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Abstract. Predictive Maintenance (PdM) is gaining popularity in in-
dustrial operations as it leverages the power of Machine Learning and
Internet of Things (IoT) to predict the future health status of equipment.
Health Indicator Learning (HIL) plays an important role in PdM as it
learns a health curve representing the health conditions of equipment
over time, so that health degradation is visually monitored and opti-
mal planning can be performed accordingly to minimize the equipment
downtime. However, HIL is a hard problem due to the fact that there
is usually no way to access the actual health of the equipment during
most of its operation. Traditionally, HIL is addressed by hand-crafting
domain-specific performance indicators or through physical modeling,
which is expensive and inapplicable for some industries. In this paper,
we propose a purely data-driven approach for solving the HIL problem
based on Deep Reinforcement Learning (DRL). Our key insight is that
the HIL problem can be mapped to a credit assignment problem. Then
DRL learns from failures by naturally backpropagating the credit of fail-
ures into intermediate states. In particular, given the observed time se-
ries of sensor, operating and event (failure) data, we learn a sequence of
health indicators that represent the underlying health conditions of phys-
ical equipment. We demonstrate that the proposed methods significantly
outperform the state-of-the-art methods for HIL and provide explainable
insights about the equipment health. In addition, we propose the use of
the learned health indicators to predict when the equipment is going to
reach its end-of-life, and demonstrate how an explainable health curve
is way more useful for a decision maker than a single-number prediction
by a black-box model. The proposed approach has a great potential in
a broader range of systems (e.g., economical and biological) as a general
framework for the automatic learning of the underlying performance of
complex systems.

Keywords: Health Indicator Learning · Deep Reinforcement Learning
· Predictive Maintenance.

1 Introduction

One of the important objectives in industrial operations is to minimize unex-
pected equipment failure. Unexpected downtime due to equipment failure can
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be very expensive for example, an unexpected failure of a mining truck in the
field can have a cost of up to $5000 per hour on operations. Besides the cost,
unexpected failures can cause safety and environmental hazards and lead to loss
of life and property. Traditionally industries have tried to address this problem
through time-based maintenance. However, time-based maintenance often causes
over maintenance [1], while still not fully being able to address the problem of
unplanned downtime. With the advent of IoT, Predictive Maintenance (PdM)
is gaining popularity. One of the key applications of PdM implies predicting
the future health status of equipment (e.g., failure prediction), and then taking
proactive action based on the predictions.

In the Machine Learning (ML) community, Predictive Maintenance (PdM)
is typically modeled either as a problem of Failure Prediction (FP) [15] problem
or the problem of estimating the Remaining Useful Life (RUL) [18], whereas
in the Prognostics and Health Management (PHM) community, the problem is
modeled as that of Health Indicator Learning (HIL). FP answers the question
(e.g., yes, no or in a probability) about whether a failure will occur in the next k
days and RUL estimates the number of days l remaining before the equipment
fails. HIL is the problem of estimating the future “health” H(t) of the equipment,
as a function of time t.

One reason for the popularity of RUL and FP in the ML community is that
they are amenable to the traditional machine learning methods - FP is often
modeled as a classification problem and RUL is modeled as a regression prob-
lem. RUL and FP modeled this way though useful, present operationalization
challenges since ML produces black-box models and explainability is extremely
desirable in industrial applications. Most domain experts are used to working
with degradation curves and expect machine learning methods to produce some-
thing similar. Moreover, FP and RUL often do not provide enough information
for optimal planning. For example, even if an operations manager is told that
the equipment will fail in the next k days, they do not know whether to take the
equipment offline tomorrow or on the kth day, since the prediction provides no
visibility into the health of the equipment during the k day period (i.e., explana-
tory power is missing). From a practical standpoint, solving these two problems
simultaneously and independently often leads to inconsistent results: FP pre-
dicts a failure will happen in k days while RUL predicts a residual life of l > k
days.

HIL addresses most of these concerns. Since the output of HIL is a health
curve H(t), one can estimate the health of the equipment at any time t and
observe the degradation over time. Moreover, once the health curve is obtained,
both RUL and FP can be solved using the health curve in a mutually consistent
manner. However, from a ML perspective, HIL is a hard problem. The problem
is essentially that of function learning, with no ground truth - i.e., there is no
way to observe the actual health of the equipment during most of the operation.
We observe the health only when the equipment fails, and typically most modern
industrial equipment are reliable and do not fail very often.
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Researchers in the PHM community address the HIL problem by either hand-
crafting a Key Performance Indicator (KPI) based on domain knowledge or try
to identify some function of sensors that captures the health of the equipment
through physical modeling. There are several challenges with these methods. In-
dustrial equipment are complex (e.g., complicated and nested systems), and it is
difficult and time-consuming for experts to come up with such KPIs. Addition-
ally, domain-specific KPIs are not applicable across industries, so that developing
a general method becomes infeasible. Furthermore, equipment is usually oper-
ated under varying operating conditions leading to significantly different health
conditions and failure modes, making it difficult for a single manually-crafted
KPI to capture health.

In this paper, we propose a machine learning based method to solve for HIL.
Our key insight is that HIL can be modeled as a credit assignment problem which
can be solved using Deep Reinforcement Learning (DRL). The life of equipment
can be thought as a series of state transitions from a state that is healthy at the
beginning to a state that is completely unhealthy when it fails. RL learns from
failures by naturally backpropagating the credit of failures into intermediate
states. In particular, given the observed time series of sensor, operating and
event (failure) data, we learn a sequence of health indicators that represent the
health conditions of equipment. The learned health indicators are then used to
solve the RUL problem.

The contributions of this paper are summarized as follows:

– We propose to formalize the health indicator learning problem as a credit
assignment problem and solve it with DRL-based approaches. To our knowl-
edge, this is the first work formalizing and solving this problems within an
RL framework. Additionally, the label sparsity problem (i.e., too few failures)
is addressed due to the nature of RL.

– We propose a simple yet effective approach to automatically learn hyper
parameters that are best for approximating health degradation behaviors.
Therefore, the proposed method does not require domain-specific KPIs and
are generic enough to be applied to equipment across industries.

– We use health indicators as compact representations (i.e., features) to solve
the RUL problem, which is one of the most challenging problem in PdM.
Therefore, we not only provide the explanation of health conditions for ob-
served data, but can also predict the future health status of equipment.

The rest of the paper is organized as follows. Section 2 describes the details
of the proposed method. Section 3 qualitatively analyzes the performance of the
proposed methods on a synthetic problem. Section 4 shows experimental results
applying our methods to a benchmark. Section 5 discusses the differences and
relations between our method and other Markov chain based methods. Section
6 gives an overview of related work on HIL. Section 7 concludes the paper.
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Table 1. Summary of Notation

Notation Meaning

t ∈ N Time step t = 1, 2, ..., T , where T is the last time step.
i ∈ N Sequence index i = 1, 2, ..., I, where I is the total number of sequences.
xti ∈ R Sensor data x at time t from sequence i.
yti ∈ R Operating condition data y at time t from sequence i.
s ∈ S State derived by discretizing {xti} into N bins: s = Discretizing(x),

where Discretizing(·) is a discretizing operation. S = {sn} n = 1, 2, ..., N
is a finite set (i.e., state space).

a ∈ A Action defined as the change of operating conditions in two time steps:

at =
−→
ut = ct+1

y − cty, where cy = Clustering(yt) is a clustering operation,
ut is a vector. A = {am},m = 1, 2, ...,M is a finite set (i.e., action space).

Rt ∈ R Immediate reward at time t.
π(a|s) Policy function of the probability of choosing action a given state s.
vπ(s) Value function of policy π.

U(s) ∈ {0, 1} Failure/non-failure labels where 1 denotes failure occurrence.
(Failures indicate the end-of-life of equipment).

Ps,a(s′) State transition probability function: when take action a in state s, the
probability of transiting to state s′.

Rs,a Reward function of the expected reward received after taking action a
in state s.

M MDP model < S,A,P·,·(·),R·,·, γ >, where γ ∈ [0, 1] is a discount factor.

2 Methodology

In this section, we first formalize the health indicator learning as a credit assign-
ment problem and propose to address it with RL in two ways: in the model-based
method, a Markov Decision Process (MDP) is learned and used to derive the
value function in a tabular form; in the model-free method, a bootstrapping algo-
rithm with function approximation is used to learn a continuous value function
without implicitly modeling the MDP. Consequently, the learned value function
maps observation data of equipment to health indicators. The notations used in
the paper are presented in Table 1.

2.1 Problem Formulation

The problem of HIL is to discover a health function H(t) = v(s|s = st) such
that the following two properties [13] are satisfied:

– Property 1: Once an initial fault occurs, the trend of the health indicators
should be monotonic: H(t) ≥ H(t+∆), t = 1, 2, ..., T −∆

– Property 2: Despite of the operating conditions and failure modes, the vari-
ance of health indicator values at failures σ2(H(Ti)), i = 1, 2, ..., I should be
minimized.
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∆ is a small positive integer (e.g., ∆ = 1 means strictly monotonic), v(s) is
a function mapping the equipment state s at any time t to a health indicator
value, and σ2 represents the variance.

By assuming the health degradation process is a MDP, we can transform the
HIL problem to a credit assignment problem and represent v(s) as the value
function (a.k.a., Bellman Equation) vπ(s) in RL [17]:

vπ(s) = Eπ[(Rt+1|St = s) + γvπ(St+1|St = s)] (1)

where γ is a discount factor, Rt is the reward function.

2.2 Model-based Health Indicator Learning

According to [17], we assume conditional independence between state transitions
and rewards in the model-based health indicator learning approach:

P [st+1, Rt+1|st, at] = P [st+1|st, at]P [Rt+1|st, at] (2)

Learning the MDP Model: According to the definition ofM =< S,A,P·,·(·),R·,·, γ >,
now MDP learning can be transformed to a supervised learning problem, in
which learning Rs,a =: s, a→ R is a regression problem and learning Ps,a(s′) =:
s, a → s′ is a density estimation problem. We use a Table Lookup method to
learn P,R directly, as presented in Algorithm 1.

Algorithm 1 MDP Learning

1: procedure Discretization(Process sensor and operating condition data into
states and actions)

2: cx ← Discretizing({xti})
3: cy ← Clustering({yti})
4: S = {cx} = {s}
5: A = {cty − ct+1

y } = {a}
6: procedure Learn M by counting visits N(s, a) to each (s, a) pair
7: Ps,a(s′) =

1
N(s,a)

I∑
i=1

Ti∑
t=1

1(st, at, st+1 = s, a, s′)

8: Rs,a = 1
N(s,a)

I∑
i=1

Ti∑
t=1

1(st, at = s, a)Rt

A policy is defined as the probability of taking an action for a given state
π(a|s). Given that the objective of the proposed method is policy evaluation,
the policy can be given or learned from data:

π(a|s) =
1

N(s)

I∑
i=1

Ti∑
t=1

1(st, at = s, a) (3)
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where N(s) is the number of occurrence of s. Note that stationary policies are
assumed.

To define the immediate reward Rt, three scenarios (i.e., non-failure to non-
failure, non-failure to failure, and failure to failure) are considered:

Rt =


0 U(st) = U(st+1) = 0

−1.0 U(st) = 0, U(st+1) = 1

Rff U(st) = 1

(4)

Rff is a hyper-parameter that can be tuned and Rff > −1.0 to impose more
penalty for failure-to-failure transitions. We also propose an alternative reward
function to handle faults and never-fail equipment in Appendix 1.

Learning Health Indicator Directly (HID) We rewrite Eq. 1 as:

vπ(s) = Eπ[Rt+1|St = s] + γEπ[v(St+1)|St = s]

= R(s) + γ
∑
s′∈S
Ps(s′)v(s′) (5)

where R(s) and Ps(s′) can be calculated as:

R(s) =
∑
a∈A

π(a|s)Rs,a (6)

Ps(s′) =
∑
a∈A

π(a|s)Ps,a(s′) (7)

Eq. 5 can be expressed using matrices as:

v = R + γPv (8)

and solved as:
v = (I − γP)−1R (9)

where I is the identity matrix. For simplicity, we omit the notation π by using
v(s) to represent vπ(s) throughout the paper without losing the meaning that
v(s) is the value function of the policy π. To deal with a large state space,
we also propose an iterative approach to learn health indicator using Dynamic
Programming (HIDP), as presented in the aforementioned Appendix.

2.3 Model-free Methods

In real-world scenarios the equipment can go through a very large number of
states, which makes the model-based method less efficient and inapplicable.
Thus, we propose a model free method to learn the health indicators of states
for a given policy without explicitly modeling π and Ps,a(s′).

1 https://tinyurl.com/yaguzvuc

https://tinyurl.com/yaguzvuc
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Algorithm 2 Temporal Difference (0) with Function Approximation

1: Initialize value function v with random weight θ
2: Build a memory of experience eti = (xti, R

t+1
i , xt+1

i ) into a data set D = {eti}, i =
1, ..., I, t = 1, ..., Ti and randomize.

3: do
4: Sample a minibatch of m experiences (x,R, x′) ∼ U(D)
5: for i = 1, ...,m do
6: zi = Rt+1

i + γv̂θ(x
t+1
i )

7: θ := arg minθ(zi − v̂θ(xti))
8: while True

Health Indicator Temporal-Difference Learning with Function Ap-
proximation (HITDFA) To further extend the health indicator learning into
the continuous space, we define v̂θ(x) parameterized by θ as a function to approx-
imate the continuous state space, where θ can be a deep neural network. Given
the objective function in Eq. 1, we use real experience instead of the expectation
to update the value function, as shown in Algorithm 2. In the HITDFA method,
memory replay [8] is used to remove correlations in the observation sequence
and smoothing over changes in the data distribution.

Note that the proposed HITDFA method learns the health indicators using
value function v(s), but it can be easily extended to learn the action value
function q(s, a) for each state-action pair. Consequently, we can replace v̂θ(x

t
i)

with q̂θ(x
t
i, a

t
i) and v̂θ(x

t+1
i ) with q̂θ(x

t+1
i , at+1

i ). Similarly, such extension can
also be applied to HID method.

In the proposed RL-based methods, there are two hyper-parameters that
need to be learned: γ and Rff (Eq. 4). We use a simple yet effective grid search
approach to find the hyper parameter settings that 1) make H(t) monotonic
(i.e., the first constraint in Section 2.1), and 2) obtain the minimum variance of
H(Ti), i = 1, 2, ..., I (i.e., second constraint).

3 Qualitative Analysis of RL-based HIL

In this section, we first study an ideal equipment which has only three states
{s1, s2, s3}, representing health, intermediate, and failure states respectively. The
initial state s0 = s1 and the state probability transition matrix is given as:

P =

0 1 0
0 0 1
0 0 1

 (10)

Now we use HID to learn the health indicators. By selecting the reward
function Rff = −2 and varying γ, various v can be calculated according to
Eq. 9. Since the objective is to study the degradation behaviors, all the learned
value functions are rescaled to [−1, 0] with 0 indicating healthy and −1 indicating
failed, as presented in Fig. 1(a). When we fix γ = 0.9 and vary Rff , significantly
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Fig. 1. Using γ and Rff to characterize different health degradation behaviors.

different degradation behaviors are obtained. It can be observed in Fig. 1(b) that
a larger γ leads to the concave property, which is because γ as the discount factor
trades-off the importance of earlier versus later rewards. Therefore, a larger γ
tends to emphasize the affect of failures happening at the end of the sequence.
The opposite trend is observed when the immediate reward of staying in a failure
state is penalized much more than transferring to a failure state (i.e., more
negative Rff ). This is because the reward shapes the underlying relationship
between failure and non-failure states. A more negative reward implies the larger
difference between health indicator values at failure state and non-failure state,
which makes the curve in Fig. 1(b) shift from concave to convex.

Therefore, the proposed method is capable of approximating different health
degradation behaviors by tuning hyper parameters to represent different rela-
tionships between failure/non-failure states for a given problem (i.e., MDP).
This also differentiates our methods from previous works such as [7] that can
only model one type of degradation behavior (e.g., exponential). Potentially, the
proposed methods are applicable to a wide range of physical equipment.

4 Quantitative Analysis of RL-based HIL

To evaluate the performance of the proposed learning methods, a benchmark is
used to demonstrate that the learned health indicators satisfy essential properties
in health degradation development (i.e., Property 1 and 2 in Section 2.1). Then,
we conduct experiments to validate the effectiveness of the proposed method by
examining if testing health indicator curves in run-to-failure data fall into the
same failure threshold estimated from training curves. Lastly, our approaches are
combined with a regression model to predict RULs to demonstrate that different
PdM tasks can be achieved using the proposed methods.
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4.1 Experimental Setup

To quantitatively investigate the effectiveness of the proposed methods, we con-
duct experiments with the NASA C-MAPSS (Commercial Modular Aero-Propulsion
System Simulation) data set, as it is a standard benchmark widely used in PHM
community [14]. This is a Turbofan Engine Degradation Simulation Data Set
contains measurements that simulate the degradation of several turbofan en-
gines under different operating conditions. This benchmark has four data sets
(FD001 ∼ FD004), consisting of sensor data, operating condition data, and mod-
els a number of failure modes. At each operating time cycle, a snapshot of sensor
data (i.e., 21 sensors) and operating condition data (i.e., 3 operating conditions)
are collected. The sensor readings reflect the current status of the engine, while
the operating conditions substantially effect the engine health performance. More
information about this data set can be found in [14]. The engine is operating
normally at the start of each time series, and develops a failure at some point
in time, since which the fault grows in magnitude until failure. Before using the
data set, we preprocess each sensor dimension data by MinMax normalization

xi = xi−min(xi)
max(xi)−xi

. The propsed methods are implemented on a Linux machine

with an Intel Xeon E5 1.7G 6-core CPU, an NVIDIA TITAN X GPU, and
32Gb memory. For HID and HITDFA, both the health indicator inference time
and prediction time are in a few milliseconds level, which are far less than one
operating cycle in most human-operated equipment.

As described in [14], the operating conditions can be clustered into 6 distinct
clusters. We apply K-means to cluster all operating condition data and construct
the action set {a} = A as defined in Section 2. The sensor data is clustered into
400 distinct states. For each data set, we assume a unique policy and learn the
corresponding value function.

Using the C-MAPSS data set, we quantitatively evaluate our methods in the
following tasks:

– Health Degradation Behavior Analysis: Given run-to-failure data, val-
idate the soundness of the proposed methods by examining H(t) with the
two essential properties and an additional property that is given in the data
set, and compare the results with baselines.

– HIL Performance Validation: Given run-to-failure data, split the set into
training and testing sets, then learn Htrain(t) on the training set to derive
the distribution of the failure threshold, and finally validate on the testing
set that Htest(Ti) falls into the same threshold.

– RUL Estimation: Given run-to-failure data and prior-to-failure data, train
a regression model based on Htrain(t) in the run-to-failure data, and use the
learned regression model to predict Htest(t) in the prior-to-failure set to
estimate RULs.

4.2 Health Degradation Behavior Analysis

Using the proposed approach in Section 2.3, the hyper parameters satisfying
the constraints for each policy (i.e., data set) are found. The health indicators
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Fig. 2. Health degradation of randomly selected sequences learned by HID. First row:
training, second row: testing.

of randomly selected training and testing sequences from each sub data set is
presented in Fig. 2. It can be observed that even though there are fluctuations
(due to nosies and can be smoothed by postprocessing), the monotonic property
still holds (i.e., the first constraint in Section 2.1 is satisfied). For different H(t)
curves, the critical points (as highlighted by the red circles in the first row in
Fig. 2) after which the value decreases sharply are also observed. A plausible
explanation is that the proposed method learns the health value of each state,
and the state transition in the sequence decides the shape of the curve, as well
as the critical points in the curve.

To validate the second constraint in Section 2.1, we compare results of the
learned model with a baseline health indicator learning method [7] in Table 2.
Our proposed methods significantly outperform the composite health indicator
and sensor-wise indicators in orders of magnitude. Note that [7] only studies
FD001 set, so that we compare variances on the same data set.

Even thought the ground truth health values are not available, Saxena et
al. [14] reveals that the degradation is exponential:H(t) = 1−d−exp{atb}, where
d is the non-zero initial degradation and a, b are coefficients. It can be clearly
observed from Fig. 2 that our model is able to characterize the exponential form
of degradation.

Table 2. Comparison of variances between proposed methods and baselines. From T24
to W32, and CompHI are health indicators in [7], and the variance results are given
by using the corresponding sensor.

Hea. Ind. T24 T50 P30 Nf Ps30 Phi NRf

Variance 0.0274 0.014 0.0264 0.0683 0.0154 0.0206 0.0580

Hea. Ind. BPR htBleed W31 W32 CompHI HID HITDFA

Variance 0.0225 0.0435 0.0220 0.0317 0.0101 7.1× 10−5 1.05× 10−5
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4.3 HIL Generalization Performance Validation

It is important to validate that when apply the learned model to unseen (i.e.,
testing) run-to-failure sequences, it is still capable of rendering consistent health
degradation behavior and ends up with consistent health indicator values at the
failures. In this section, we conduct such experiments to validate the generaliza-
tion performance of the proposed methods. The run-to-failure data in each data
set is split into training (90%) and testing (10%) sets. In training, we apply HID
method to learn v(s) for each state, and obtain Htrain(t). The corresponding
health indicator values at failures (i.e., {hT }train = Htrain(Ti), i = 1, 2, ...I) are
obtained as well. Note that we assume in each data set, testing data and training
data are generated under the same policy.

We estimate the density function F (hT ) of hT using Gaussian kernel (as
shown in Fig. 3). Then the failure threshold hf is defined as hf = argmax(F (hT )).
As suggested by [14], health scores are normalized to a fixed scale, we also nor-

malize health indicators by hf : H(t) = H(t)
|hf | , so that hf = −1. H(t) is rescaled

to a region close to [−1, 0], where 0 represents the perfect health status and
−1 represents the failed status. In Fig. 3, the area between the red dash lines
(with the right line indicates hfmax

and left line indicates hfmin
) indicating the

confidence level c (e.g., 95%): c =
∫ hfmax

hfmin
F (hT )dhT .

In testing, we apply the learned model to obtain Htest(t), and {hT }test =
Htest(Ti). By finding the health indicator that is closest to hf , we can obtain the
estimated failure time: T ′ = H−1(arg max(F (hT ))), where hfmin ≤ hT ≤ hfmax .
Fig. 4 presents H(t) of randomly selected testing data and the learned failure
threshold region, where the read dash lines correspond to the confidence area
in Fig. 3. We use Root-Mean-Square-Error (RMSE) for performance evaluation:

RMSE =
√

1
I

∑
i∈I (T ′i − Ti)

2
.

It can be observed in Fig. 5 that our approach achieves better performance on
FD001 and FD003 compared to FD002 and FD004, due to the fact that FD001
and FD003 have a simpler policy (i.e., π(a0|si) = 1, i = 1, 2, ..., N , where a0 is the
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Fig. 6. RUL estimation.

action that is always taken), and FD002 and FD004 involve complicated policies
that are difficult to evaluate. It can also be observed that HITDFA has a lower
variance than HID, due to the fact that 1) model-free method can yield better
performance since its performance does not depend on the quality of a MDP
model; 2) function approximation is adopted in HITDFA so that information
lost in state discretization in the HID is avoided.

The objective of this experiment is to validate that the proposed methods is
powerful in characterizing the health curves when new observations are given.
Our proposed health indicator learning methods can be easily combined with
regression models for prediction, as presented in the next section.

4.4 Remaining Useful Life Estimation

In this experiment, we use the health indicators learned from our proposed meth-
ods to solve the RUL problem. The objective is to validate that our methods
are capable of learning a good representation of health conditions, which can be
used as a feature for prediction models to solve PdM problems.

We use all run-to-failure data as a training set, and prior-to-failure data
as a testing set. First, we learn the value function from the training set, and
derive the health indicator sequences Htrain(t) and Htest(t). Then Htrain(t)
are used to learn a Seq2Seq deep neural network [16], which can predict health
indicator sequence Ĥ(t) given Htest(t) derived from prior-to-failure data. Finally,
the failure threshold in Section 4.3 is applied to find the failure time T ′ in
Ĥ(t). Fig. 6 shows the given health indicators (red dots), the predicted health
indicators (blue dots), and the true and predicted failures. The predicted health
degradation curve provides rich information that can be easily interpreted by
operators. For example, the critical points (in orange circle) can be used to decide
when to perform preventive maintenance on the equipment to avoid downtime
and maximize utilization.
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Table 3. RMSE (%) comparison of RUL with DL methods on C-MAPSS data

Data Set #1 #2 #3 #4 Average

MLP (Multi Layer Perceptron) [2] 37.56 80.03 37.39 77.37 58.09
SVR (Support Vector Regression) [2] 20.96 42.00 21.05 45.35 32.34
RVR (Relevance Vector Regression) [2] 23.80 31.30 22.37 34.34 27.95
CNN (Convolutional Neural Network) [2] 18.45 30.29 19.82 29.16 24.43
Deep LSTM (Long-short Term Memory) [18] 16.14 24.49 16.18 28.17 21.25
LSTMBS [6] 14.89 26.86 15.11 27.11 20.99
HID 23.76 38.80 37.11 58.16 39.46
HITDFA 23.01 39.00 39.69 58.10 39.95

In Table 3, we compare RMSE of our methods with state-of-the-art Deep
Learning (DL) approaches. It can be observed that our methods achieve perfor-
mance worse than LSTM and CNN, and better than MLP. A plausible expla-
nation is that the learned health indicator is actually a 1D compact representa-
tion of sensor measurement from equipment, which is semantically meaningful
(i.e., health), but certain information is compressed or lost. In contrast, DL ap-
proaches map sensor measurements to RULs directly by constructing complex
representations [18] so that the lower error rate are achieved. However, DL-based
RUL estimation can only give a single number about how many days left before
failure, without any insight about the health degradation over time. Therefore,
it is difficult to make the optimal operation and maintenance decisions solely
based on the RULs predicted by these approaches.

Besides of the comparison with DL, we are more interested in comparing
our methods with other HIL approaches. In these approaches, Mean-Absolute-
Percentage-Errors (MAPE ) is the most popular metric as it measures the relative
- rather than the absolute - magnitude of the prediction error in sequences.

Therefore, we use the same MAPE = 1
I

∑
i∈I

∣∣∣ T ′
i−Ti

Ti+Oi

∣∣∣ as [7], where Oi is the

length of observed sequence i. From Table 4, it can be observed that our methods
outperform state-of-the-art HIL approaches. The improvement is calculated as
Improvement = 1 − (MAPEHID/MAPEstate−of−the−art). It is noteworthy
that our methods achieve a good performance even in FD002 and FD004, which
are known to be difficult to learn due to the complex operating conditions and
failure modes in the data. A plausible explanation is that we regard each data
set independently to learn and evaluate the corresponding policy, so that the
interferences in various policies are excluded. Ideally, if the environment used to
generate the data (e.g., a simulator) is available, a random policy can be applied
to acquire infinite experience to learn v(s), despite of multiple or single operating
conditions and failure modes.

5 Discussion

In this section, we discuss relationship of proposed methods with Markov Chain
and Hidden Markov Model. For equipment without explicitly defined controllable
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Table 4. Comparison of the proposed methods with other HIL methods on C-MAPSS
data based on MAPE (%) (table adapted from [12])

Data Set #1 #2 #3 #4 Average

CompHI [7] 9 - - - -
ANN [5] 43 48 44 49 46
FS-LSSVR [5] 38 44 40 47 42.5
RULCLIPPER [10] 20 32 23 34 27.25
HID 9.87 18.05 13.08 31.00 18.00
HITDFA 8.85 18.10 14.10 32.00 18.27

Improvement 1.67% 43.59% 43.13% 8.82% 33.95%

parts (i.e., no actions), the proposed MDP model can be easily transformed to
Markov Chain by removing at and the proposed methods can still be applied. Our
methods are also different from Hidden Markov Models (HMMs). First, HMM
is supervised and requires the actual health indicator values for training, while
our RL-based method does not. In HMM-based approaches, it usually creates
X labels artificially by defining different health levels. The coarse definition of
health levels leads to a very rough HIL results. Moreover, the definition and
segmentation of health levels require a lot of domain knowledge. In contrast, the
proposed method discovers the evolution of health indicators automatically by
learning values for N(>> X) discrete sensory states. Second, our method models
actions separately from state, while HMM considers actions as some additional
dimensions in the state space. This leads to N ×M states (M is the number of
actions) and X hidden states and hence, makes the computation expensive. In
contrast, our method only has N states and no hidden states.

When generalize the proposed methods to other domains where the feature
spaces are large (as opposed to 21 sensor data and 3 operating conditions in
C-MAPSS), feature selection approaches can be used to preprocess the data in
HIT. Automatic feature learning mechanism such as convolutional layers can be
used as the first part in a deep network (i.e., θ) in HITDFA.

6 Related Work

In this section, we first give an overview of methods formalizing the health in-
dicator learning problem as a classification problem and learning coarse-grained
health indicators. Then we review methods learning fine-grained health values by
mapping sensor measurement to continuous health values. Lastly, methods that
map the learned health indicators to RULs to perform prognostics are reviewed.

To detect anomaly, assess health, or identify failures, a known target (i.e.,
ground truth) is required to evaluate the performance of the learned health indi-
cators. Some methods [9][11] label data with pre-defined degradation levels: nor-
mal, knee corresponding, accelerated degradation, and failure. Then the learning
can be converted to a classification problem that can be solved using supervised
approaches such as HMM [9]. This type of methods require hand-crafted seg-
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mentations in order to label the data with the levels, which heavily depends on
domain knowledge, and these labels are only approximation to ground truth,
which all make it less applicable in general health indicator learning. Different
from these methods, our approach is capable of automatically learning health
indicators from data, without relying on hand-picked labels.

Due to the fact that classification approaches can only learn coarse health
levels, alternative approaches are proposed to map sensor measurements to con-
tinuous health indicator values. By leveraging dimension reduction methods, the
work of [3] finds the most informative individual sensor and learns a health in-
dex. In contrast, the methods proposed in this paper learn a mapping function
from all sensor measurement to health indicators, without losing any informa-
tion in dimension reduction as in [3]. Similar to our methods, a composite health
index is modeled by fusing data from all sensors [7]. However, the work of [7]
can only deal with equipment operated under a single operating condition and
falls into a single failure mode, while our proposed methods can deal with more
complicated situations.

Based on the learned health index, the prognostics problem is addressed by
learning a second mapping links health index values to the RUL. Son et al. [4]
models the health degradation process as a gamma process, then finds the hidden
degradation states by Gibbs algorithm, and estimates RUL as a random variables
with a probability distribution. As discussed in [12], the performance for RUL
prediction depends on both the health indicator learning and prediction.

7 Conclusion

In the emerging area of predictive maintenance, there is a crucial demand from
the users to abstract the complexity of physical systems behind explainable in-
dicators that reflect the true status of these systems and justify the very costly
actions that the users might take in response to predictions. This paper takes a
major step forward toward achieving this goal by providing the ability to learn
health indicators from sensor data given information about a few failure inci-
dents. To the best of our knowledge, this is the first work to formulate this
Health Indicator Learning (HIL) problem as a credit assignment problem and
model the health indicator as the output of a state value function. The paper pro-
posed both model-based and model-free RL methods to solve the value function.
In particular, we proposed an automatic hyperparameter learning approach by
using simple physical properties as constraints, which makes our method widely
applicable across different domains and industries. We demonstrated the effec-
tiveness of our method on synthetic data as well as well-known benchmark data
sets. We showed that the method can learn the health indicators of equipment
operating under various conditions even in the presence of data from various fail-
ure modes. Experiments also demonstrated that the proposed methods achieve
33.95% improvement in predicting Remaining Useful Life (RUL) in comparison
to state-of-the-art methods for the HIL problem. Our method keeps the distinct
quality of HIL methods in providing explainable predictions in the format of a
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degradation curve. This is in contrast to black-box regression models such as
LSTM which directly predict RUL as a single number and provide a complex
feature map that cannot be explained to decision makers.
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