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Abstract. In spite of the amazing results obtained by deep learning in
many applications, a real intelligent behavior of an agent acting in a
complex environment is likely to require some kind of higher-level symbolic
inference. Therefore, there is a clear need for the definition of a general and
tight integration between low-level tasks, processing sensorial data that
can be effectively elaborated using deep learning techniques, and the logic
reasoning that allows humans to take decisions in complex environments.
This paper presents LYRICS, a generic interface layer for AI, which is
implemented in TersorFlow (TF). LYRICS provides an input language
that allows to define arbitrary First Order Logic (FOL) background
knowledge. The predicates and functions of the FOL knowledge can be
bound to any TF computational graph, and the formulas are converted
into a set of real-valued constraints, which participate to the overall
optimization problem. This allows to learn the weights of the learners,
under the constraints imposed by the prior knowledge. The framework is
extremely general as it imposes no restrictions in terms of which models
or knowledge can be integrated. In this paper, we show the generality of
the approach showing some use cases of the presented language, including
model checking, supervised learning and collective classification.
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1 Introduction

The success of deep learning relies on the availability of a large amount of
supervised training data. This prevents a wider application of machine learning in
real world applications, where the collection of training data is often a slow and
expensive process, requiring an extensive human intervention. The introduction
of prior-knowledge into the learning process is a fundamental step in overcoming
these limitations. First, it does not require the training process to induce the

* This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 825619.
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rules from the training set, therefore reducing the number of required training
data. Secondly, the use of prior knowledge can be used to express the desired
behavior of the learner on any input, providing better behavior guarantees in an
adversarial or uncontrolled environment.

This paper presents LYRICS, a TensorFlow [I] environment based on a
declarative language for integrating prior knowledge into machine learning, which
allows the full expressiveness of First Order Logic (FOL) to define the knowledge.
LYRICS has its root in frameworks like Semantic Based Regularization (SBR) [6l/7]
built on top of Kernel Machines and Logic Tensor Networks (LTN) [23] that can
be applied to neural networks. These frameworks transform the FOL clauses
into a set of constraints that are jointly optimized during learning. However,
LYRICS generalizes both approaches by allowing to enforce the prior knowledge
transparently at training and test time and dropping the previous limitations
regarding the form of the prior knowledge. SBR and LTN are also hard to extend
beyond classical classification tasks, where they have been applied in previous
works, because the lack of a declarative front-end. On the other hand, LYRICS
define a declarative language, dropping the barrier to build models exploiting
the available domain knowledge in any machine learning context.

In particular, any many-sorted first-order logical theory can be expressed
in the framework, allowing to declare domains of different sort, with constants,
predicates and functions. LYRICS provides a very tight integration of learning
and logic as any computational graph can be bound to a FOL predicate. This
allows to constrain the learner both during training and inference. Since the
framework is agnostic to the learners that are bound to the predicates, it can
be used in a vast range of applications including classification, generative or
adversarial ML, sequence to sequence learning, collective classification, etc.

1.1 Previous work

In the past few years many authors tackled specific applications by integrating
logic and learning. Minervini et al. [I6] proposes to use prior knowledge to correct
the inconsistencies of an adversarial learner. Their methodology is designed
ah-hoc for the tackled task, and limited to Horn clauses. A method to distill the
knowledge in the weights of a learner is presented by Hu et al. [11], which is also
based on a fuzzy generalization of FOL. However, the definition of the framework
is limited to universally quantified formulas and to a small set of logic operators.
Another line of research [2TI5] attempts at using logical background knowledge
to improve the embeddings for Relation Extraction. However, these works are
also based on ad-hoc solutions that lack a common declarative mechanism that
can be easily reused. They are all limited to a subset of FOL and they allow to
injecting the knowledge at training time, with no guarantees that the output on
the test set respect the knowledge.

Markov Logic Networks (MLN) [20] and Probabilistic Soft Logic (PSL) [13I2]
provide a generic Al interface layer for machine learning by implementing a
probabilistic logic. However, the integration with the underlying learning pro-
cesses working on the low-level sensorial data is shallow: a low-level learner can
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be trained independently, then frozen and stacked with the AI layer providing
a higher-level inference mechanism. The language proposed in this paper in-
stead allows to directly improve the underlying learner, while also providing the
higher-level integration with logic. TensorLog [3] is a more recent framework to
integrate probabilistic logical reasoning with the deep-learning infrastructure of
TF, however TensorLog is limited to reasoning and does not allow to optimize the
learners while performing inference. TensorFlow Distributions [9] and Edward [25]
are also a related frameworks for integrating probability theory and deep learning.
However, these frameworks focus on probability theory and not the representation
of logic and reasoning.

2 The Declarative Language

LYRICS defines a TensorFlow (TFE environment in which learning and reasoning
are integrated. LYRICS provides a short number of basic constructs, which can
be used to define the problem under investigation.

A domain determines a collection of individuals that share the same repre-
sentation space and are analyzed and manipulated in a homogeneous way. For
example, a domain can collect a set of 30 x 30 pixel images or the sentences of a
book as bag-of-words.

Domain(label="Images")

Individuals (i.e. elements) can be added to their domain as follows:

Individual (1abel="Tweety", domain=("Images"), value=img0)

where Tweety is a label to uniquely identify a specific individual of the Images
domain, represented by the image img0. This allows the user to directly reason
about single individuals. The user can also provide a large amount of individuals
without a specific label for each of them by specifying the tensor of their features
during the domain definition.

A function can be defined to map elements from the input domains into an
element of an output domain. A unary function takes as input an element from
a domain and transforms it into an element of the same or of another domain,
while an n-ary function takes as input n elements, mapping them into an output
element of its output domain. The following example defines a function that
returns a rotated image:

Function(label="rotate", domains=("Images"), function=RotateFunction)

where the FOL function is bound to its TF implementation, which in this case is
the RotateFunction function in the TF code.

A predicate can be defined as a function, mapping elements of the input
domains to truth values. For example, a predicate bird determining whether an
input patttern from the I'mages domain contains a bird and approximated by a
neural network NN is defined as:

3 https://wuw.tensorflow.org/
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Predicate(label="bird", domains=("Images"), function=NN)

It is possible to state the knowledge about the world by means of a set
of constraints. Each constraint is a generic FOL formula using as atoms the
previously defined functions and predicates. For instance, if we want to learn
the previously defined predicate bird to be invariant to rotations, the user can
express this knowledge by means of the following constraint:

Constraint ("forall x: bird(x) -> bird(rotate(x))")

Finally, any available supervision for the functions or predicates can be directly
integrated into the learning problem. LYRICS provides a specific construct where
this fitting is expressed, called PointwiseConstraint. This construct links to a
computational graph where a loss is applied for each supervision. The loss defaults
to the cross-entropy loss but it can be overridden to achieve a different desired
behavior:

PointwiseConstraint (model, labels, inputs)

where model is a TF function like the NN function used before fitting the
supervisions labels on the provided inputs.

3 From Logic to Learning

LYRICS transparently transforms a declarative description of the available
knowledge applied to a set of objects into an optimization task. In this section,
we show how the optimization algorithm is derived from its declaration.

Domains and Individuals. Domains of individuals allow users to provide data
to the framework as tensors that represent the leaves of the computational graph.
A Domain D; is always bound to a tensor X; € R%*" where d; denotes the
number of individuals in the i-th domain and r; denotes the dimension of the
representation of the data in the i-th domairﬁ Thus, individuals correspond
to rows of the X; tensor. Individuals can be represented by both constant and
variable feature tensors. By taking into account partially or totally variable
features for the individuals, LYRICS allows to consider individuals as learnable
objects too. For example, given two individuals Marco and Michelangelo bound
to a constant and a variable tensor respectively, we may want to learn the
representation of Michelangelo by exploiting some joint piece of knowledge (e.g.
fatherOf (Marco, Michelangelo) -> similarTo(Michelangelo, Marco)).

Functions and Predicates. FOL functions allow the mapping between in-

dividuals of the input domains to an individual of the output domain, i.e.

fi: lel X -0 X Difm — le, where Difl, .. .,szm are the input domains and

4 Here, we assume that the feature representation is given by a vector. However, the
system also allows the individuals to be represented by a generic tensor.
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op t-norm Product Lukasiewicz Godel
T Ay Ty max(0,z +y — 1)| min(z,y)
xVy z+y—z-y| min(l,z+y) |max(z,y)

-z 1—=x 11—z 1—=x
T =y z<y?l: ¥ min(l,1-z+y)|lz<y?l:y

Table 1: Operations performed by the units of an expression tree given the inputs
x,y and the used t-norm in the fundamental fuzzy logics.

le is the output domain. On the other hand, FOL predicates allow to express
the truth degree of some property for individuals of the input domains; i.e.
pi: DY x...x D} — {true, false}, where DZ_ is the j-th domain of the i-th
predicate. Functions and predicates are implemented using a TF architecture
as explained in the previous section. If the graph does not contain any vari-
able tensor (i.e. it is not parametric), then we say it to be given; otherwise
it will contains variables which will be automatically learned to maximize the
constraints satisfaction. In this last case, we say the function/predicate to be
learnable. Learnable functions can be (deep) neural networks, kernel machines,
radial basis functions, etc.

The evaluation of a function or a predicate on a particular tuple z1, ..., z,, of
input individuals (i.e. f;i(21,...,Zm) or p;(z1,...,%y)) is said a grounding for the
function or for the predicate, respectively. LYRICS, like related frameworks [7123],
follows a fully grounded approach, which means that all the learning and reasoning
processes take place only once functions and predicates have been fully grounded
over all the possible input tuples (i.e. on the entire Cartesian product of the
correponding input domains).

Let us indicate as X, the set of patterns in the domain Dy, then Xif =X Zfl X
cex X ifm is the set of groundings of the i-th function. Similarly, X7 is the collection
of groundings for the i-th predicate. Finally, F(X) = {f1(X{), f2(x{),...,} and
P(X) = {p1(X?),p2(XY),...} are the outputs for all function and predicates over
their corresponding groundings, respectively.

Connectives and Quantifiers. Connectives and quantifiers are converted
using the fuzzy generalization of FOL that was first proposed by Novak [19].
In particular, a t-norm fuzzy logic [10] generalizes Boolean logic to variables
assuming values in [0, 1]. A t-norm fuzzy logic is defined by its t-norm that models
the logical AND, and from which the other operations can be derived. Table
shows some possible implementation of the connectives using the fundamental
t-norm fuzzy logics i.e. Product, Lukasiewicz and Gédel logics.

In general, formulas involve more than a predicate and are evaluated on
the overall grounding vectors of such predicates. The way different evaluations
of a certain formula are aggregated depend on the quantifiers occurring on its
variables and their implementation. In particular, we consider the universal and
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existential quantifier that can be seen as a logic AND and OR applied over each
grounding of the data, respectively.

For instance, given a certain logical expression E with a universally quantified
variable x; can be calculated as the average of the t-norm generalization tg/(-),
when grounding x; over its groundings X;:

1
Va; BE(P(X)) — $y(P(X)) = X > te(P(X)) (1)
K3

z; €X;

The truth degree of the existential quantifier is instead defined as the maximum
of the t-norm expression over the domain of the quantified variable:

Jz; E(P(X)) — @3(P(X)) = nax te(P(X)) (2)

When multiple quantified variables are present, the conversion is recursively
performed from the inner to the outer variables.

Constraints. Integration of learning and logical reasoning is achieved by trans-
lating logical expressions into continuous real-valued constraints. The logical
expressions correlate the defined elements and enforce some desired behaviour
on them.

Variables, functions, predicates, logical connectives and quantifiers can all be
seen as nodes of an ezpression tree [§]. The real-valued constraint is obtained by a
post-fix visit of the expression tree, where the visit action builds the correspondent
portion of computational graph. In particular:

— visiting a wvariable z; substitutes the variable with the tensor X; bound to
the domain it belongs to;

— visiting a function or predicate corresponds to the grounding operation, where,
first, the Cartesian product of the input domains is computed and, then, the
TF models implementing those functions are evaluated on all groundings (i.e.
F(X) or p())

— visiting a connective combines predicates by means of the real-valued opera-
tions associated to the connective by the considered t-norm fuzzy logic;

— visiting a quantifier aggregates the outputs of the expressions obtained for
the single variable groundings.

Figure [1] shows the translation of a logic formula into its expression tree and
successively into a TensorFlow computational graph.

It is useful for the following to consider the real-valued constraint obtained
by the described compilation process of the j-th logical rule and implemented
by a TF graph as a parametric real function v;(Xj; w;, w'jf , wf ). The function
1; takes as input the Cartesian product &) of the domains of its quantified
variables, returns the truth degree of the formula and it is parameterized by
w}, wf and wf , which are the sets of variable tensors related to the features
of learnable individuals, to the parameters of learnable functions and to the
parameters of learnable predicates, respectively. Let be Wi = {wi wi,...},

Wi ={wl wl,. ..} and WP = {w? wk, .. .}
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FOL Formula LYRICS Expression Tree TF Computational Graph

Compiling with Lukasiewicz(FuzzyLogic)

ForAll(Quantifier),

tf.reduce_min .

Implies(BinOp) tf.minimum(1., 1. -a + b) .

forall x: dog(x) -> mammal (x)

Variable Tensor

Fig.1: The translation of the FOL formula Vz dog(r) — mammal(z) into a
Lyrics expression tree and then its mapping to a TF computational graph.

Optimization Problem. The goal of LYRICS is to build a learning process for
some elements of interest (individuals, functions or predicates) by a declarative
description of the desired behaviour of these elements. The desired behaviour
is expressed by means of logical formulas. Thus, the optimization process is
framed as finding the unknown elements which maximize the satisfaction of the
set of logical formulas. Let 1, (X;; w} wjf ,w?) indicate the real-valued constraint
related to the j-th formula, as prev1ously defined. Then, the derived optimization
problem is:

max Z/\ Ui (s w! w s wh),

Wi, W Wwe

where \! denotes the weight for the j-th logical constraint. These weights are
considered hyper-parameters of the model and are provided by the user dur-
ing constraint definition. The maximization problem can be translated into a
minimization problem as follows:

T

min "ML (v (! ut)),

Wi, WF Wp 4
Jj=1

Here, the function £ represents any monotonically decreasing transforma-
tion of the constraints conveniently chosen according to the problem under
investigation. In particular, we may exploit the following mappings:

(a) E(wJ(X w’ wf,w ))—1—¢7(X w’ w{,wf),
(b) E(%(X w’ w{,wf))z—log(%(?( w’ w]f,w?))

These specific choices for the function £ are directly related to the Lukasiewicz
and Product t-norms, indeed they are additive generators for these t-norm fuzzy
logics. For more details on generated t-norms we recommend e.g. [14].

3)
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4 Learning and Reasoning with Lyrics

This section presents a list of examples illustrating the range of learning tasks
that can be expressed in the proposed framework. In particular, it is shown how
it is possible to force label coherence in semi-supervised or transductive learning
tasks, how to implement collective classification over the test set and how to
perform model checking. Moreover, we applied the proposed framework to two
standard benchmarks: document classification in citation networks and term
chunking in natural language text. The examples are presented using LYRICS
syntax directly to show that the final implementation of a problem fairly retraces
its abstract definition. The software of the framework and the experiments are
made available at ”provided as supplemental materials”.

Semi-Supervised Learning. In this task we assume to have available a set of
420 points distributed along an outer and inner circle. The inner and outer
points belong and do not belong to some given class A, respectively. A random
selection of 20 points is supervised (either positively or negatively), as shown in
Figure The remaining points are split into 200 unsupervised training points,
shown in Figure and 200 points left as test set. A neural network is assumed
to have been created in TF to approximate the predicate A. The network can be
trained by making it fit the supervised data. So, given the vector of data X, a
neural network NN_A and the vector of supervised data X_s, with the vector of
associated labels y_s, the supervised training of the network can be expressed by
the following:

# Definition of the data points domain.
Domain(label="Points", data=X)

# Approximating the predicate A via a NN.
Predicate("A", ("Points"), NN_A)

# Fit the supervisions
PointwiseConstraint(A, y_s, X_s)

Let’s now assume that we want to express manifold regularization for the
learned function: e.g. points that are close should be similarly classified. This
can be expressed as:

# Predicate stating whether 2 patterns are close.
Predicate("Close", ("Points","Points"), f_close)

# Manifold regularization constraint.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where £_close is a given predicate determining if two patterns are close according
to a validated threshold of the Euclidean distance. The training is then re-executed
starting from the same initial conditions as in the supervised-only case.

Figure shows the class assignments of the patterns in the test set, when
using only classical learning from supervised examples. Finally, Figure
presents the assignments when learning from examples and constraints.
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Fig. 2: Semi-supervised Learning: (a) data that is provided with a positive and
negative supervision for class A; (b) the unsupervised data provided to the learner;
(c) class assignments using only the supervised examples; (d) class assignments
using learning from examples and constraints.

Collective Classification. Collective classification [22] performs the class assign-
ments exploiting any known correlation among the test patterns. This para-
graph shows how to exploit these correlations in LYRICS. Here, we assume
that the patterns are represented as R? datapoints. The classification task is
a multi-label problem where the patterns belongs to three classes A, B,C. In
particular, the class assignments are defined by the following membership regions:
A=[-2,1] x[-2,2],B =[-1,2] x [-2,2],C = [-1,1] x [-2,2]. These regions
correspond to three overlapping rectangles as shown in Figure The examples
are partially labeled and drawn from a uniform distribution on both the positive
and negative regions for all the classes.

In a first stage, the classifiers for the three classes are trained in a supervised
fashion using a two-layer neural network taking four positive and four negative
examples for each class. This is implemented via the following declaration:

Domain(label="Points", data=X)
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Fig. 3: Collective classification: (a) classes assignments; (b) the predictions after
the supervised step; (c) the predictions with collective classification and rules
satisfaction (best viewed in colors).

Predicate(label="A",domains=("Points") ,NN_A)
Predicate(label="B",domains=("Points") ,NN_B)
Predicate(label="C",domains=("Points") ,NN_C)
PointwiseConstraint (NN_A, y_A, X_A)
PointwiseConstraint (NN_B, y_B, X_B)
PointwiseConstraint (NN_C, y_C, X_C)

The test set is composed by 256 random points and the assignments performed
by the classifiers after the training are reported in Figure l In a second stage,
it is assumed that it is available some prior knowledge about the task at hand.
In particular, any pattern must belongs to (at least) one of the classes A or B.
Furthermore, it is known that class C is defined as the intersection of A and B.
The collective classification step is performed by seeking the class assignments
that are as close as possible to the initial classifier predictions, acting as priors,
but also respecting the logical constraints on the test set:

Constraint ("forall x: A(x) or B(x)")

Constraint ("forall x:(A(x) and B(x)) <-> C(x)")
# Minimize the distance from classifier outputs.
PointwiseConstraint (A, priorsA, X_test)
PointwiseConstraint (B, priorsB, X_test)
PointwiseConstraint(C, priorsC, X_test)

where X_test is the set of test datapoints and priorsA, priorsB, priorsC denote
the predictions of the classifiers to which the final assignments have to stay close.
As we can see from Fig the collective step fixes some wrong predictions.

Model checking. In this example, we show how the framework can be used to
perform model checking. Let us consider a simple multi-label classification task
where the patterns belong to two classes A and B, and B is contained in A. This
case models a simple hierarchical classification task. In particular, the classes
are defined by the following membership regions: A = [-2,2] x [-2,2], B =
[—1,1] x [-1,1]. A set of points X is drawn from a uniform distribution in the
[—3, 3] x[—3, 3] region. Two neural network classifiers are trained to classify the



Title Suppressed Due to Excessive Length 11

points using the vectors of supervisions y4 and yg for the predicates A and B,
respectively:

Domain(label="Points", data=X)
Predicate(label="A", domains=("Points"),NN_A)
Predicate(label="B", domains=("Points"),NN_B)
PointwiseConstraint (NN_A, y_A, X)
PointwiseConstraint (NN_B, y_B, X)

It could be interesting to check if some given rule has been learned by the
classifiers. To this hand, LYRICS allows to mark a set of constraints as test only,
in order to perform model checking. In this case, constraints are only used to
compute the degree of satisfaction of the corresponding FOL formulas over the
data. For example, we checked the degree of satistaction of all possible formulas
in Disjunctive Normal Form (DNF) that are universally quantified with a single
variable. Only the constraint:

Constraint ("forall x: (not A(x) and not B(x)) or (A(x) and not B(x)) or
(A(x) and B(x))")

has a high truth degree (0.9997). As one could expect, the only fully-satisfied
constraint (translated from DNF to its minimal form) is indeed VaB(z) — A(x),
that states the inclusion of B in A. Model checking can be used as a funda-
mental step to perform rule deduction using the Inductive Logic Programming
techniques [17].

Chunking. Given a sequence of words, term chunking (or shallow parsing)
is a sequence tagging task aiming at linking constituent parts of sentences
(nouns, verbs, adjectives, etc.) into phrases that form a single semantic unit.
Following the seminal work by Collobert et al. [4], many papers have applied
deep neural networks to text chunking. In this paper, deep learner is used to learn
from examples as in classical supervised learning. Then we perform collective
classification to fix some misclassification made by the network, according to
certain logical rules expressing available prior knowledge.

We used the CoNLL 2000 shared task dataset [24] to test the proposed
methodology. The dataset contains 8936 training and 893 test English sentences.
The task uses 12 different chunk types, which correspond to 22 chunk labels
when considering the position modifiers. In particular, some labels have a B
and I modifier to indicate for beginning and intermediate position in the chunk,
respectively. For example, BV P indicates the start of a verbal phrase and IV P
an intermediate term of the verbal phrase. The final performance is measured
in terms of Fl-score, computed by the public available script provided by the
shared task organizers.

We selected the classifier proposed by Huang et al. [12] as our baseline, which
is one of the best performers on this task. We used a variable portion of training
phrases from the training set, ranging from 5% to 100%, to train the classifier,
reusing the same parameters reported by the authors. The trained networks have
then been applied on the test set providing an output score for each label for each
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term. It is well known that the output of the trained networks may not respect the
semantic consistencies of the labels. For example, an intermediate token for a label
must follow either a begin or intermediate one for the same label. For example,
VaVitBNP(z,t) = —~IVP(z,t+1)AN—-IPP(z,t+ 1) A\-IADV P(x,t+ 1) A
expresses that if the t-th token is marked as the begin of a nominal phrase
BN P the following token can not be an intermediate verbal I'V P, intermediate
prepositional I PP or intermediate adverbial TADV P phrase. A small sample of
the constraints stating the output consistency can be expressed in FOL using
the following statements:

VaVtBNP(x,t) = ~IVP(z,t +1) A—~IPP(z,t + 1) A=IADV P(z,t + 1) A
VxVtBVP(x,t) = ~INP(z,t +1) A—~IPP(z,t + 1) A=I[ADV P(z,t + 1) A

¥V aVtBPP(x,t) = ~IVP(zx,t + 1) A=INP(x,t + 1) A= IADVP(z,t + 1) A...
VaVtINP(z,t) = [~IVP(z,t + 1) A~IPP(z,t + 1) A=TADVP(z,t + 1) A ...
VaVtIVP(z,t)= [~INP(z,t +1) A~IPP(z,t + 1) A~IADV P(z,t + 1) A
VaVtIPP(x,t)= [~IVP(z,t + 1) A=INP(z,t + 1) A~IADV P(2,t + 1) A
VaVtINP(z,t+1)= BNP(x,t)VINP(z,t)

VaVtIVP(z,t+1)= BVP(z,t)VIVP(x,t)

t+1)

(x
VaVtIPP(x, = BPP(x,t)VIPP(x,t)

where P(z,t) indicates the output of the network associated to label P for the
phrase x and the ¢-th term in the phrase.

In order to evaluate the proposed methodology, collective classification is
performed to assign the labels in order to minimize the distance from the network
outputs, acting as priors, while maximizing the verification of the constraints
built from the previously reported rules. Table [2| reports the F1 results for the
different percentages of supervised phrases used to train the network. The results
have been evaluated both on all classes, and then zooming in for some of the
rare classes that are often wrongly classified. The effect of the rules is overall
mildly positive as most of the tags can be correctly predicted by the supervised
examples. However, the effect of the knowledge is more clear when zooming in to
see the effect on the some of the less common tags (ADJ, ADV, PRT,SBAR):
since not enough examples are observed for these tags, the extra knowledge allows
to improve their classification. Since these tags are relatively rare the overall
effect on the metrics is not large on this dataset, but it is a very promising start
to allow the application of pos tagging to challenging domains.

Document Classification on the Citeseer dataset. This section applies the pro-
posed framework to a standard ML dataset. The CiteSeer dataseﬁ) [15] consists
of 3312 scientific papers, each one assigned to one of 6 classes: Agents, Al, DB,
ML and HCI. The papers are not independent as they are connected by a citation
network with 4732 links. Each paper in the dataset is described via its bag-of-word
representation, which is a vector having the same size of the vocabulary with the
i-th element having a value equal to 1 or 0, depending on whether the i-th word

® https://lings.soe.ucsc.edu/data
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% data in training set
5 10 30 50 100

F1 NN 87.39 89.55 92.15 93.31 94.18
LYRICS  87.75 89.78 92.26 93.53 94.27
NN 56.24 60.84 75.19 76.74 79.42

Fl(rare tags) |V p10§  57.65 61.36 75.68 77.45 79.71

Table 2: CoNLL2000 evaluation script on all the classes and on the less common
pos tags that have an initial lower performance.

in the vocabulary is present or not present in the document, respectively. The
dictionary consists of 3703 unique words. This learning task is expressed as:

Domain(label="Papers", data=X)
Predicate("Agents", ("Papers"), Slice(NN, 0))
Predicate("AI", ("Papers"), Slice(NN, 1))
Predicate("DB", ("Papers"), Slice(NN, 2))
Predicate("IR", ("Papers"), Slice(NN, 3))
Predicate("ML", ("Papers"), Slice(NN, 4))
Predicate("HCI", ("Papers"), Slice(NN, 5))

where the first line defines the domain of scientific articles to classify, and one
predicate for each class is defined and bound to an output of a neural network
NN, which features a softmax activation function on the output layer.

The domain knowledge that if a paper cites another one, they are likely to
share the same topic, is expressed as:

Predicate("Cite", ("Papers","Papers") ,f_cite)
Constraint("forall x: forall y: Agent(x) and Cite(x, y) -> Agent(y)")

Constraint("forall x: forall y: AI(x) and Cite(x, y) -> AI(y)")
Constraint ("forall x: forall y: DB(x) and Cite(x, y) -> DB(y)")
Constraint("forall x: forall y: IR(x) and Cite(x, y) -> IR(y)")
Constraint("forall x: forall y: ML(x) and Cite(x, y) -> ML(y)")
Constraint("forall x: forall y: HCI(x) and Cite(x, y) -> HCI(y)")

where f_cite is a given function determining whether a pattern cites another
one. Finally, the supervision on a variable size training set can be provided by
means of:

PointwiseConstraint (NN, y_s, X_s)

where X_s is a subset of the domain of papers where we enforce supervisions y_s.

Table [3| reports the accuracy obtained by a neural network with one hidden
layer (200 hidden neurons) trained in a supervised fashion and by training the
same network from supervision and logic knowledge in LYRICS, varying the
amount of available training data and averaged over 10 random splits of the
training and test data. The improvements over the baseline are statistically
significant for all the tested configurations. Table [4 compares the neural network
classifiers against other two content-based classifiers, namely logistic regression
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% data in training set
10 30 50 70 90

NN 60.08 68.61 69.81 71.93 72.59

LYRICS 67.39 72.96 75.97 76.86 78.03
Table 3: Citeseer dataset: comparison of the 10-fold average accuracy obtained
by supervised training of a neural network (NN), and by learning the same NN
from supervision and logic knowledge in LYRICS for a variable percentage of
training data. Bold values indicate statistically significant improvements.

Method Accuracy
Naive Bayes 74.87
ICA Naive Bayes 76.83
GS Naive Bayes 76.80
Logistic Regression 73.21

ICA Logistic Regression 77.32
GS Logistic Regression 76.99
Loopy Belief Propagation 77.59

Mean Field 77.32
NN 72.59
LYRICS 78.03

Table 4: Citeseer dataset: comparison of the 10-fold average accuracy obtained
by content based and network based classifiers and by learning from supervision
and logic knowledge in LYRICS.

(LR) and Naive Bayes (NB), and against collective classification approaches using
network data: Iterative Classification Algorithm (ICA) [18] and Gibbs Sampling
(GS) [15] both applied on top of the output of LR and NB content-based classifiers.
Furthermore, the results against the two top performers on this task: Loopy
Belief Propagation (LBP) [22] and Relaxation Labeling through Mean-Field
Approach (MF) [22] are reported. The accuracy values are obtained as average
over 10-folds created by random splits of size 90% and 10% of the overall data for
the train and test sets, respectively. Unlike the other network based approaches
that only be run at test-time (collective classification), LYRICS can distill the
knowledge in the weights of the neural network. The accuracy results are the
highest among all the tested methodologies in spite that the underlying neural
network classifier trained only via the supervisions did perform slightly worse
than the other content-based competitors.

5 Conclusions

This paper presents a novel and general framework, called LYRICS, to bridge
logic reasoning and deep learning. The framework is directly implemented in
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TensorFlow, allowing a seaming-less integration that is architecture agnostic. The
frontend of the framework is a declarative language based on First—Order Logic.
Throughout the paper are presented a set of examples illustrating the generality
and expressivity of the framework, which can be applied to a large range of tasks.
Future developments of the proposed framework include a learning mechanism
of the weights of the constraints. This would allow to consider more general rule
schemata that will be weighted with coefficients automatically learned by the
parameter optimization according to the degree of satisfaction of any rule. This
will improve the framework especially to deal with soft constraints expressing
some statistical co-occurrence among the classes involved in the learning problem.
Moreover, the differentiability of fuzzy logic could suggest new methods for
learning a set of constraints in logical form that may be understandable.
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