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Abstract. The redundant sources problem in multi-source learning al-
ways exists in various real-world applications such as multimedia analy-
sis, information retrieval, and medical diagnosis, in which the heteroge-
neous representations from different sources always have three-way re-
dundancies. More seriously, the redundancies will cost a lot of storage
space, cause high computational time, and degrade the performance of
learner. This paper is an attempt to jointly reduce redundant sources.
Specifically, a novel Heterogeneous Manifold Smoothness Learning (HMSL)
model is proposed to linearly map multi-source data to a low-dimensional
feature-isomorphic space, in which the information-correlated represen-
tations are close along manifold while the semantic-complementary in-
stances are close in Euclidean distance. Furthermore, to eliminate three-
way redundancies, we present a new Correlation-based Multi-source Re-
dundancy Reduction (CMRR) method with 2,1-norm equation and gen-
eralized elementary transformation constraints to reduce redundant sources
in the learned feature-isomorphic space. Comprehensive empirical inves-
tigations are presented that confirm the promise of our proposed frame-
work.

Keywords: Multi-source · redundant · heterogeneous · manifold mea-
sure · dimension reduction · sample selection.

1 Introduction

Generally, due to incorrect data storage manner and the like, not all instances
are a concise and effective reflection of objective reality, inevitably leading to
the redundant sources of multi-source data. Note that different from duplicated
data, multi-source heterogeneous redundant data are those which could seriously
affect the performance of the learner. Rather, as shown in Fig.1, there is a dis-
tinct difference between the redundant sources problem in multi-source learning
and mono-source scenario, because multi-source heterogeneous redundant data
contain the following three-way redundancies:
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Fig. 1. Multi- and Mono-Source Redundant Data. The x7, x8, x9, and x10 denote
the redundant representations from Source Sx. Similarly, the y7, y8, y9, y10, y11, y12,
and y13 are the redundant representations from Source Sy. The a1, a2, a3, a4, and
a5 represents the features in the representations from Source Sx. The features in the
representations from Source Sy are composed of the b1, b2, b3, b4, b5, b6, and b7.
The three-way redundancies are DRE, SFS, and CRO, respectively. The double-level
heterogeneities consist of FDD and SSD.

– Data Representations Excessiveness (DRE). The existing of multiple
unduplicated representations of the same object in the same source leads to
taking up too much storage space.

– Sample Features Superabundance (SFS). Superabundance caused by
curse of dimensionality [4] refers to a high-dimensional space embedding
some related or randomized dimensions, resulting in high computational
time.

– Complementary Relationships Overplus (CRO). One representation
from one source has corresponding relationships with multiple heterogeneous
descriptions from another source. This overplus will bring about a significant
decline in the performances of multi-source representations.

Consequently, due to the existing of three-way redundancies, the redundant
sources problem owns double-level heterogeneities, i.e., Feature Dimension Dis-
similarity (FDD) and Sample Size Difference (SSD) (see Fig.1). First, different
sources use different dimensions and different attributes to represent the same
object [29, 10, 14]; besides, there are different number of instances in each source.
Even more serious is that these redundancies severely impact the performances
of multi-source data, resulting in false analysis, clustering, classification, and
retrieval [24, 25, 12]. Therefore, it is extremely necessary to develop an effective
reducing method for multi-source heterogeneous redundant data.

For the past few years, to deal with redundancies problem, various machine
learning methods have been investigated to reduce computational cost and im-
prove learning accuracy. Up to now, the existing methods involve dimension re-
duction techniques[18, 17, 24, 13] and sample selection approaches [25, 5, 21, 22].

Dimension Reduction Techniques In [18], Huan et al. investigated a
feature extraction approach, called Knowledge Transfer with Low-Quality Data
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(KTLQD), to leverage the available auxiliary data sources to aid in knowledge
discovery. Nie et al. [17] proposed an Efficient and Robust Feature Selection
via Joint `2,1-Norms Minimization (ERFSJNM) method, which used `2,1-norm
regularization to extract meaningful features and eliminate noisy ones across all
data points with joint sparsity. Wang et al. [24] studied a feature selection frame-
work, called Feature Selection via Global Redundancy Minimization (FSGRM),
to globally minimize the feature redundancy with maximizing the given feature
ranking scores. An unsupervised feature selection scheme, namely, Nonnegative
Spectral Analysis with Constrained Redundancy (NSACR), was developed by
Li et al. [13] through jointly leveraging nonnegative spectral clustering and re-
dundancy analysis.

Sample Selection Approaches Wang et al. [25] proposed a sample se-
lection mechanism based on the principle of maximal classification ambiguity,
i.e., Maximum Ambiguity-based Sample Selection in Fuzzy Decision Tree Induc-
tion (MASSFDTI), to select a number of representative samples from a large
database. In [5], a Sample Pair Selection with Rough Set (SPSRS) framework
was proposed in order to compress the discernibility function of a decision ta-
ble so that only minimal elements in the discernibility matrix were employed to
find reducts. Shahrian and Rajan [21] designed a content-based sample selection
method, called Weighted Color and Texture Sample Selection for Image Matting
(WCTSSIM), in which color information was leveraged by color sampling-based
matting methods to find the best known samples for foreground and background
color of unknown pixels. Su et al. [22] developed an Active Correction Prop-
agation (ACP) method using a sample selection criterion for active query of
informative samples by minimizing the expected prediction error.

Generally, these existing methods can eliminate only one kind of redundancy,
not three kinds of redundancy. Moreover, these methods were designed for single-
source data like many other conventional data mining methods. Accordingly,
it is impossible for them to eliminate the double-level heterogeneities among
different redundant sources. To address the limitations of existing methods, we
attempt to explore a multi-source reducing framework to jointly eliminate three-
way redundancies and double-level heterogeneities at the same time.

1.1 Organization

The remainder of this paper is organized as follows: A general framework for
jointly reducing the redundant sources of multi-source data is proposed in Sec-
tion 2. Furthermore, the efficient algorithms are provided to solve the proposed
framework in Section 3. Section 4 evaluates and analyzes the proposed frame-
work on three multi-source datasets. Finally, our conclusions are presented in
Section 5.

1.2 Notations

In Table 2, we describe the notations needed to understand our proposed algo-
rithm.
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Table 1. Notations

Notation Description

Sx Source X
Sy Source Y

XN ∈ Rn1×dx Non-redundant samples in Sx
YN ∈ Rn1×dy Non-redundant samples in Sy
LN ∈ Rn1×m Label indicator matrix
xi ∈ Rdx The i-th sample from Sx
yi ∈ Rdy The i-th sample from Sy

n1 Number of non-redundant samples
dx Dimensionality of Sx
dy Dimensionality of Sy
m Number of labels

(xi, yi) The i-th multi-source datum
XR ∈ Rn2×dx Redundant representations in Sx
YR ∈ Rn3×dy Redundant representations in Sy

n2 Number of redundant samples in Sx
n3 Number of redundant samples in Sy
|| · ||F Frobenius norm
|| · ||∗ Trace norm

Sk×k+ Positive semi-definite matrices
Of(·) Gradient of smooth function f(·)
| · | Absolute value

Ik ∈ Rk×k Identity matrix

2 Reducing Multi-Source Heterogeneous Redundant
Data

A general simplifying framework is proposed in this section to jointly reduce the
redundant sources of multi-source data. Fig.2 presents an overview of the pro-
posed framework. In this example, a set of multi-source data consists of Source
X and Source Y . There are a certain amount of multi-source non-redundant
data such as XN and YN . However, some multi-source data XR and YR have
three-way redundancies and double-level heterogeneities. For instance, the CRO
among different sources brings about that the sample x7 in Source X is corre-
lated with multiple instances y7, y8, and y9 in Source Y ; additionally, there are
multiple representations y11, y12, and y13 similar to y10 due to the DRE in Source
Y ; furthermore, the representations in the sources are too much superabundant
because of the SFS. As a result, the feature dimensions are heterogeneous and
there are different number of samples in these sources, i.e., FDD and SSD.

To jointly reduce the redundant sources of multi-source data, HMSL model
learns a low-dimensional feature homogeneous subspace, in which the information-
correlated representations are close along manifold while the semantic-complementary
instances are close in Euclidean distance at the same time. Then, CMRR model
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Fig. 2. Framework for Joint Multi-Source Reduction.

removes the three-way redundancies and double-level heterogeneities existing in
the multi-source heterogeneous redundant data XR and YR from the feature-
homogeneous space under the learned complementarity, correlation, and dis-
tributivity restraints.

The following subsections present more details.

2.1 The Proposed HMSL Model

This subsection presents a new HMSL model, which has pseudo-metric con-
straints, manifold regularization, and leave-one-out validation to correlate dif-
ferent sources. In HMSL model, the existing non-redundant heterogeneous repre-
sentations XN and YN are utilized to learn two heterogeneous linear transforma-
tions A and B, a decision matrix W , and a manifold smoothness measure M to
mine the semantic complementarity, information correlation, and distributional
similarity among different sources. As a consequence, the heterogeneous repre-
sentations from different sources are linearly mapped into a low-dimensional
feature-homogeneous space, in which the information-correlated samples are
close along manifold while the semantic-complementary instances are close in
Euclidean distance.

Specifically, the proposed method can be formulated as follows:

Ψ1:
min

A,B,W,M
fS(A,B,W ) + αgM (A,B,M)− βhD(A,B)

s.t. ATA = I, BTB = I, and M � 0,
(1)
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where A ∈Rdx×k, B ∈Rdy×k, k ≤ min(dx, dy), and α and β are two trade-off
parameters. The orthogonal constraints ATA = I and BTB = I can effectively
eliminate the correlation among different features in the same source. The pos-
itive semidefinite restraint M ∈ Sk×k+ � 0 can be used to obtain a well-defined
pseudo-metric.

The objective function in Eq.(1) consists of the semantic, correlation, and
distributional subfunctions. The semantic subfunction fS(A,B,W ):

fS(A,B,W ) =

∥∥∥∥[XNA
YNB

]
W −

[
LN
LN

]∥∥∥∥2
F

, (2)

is based on multivariant linear regression to capture the semantic complemen-
tarity between different sources.

The first term in the objective function is multivariate linear regression based
on the semantic function, which is used to capture the semantic complementarity
between different sources.

Moreover, we define the new distance metrics as follow to obtain a Maha-
lanobis distance:

DMX
(xi, xj) = (xi − xj)TMX(xi − xj), (3)

DMY
(yi, yj) = (yi − yj)TMY (yi − yj), (4)

where MX = ATA and MY = BTB. Therefore, each pair of co-occurring hetero-
geneous representations (xi, yi) can be embedded by the linear transformations
A and B into a feature-homogeneous space.

Accordingly, the motivation of introducing the correlation function gM (A,B,M):

gM (A,B,M) =‖ XNAMBTY TN ‖2F , (5)

is to measure the smoothness between A and B to extract the information cor-
relation among heterogeneous representations.

Additionally, CtX and CtY denote respectively the sample sets of t-th class from
the sources Vx and Vy. We assume that each sample xi selects another sample yj
from another source as its neighbor with the probability pij . Similarly, qij refers
to the probability that yi is the neighbor of xj .

We apply the softmax under the Euclidean distance in the feature-homogeneous
space to define pij and qij as follows:

pij =
exp(− ‖ Axi −Byj ‖2)∑
k exp(− ‖ Axi −Byk ‖2)

, (6)

qij =
exp(− ‖ Byi −Axj ‖2)∑
k exp(− ‖ Byi −Axk ‖2)

. (7)

Accordingly, the probabilities pi and qi:

pi =
∑

xi∈CtX & yj∈CtY

pij , (8)
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qi =
∑

yi∈CtY & xj∈CtX

qij , (9)

represents the odds which the sample i will be correctly classified. Consequently,
the distributional similarity subfunction hD(A,B) based on Mahalanobis dis-
tance:

hD(A,B) =
∑
pi +

∑
qi, (10)

is a leave-one-out validation, which is used to capture the distributional similarity
between different sources.

Section 3.1 presents an efficient algorithm to solve Ψ1.

2.2 The Proposed CMRR Model

Furthermore, to reduce the three-way redundancies and remove double-level
heterogeneities, we propose a new CMRR model with GET constraints and
GEC criterion to recover one-to-one complementary relationship between the
heterogeneous representations from redundant sources in the learned feature-
homogeneous space.

Specifically, assuming (A∗, B∗,W ∗,M∗) be the optimal solutions of Ψ1. Then
the proposed approach can be formulated:

Ω1:

min
P,Q
‖PTHW ∗−QTRW ∗‖2F +γ ‖PTHM∗RTQ‖2F +

τ ‖
(
PTH +QTR

)
/2 ‖∗

s.t. P ∈Σn2×n4
, Q∈Σn3×n4

, ‖P‖2,1 =‖Q‖2,1 =n4,

(11)

where γ and τ are two regularization parameters, P andQ are two GET matrices,
H = XRA

∗ and R = YRB
∗ are the redundant matrices in Sx and Sy, Σn2×n4 ∈

Rn2×n4 and Σn3×n4
∈ Rn3×n4 are two set of GET matrices, and n4 = min(n2, n3).

The first term in the objective function uses A∗, B∗, and W ∗ to build one-
to-one complementary relationship between the heterogeneous representations of
the same object while removing CRO and eliminating SFS. The second term in
the objective function is used to clear DRE in the same source by M∗ in order to
extract the correlated information between heterogeneous representations. The
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Fig. 3. Correlation-based Multi-source Redundancy Reduction. To establish one-to-
one complementary relationship while removing CRO, CMRR model imposes the GET
constraints on P and Q to switch the rows in H and R.

low-rank regularization based on trace norm (the third term in the objective
function) is used to make the complex representations as linearly-separable as
possible. As shown in Fig.3, to switch the rows in H and R, the GET constraints
are imposed on P and Q to establish one-to-one complementary relationship
while removing CRO. The motivation of introducing the 2,1-norm equality re-
straint is to clear DRE in H and R through favoring a number of zero rows in P
and Q. Note that if there is but only 2,1-norm equality restraint, the P and Q
may become a matrix containing only one non-zero row [1]. Thus, it is essential
for selecting complementary representations to add the GET constraints on P
and Q in Ω1.

Based on the gradient energy measure [20], the GEC criterion [28] can be
used to build a GET matrix effectively. Specifically, every internal element Gij is
connected to its four neighbors Gi−1,j , Gi+1,j , Gi,j−1, and Gi,j+1 in a gradient
matrix G obtained by gradient descent method. We can obtain the between-
sample energy Ebs of Gij according to the `1-norm gradient magnitude energy
[20]:

Ebs =
∂

∂x
G =| G(i+ 1, j)−G(i, j) | + | G(i, j)−G(i− 1, j) |, (12)

and the within-sample energy Ews as

Ews =
∂

∂y
G =| G(i, j + 1)−G(i, j) | + | G(i, j)−G(i, j − 1) | . (13)

We can calculate the global energy of Gij by Ebs and Ews:

Eglobe = δ ∗ Ebs + (1− δ) ∗ Ews, (14)

where δ is a trade-off parameter.

The global energy of every element in G can be computed by Eq.(14), and
then we can obtain an energy matrix E. As a result, we can compare he global
energies of every element. It can be seen that the winner with maximum energy
will be set to 1, and the remaining elements in the same row and column will be
set to 0. We can repeat the cycle until a GET matrix Q is built.

Section 3.2 presents an efficient algorithm to solve Ω1.

3 Optimization Technique

In this section, we present an optimization technique to solve the proposed frame-
work.
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3.1 An Efficient Solver for Ψ1

The optimization problem Ψ1 (see Eq.(1)) can be simplified as follows:

min
Z∈C

F (Z), (15)

where F (·) = fS(·)+αgM (·)−βhD(·) is a smooth function, Z=[AZ BZ WZ MZ ]
symbolizes the optimization variables, and the set C is closed for each variable:

C = {Z|ATZAZ = I,BTZBZ = I,MZ � 0}. (16)

Because F (·) is continuously differentiable for each variable with Lipschitz con-
tinuous gradient L [16], it is appropriate to solve Eq.(15) by Accelerated Pro-
jection Gradient (APG) [16] method.

The first-order gradient algorithm APG can accelerate each gradient step and
minimize the smooth function, so as to obtain the optimal solution. A solution
sequence {Zi} is updated from a search point sequence {Si} in the method.

Due to orthogonal constraints, it is exceedingly difficult for us to optimize
the non-convex optimization problem in Eq.(15). However, if Gradient Descent
Method with Curvilinear Search (GDMCS) [27] satisfies Armijo-Wolfe conditio,

Algorithm 1: Heterogeneous Manifold Smoothness Learning (HMSL)

Input: Z0=[AZ0BZ0WZ0MZ0 ], F (·), fS(·), gM (·), hD(·), XN , YN , γ1 > 0, t0 =1,
τ1, 0 < ρ1 < ρ2 < 1, and maxIter.

Output: Z∗.
1: Define Fγ,S(Z)=F (S)+〈OF (S), Z−S〉+γ‖Z−S‖2F /2
2: Calculate [AZ0

] = Schmidt(AZ0
).

3: Calculate [BZ0 ] = Schmidt(BZ0).
4: Set AZ1=AZ0 , BZ1=BZ0 , WZ1=WZ0 , and MZ1=MZ0 .
5: for i =1,2,· · ·,maxIter do
6: Set ai = (ti−1 − 1)/ti−1.
7: Calculate ASi

= (1 + αi)AZi
− αiAZi−1

.
8: Calculate BSi = (1 + αi)BZi − αiBZi−1 .
9: Calculate WSi = (1 + αi)WZi − αiWZi−1 .
10: Calculate MSi

= (1 + αi)MZi
− αiMZi−1

.
11: Set Si = [ASi

BSi
WSi

MSi
].

12: Calculate OAS
F (ASi

), OBS
F (BSi

), OWS
F (WSi

), and OMS
F (MSi

).
13: Define FA(AZi , B) and FB(A,BZi).
14: while (true)

15: Calculate ÂS = ASi
− OAS

F (ASi
)/γi.

16: Calculate [ÂS ] = Schmidt(ÂS).

17: Calculate B̂S = BSi
− OBS

F (BSi
)/γi.

18: Calculate [B̂S ] = Schmidt(B̂S).

19: Set [AZi+1
, BZi+1

] = GDMCS(F (·), ÂS , B̂S , τ1, ρ1, ρ2).
20: Calculate WZi+1

= WSi
− OWS

Q(WSi
)/γi.

21: Calculate M̂S = MSi − OMS
Q(MSi)/γi.
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22: Calculate [MZi+1
] = PSP(M̂S).

23: Set Zi+1 = [AZi+1
BZi+1

WZi+1
MZi+1

].
24: if F (Zi+1) ≤ Fγi,Si(Zi+1), then break;
25: else Update γi = γi × 2.
26: endIf
27: endWhile
28: Update ti =

(
1+
√

1+4t2i−1

)
/2, γi+1 =γi.

29: endFor
30: Set Z∗ = Zi+1.

it has been proved by Guo and Xiao in [9] that GDMCS can effectively solve the
non-convex problem. We can use the method in [9] to prove that the proposed
HMSL algorithm met the using conditions of GDMCS algorithm.

APG projects a given point s onto set C in the following way:

projC(s) = arg min
z∈C
‖z − s‖2F /2. (17)

Positive Semi-definite Projection (PSP) proposed by Weinberger et al. in [26] can
remain positive semi-definite constraints, when it minimize a smooth function.
It will project optimal variables into a cone of all positive semi-definite matrices
after each gradient step. The projection is computed from the diagonalization of
optimal variables, which effectively truncates any negative eigenvalues from the
gradient step, setting them to zero. PSP can be utilized to solve the problem in
Eq.(17).

Finally, when applying APG for solving Eq.(15), a given point S can be
projected into the set C as follows:

projC(S) = arg min
Z∈C
‖Z − S‖2F /2. (18)

The problem in Eq.(18) can be solved by the combination of APG, PSP, and
GDMCS. The details are given in Algorithm 1, in which the function Schmidt(·)
[15] denotes the GramSchmidt process.

3.2 An Efficient Solver for Ω1

To solve the model Ω1 (See Section 2.2), an efficient algorithm is given in this
subsection. Similarly, the problem in Eq.(11) can be simplified as:

min
Θ∈Q

H(Θ) = w(Θ) + τt(Θ), (19)

where w(·) = ‖ · ‖2F + γ‖ · ‖2F is a smooth subfunction, t(·) = ‖ · ‖∗ is an undiffer-
entiable subfunction, Θ= [PΘ QΘ] symbolizes the optimization variables, and
set Q is closed for each variable:

Q = {Θ|PΘ∈Σn2×n4 , QΘ∈Σn3×n4 , ‖PΘ‖2,1 =‖QΘ‖2,1 =n4}. (20)
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Because w(·) is continuously differentiable for each variable with Lipschitz
continuous gradient L [16], it is also appropriate to solve Eq.(19) by APG [16]
method.

Similarly, APG projects a given point s onto set Q in the following way:

projQ(s) = arg min
θ∈Q
‖θ − s‖2F /2, (21)

The GEC criterion (See Section 2.2) can be used to map the approximate
solution of Eq.(21) into the generalized elementary transformation constraint Q.
Zhang et al. [28] have successfully used the functions Energy(·) and Competition(·)
to implement the GEC criterion according to Eq.(12,13,14).

Algorithm 2: Correlation-based Multi-source Redundancy Reduction (CMRR)

Input: H(·), w(·), t(·), PZ0 =In2×n4 , QZ0 =In3×n4 , Z0 =[PZ0 QZ0 ], XR, YR, δ,

ε1 > 0, t0 =1, and maxIter.

Output: Z∗.

1: Define Hε,S(Z) = w(S) + 〈Ow(S), Z − S〉+ ε‖Z − S‖2F /2 + τt(Z).

2: Set PZ1
= PZ0

and QZ1
= QZ0

.

3: for i =1,2,· · ·,maxIter do

4: Set ai = (ti−1 − 1)/ti−1.

5: Calculate PSi = (1 + αi)PZi − αiPZi−1 .

6: Calculate QSi
= (1 + αi)QZi

− αiQZi−1
.

7: Set Si = [PSi
QSi

].

8: Derive OPS
w(PSi

) andOQS
w(QSi

).

9: while (true)

10: Calculate P̂S = −OPS
w(PSi

)/εi.

11: Calculate [P̂Zi+1 ] = Energy(P̂S , δ).

12: Calculate [PZi+1
] = Competition(P̂Zi+1

).

13: Calculate Q̂S = −OQS
w(QSi

)/εi.

14: Calculate [Q̂Zi+1
] = Energy(Q̂S , δ).

15: Calculate [QZi+1 ] = Competition(Q̂Zi+1).

16: Set Zi+1 = [PZi+1 QZi+1 ].

17: if H(Zi+1) ≤ Hεi,Si(Zi+1), then break;

18: else Update εi = εi × 2.

19: endIf

20: endWhile

21: Update ti =
(
1+
√

1+4t2i−1

)
/2, εi+1 =εi.

22: endFor

23: Set Z∗ = Zi+1.

By combining APG, the function Energy(·), and the function Competition(·),
the problem in Eq.(19) can be solved. The Algorithm 2 provides the details.
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4 Experimental Results and Analyses

4.1 Datasets and Settings

The three benchmark multi-source datasets, i.e., Wikipedia [19], Corel 5K [8],
and MIR Flickr [11], are used to evaluate the proposed framework. The statistics
of the datasets are given in Table 2, and brief descriptions of the chosen feature
sets in the above-mentioned datasets are listed in Table 3.

These three datasets are divided into train and test subsets. We randomly
select 10 percent of multi-source data in the train and test sets, respectively.
Then the heterogeneous representations of these multi-source data are rearran-

Table 2. Statistics of the Multi-source Datasets

Dataset Total Attributes Total Classes Total Samples

Wikipedia 258 10 2866
Corel 5K 200 260 4999

MIR Flickr 5857 38 25000

Table 3. Brief Descriptions of the Feature Sets

Dataset Feature Set Total Attributes Total Labels Total Instances

Wikipedia
Image (Sx) 128 10 2866
Text (Sy) 130 10 2866

Corel 5K
DenseHue (Sx) 100 260 4999
HarrisHue (Sy) 100 260 4999

MIR Flickr
Image (Sx) 3857 38 25000
Text (Sy) 2000 38 25000

ged in random order and we manually generated 10 percent of the redundant
representations from Source Sy in the data. We use the 5-fold cross-validation
to tune some important parameters in all the methods. Additionally, all the
experiments take the LIBSVM classifier as the benchmark for classification tasks.

4.2 Analysis of Manifold Learning Algorithms

To verify the manifold smoothness measure learned by the proposed HMSL
method, HMSL is compared in classification performance with other four state-
of-the-art manifold learning algorithms such as ESRM [6], EMR [7], MKPLS
[2], and DDGR [3]. The MIR FLICKR dataset is used in the experiment, and
the best performance is reported. The data in training set are randomly sam-
pled in the ratio {25%, 50%, 75%, 100%}, and the size of the test set is fixed.
Unlike our framework, before comparing ESRM, EMR, MKPLS and DDGR,
we first implement CCA [23] to construct feature-homogeneous space between
different sources. We select min(dx, dy) as the dimensionality k of the feature-
homogeneous space. The setting of the parameters in ESRM, EMR, MKPLS,
and DDGR is the same as the original works [6, 7, 2, 3].
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In essence, the proposed HMSL model is also a manifold learning method
based on manifold regularization. However, there are significant differences be-
tween HMSL and the above-mentioned other four methods. The main difference

Table 4. Classification Performance of Manifold Learning Methods in
terms of AUC.

Method
Sampling Ratio

25% 50% 75% 100%

DDGR 0.5374 0.5963 0.6245 0.6756
MKPLS 0.5481 0.6040 0.6372 0.6824

EMR 0.5171 0.5744 0.6268 0.6654
ESRM 0.5445 0.5978 0.6554 0.6813
HMSL 0.5991 0.6596 0.7053 0.7494

between HMSL and ESRM is that ESRM is a mono-source learning algorithm
without the ability of handling multi-source problem. Moreover, though MK-
PLS also use manifold regularization to exploit the correlation among hetero-
geneous representations, the distributional similarity among different sources is
not utilized fully. Additionally, different from EMR and DDGR, HMSL takes
full account of the semantic complementarity between different sources.

From Table 4, we can clearly observe that HMSL greatly outperforms other
manifold learning methods in classification performance. The results present
that HMSL can capture information correlation between different sources more
effectively than the comparative methods. In addition, as the number of training
samples increases, the performance of HMSL will also be improved. Accordingly,
a certain number of existing nonredundant samples is essential for HMSL to learn
an excellent manifold smoothness measure.

4.3 Evaluation of Dimension Reduction Techniques

In order to evaluate the possibility of eliminating SFS in the proposed CMRR
model, we further compare the effect of dimension reduction among different
state-of-the-art methods, such as KTLQD [18], ERFSJNM [17], FSGRM [24],
and NSACR [13]. The generalized identity matrices are taken as the initial values
of P and Q in Algorithm 2. The regularization parameters γ and τ are tuned
among the set {10i|i = −2,−1, 0, 1, 2}. The parameter δ in Eq.(14) is set to 0.1.
For KTLQD, ERFSJNM, FSGRM, and NSACR, the experimental setups follow
the original ones [18, 17, 24, 13], respectively.

In machine learning, the eliminating of sample features superabundance can
be divided into feature selection and dimension reduction. It is a key compo-
nent in building robust machine learning models for analysis, classification, clus-
tering, and retrieval to avoid high computational time. To achieve this goal,
CMRR reduces the superabundance of sample features by using the learned
multiple heterogeneous linear transformations. Therefore, after eliminating SFS,
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the multi-source heterogeneous redundant data is more likely to be separated
linearly.

Fig. 4. Comparison of Classification Performance of Dimension Reduction Algorithms.

We can observe from Fig.4 that CMRR has better classification performance
than KTLQD, ERFSJNM, FSGRM, and NSACR. This observation further jus-
tifies that CMRR can effectively eliminate SFS.

4.4 Comparison of Sample Selection Approaches

To test the performance of the proposed CMRR in different redundancy rates,
we further compare the classification performances of CMRR with other sample
selection methods such as MASSFDTI [25], SPSRS [5], WCTSSIM [21], and
ACP [22] in the larger MIR Flickr dataset. We tune the redundancy rates on
the set {10%, 15%, 20%, 25%}.

From the view of the function, the proposed CMRR model is also essen-
tially a sample selection method such as MASSFDTI, SPSRS, WCTSSIM, and
ACP. However, there are some significant differences between CMRR and other
methods. CMRR is based on the correlation among sample representations from
different sources. So it will be more favorable to clear DRE and remove CRO for
reestablishing the one-to-one complementary relationship among heterogeneous
representations.

Just to pursue such a purpose, we first use HMSL to project the multi-source
data into a feature-homogeneous space and then apply MASSFDTI, SPSRS,
WCTSSIM, ACP, and CMRR to reduce redundant samples. The setting of the
parameters in MASSFDTI, SPSRS, WCTSSIM, and ACP is the same as the
original works [25, 5, 21, 22].

It can be seen in Fig.5 that CMRR is superior to the other models in the
classification performance. This observation further confirms that CMRR has an
obvious advantage over other methods in removing FDD and SSD and rebuild-
ing the one-to-one complementary relationship among heterogeneous represen-
tations. Nevertheless, with the increasing of redundancy rate, the performance
of CMRR will degrade. Thus, CMRR also has some limitations that it needs a
certain number of existing nonredundant samples to reduce redundant source.
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Fig. 5. Comparison of Classification Performance of Sample Selection Approaches in
Different Redundancy Rates.

5 Conclusion

This paper investigates the redundant sources problem in multi-source learn-
ing. We developed a general simplifying framework to reduce redundant sources
of multi-source data. Within this framework, a feature-homogeneous space is
learned by the proposed HMSL model to capture the semantic complementarity,
information correlation, and distributional similarity among different sources.
Meanwhile, we proposed a CMRR method with GET constraints based on GEC
criterion to remove the three-way redundancies and double-level heterogeneities
in the learned feature-homogeneous space. Finally, we evaluated and verified the
effectiveness of the proposed framework on five benchmark multi-source hetero-
geneous datasets.
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