-
work to link entities and knowledge nodes, using factual knowledge from the
knowledge base and contextual knowledge from labeled tweets. They then use
graph features to rank entities. The work in [11] engineered features from labeled
tweets to train decision trees for ranking entities for each tweet. This per-tweet
instead of per-mention linking resembles our IEL task. In contrast with both dis-
cussed IEL work, we assume the posts in our training set are not entity-labeled,
but are associated with venues. Thus our work explores a different task setting.

Query Expansion. Query expansion originates from the document retrieval
problem. To improve retrieval accuracy, potentially relevant words are weighted
and added to an initial query. Cummins [4] used genetic programming to learn
weighting schemes for query expansion. Qiu and Frei [16] uses a similarity the-
saurus to add words that are most similar to the query concept. Xu and Croft
[21] compared various query expansion techniques exploiting either the corpora-
wide word occurrences/relationships or exploiting the top ranked documents
returned for the initial query. Query expansion has also been applied [1] to re-
trieve relevant tweets given a user query. Fresno et al. [8] applied query expansion
to retrieve event-related keywords. Specifically they considered candidate words
from tweets close in space and time to an event-related tweet.

If we treat test posts as queries and candidate entities as documents, then
IEL can be viewed as a form of document retrieval. In this work, we use query
expansion to exploit the entity-focused characteristics of venues.

6 Conclusion

We have proposed novel yet well principled models for implicit food entity linking
in social media posts. Our best model exploits the entity-focused characteristic
of food venues and the intuition that entity-indicative words are more important
for IEL, in order to outperform more complex state-of-the-art models. In future
work, we intend to explore IEL in non-geotagged social media posts, where post-
ing venues are unknown. Lastly we point out that the entity-focused characteris-
tic appears in various forms in other problems. For example, in linking tweets to
posting venues [3], users may be focused in their visits, preferring venues close
to their home regions. Hence potentially, our model can be generalized to other
information retrieval problems.
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