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Abstract. While deep generative networks can simulate from complex
data distributions, their utility can be hindered by limitations on the
data available for training. Specifically, the training data distribution
may differ from the target sampling distribution due to sample selection
bias, or because the training data comes from a different but related
distribution. We present methods to accommodate this difference via
importance weighting, which allow us to estimate a loss function with
respect to a target distribution even if we cannot access that distribution
directly. These estimators, which differentially weight the contribution
of data to the loss function, offer theoretical guarantees that heuristic
approaches lack, while giving impressive empirical performance in a
variety of settings.
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1 Introduction

Deep generative models have important applications in many fields: we can
automatically generate illustrations for text [48]; simulate video streams [46] or
molecular fingerprints [27]; and create privacy-preserving versions of medical
time-series data [14]. Such models use a neural network to parametrize a function
G(Z), which maps random noise Z to a target probability distribution P. This is
achieved by minimizing a loss function between simulations and data, which is
equivalent to learning a distribution over simulations that is indistinguishable
from P under an appropriate two-sample test. In this paper we focus on Generative
Adversarial Networks (GANs) [17, 2, 4, 30], which incorporate an adversarially
learned neural network in the loss function; however the results are also applicable
to non-adversarial networks [13, 31].

An interesting challenge arises when we do not have direct access to i.i.d.
samples from P. This could arise either because observations are obtained via
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a biased sampling mechanism [6, 49], or in a transfer learning setting where
our target distribution differs from our training distribution. As an example
of the former, a dataset of faces generated as part of a university project may
contain disproportionately many young adult faces relative to the population. As
an example of the latter, a Canadian hospital system might want to customize
simulations to its population while still leveraging a training set of patients
from the United States (which has a different statistical distribution of medical
records). In both cases, and more generally, we want to generate data from
a target distribution P but only have access to representative samples from a
modified distribution MP. We give a pictorial example of this setting in Figure 1.

(a) Target distri-
bution P

(b) Observed dis-
tributionMP and
samples from MP

(c) Simulations
using a standard
estimator

(d) Simulations
using an impor-
tance weighted
estimator

Fig. 1: If our target distribution P differs from our observed distribution MP,
using the standard estimator will replicate MP, while an importance weighted
estimator can replicate the target P.

In some cases, we can approach this problem using existing methods. For
example, if we can reduce our problem to a conditional data-generating mechanism,
we can employ Conditional Generative Adversarial Networks (C-GANs) or related
models [33, 36], which enable conditional sampling given one or more latent
variables. However, this requires that M can be described on a low-dimensional
space, and that we can sample from our target distribution over that latent
space. Further, C-GANs rely on a large, labeled dataset of training samples with
diversity over the conditioning variable (within each batch), which becomes a
challenge when conditioning on a high-dimensional variable. For example, if we
wish to modify a distribution over faces with respect to age, gender and hair
length, there may be few exemplars of 80-year-old men with long hair with which
to learn the corresponding conditional distribution.

In this paper, we propose an alternate approach based on importance sampling
[37]. Our method modifies an existing GAN by rescaling the observed data
distributionMP during training, or equivalently by reweighting the contribution of
each data point to the loss function. When training a GAN with samples fromMP,
the standard estimator equally weights the contribution of each point, yielding
an estimator of the loss with respect to MP and corresponding simulations, as
shown in Fig. 1b and Fig. 1c. This is not ideal.



Importance Weighted Generative Networks 3

In order to yield the desired estimator with respect to our target distribution
P, we modify the estimator by reweighting the loss function evaluation for each
sample. When the Radon-Nikodym derivative between the target and observed
distributions (aka the modifier function M) is known, we inversely scale each
evaluation by that derivative, yielding the finite-sample importance sampling
transform on the estimate, which we call the importance weighted estimator. This
reweighting asymptotically ensures that discrimination, and the corresponding
GAN update, occurs with respect to P instead of MP, as shown in Fig. 1a and
Fig. 1d.

This approach has multiple advantages and extensions. First, ifM is known, we
can estimate importance weighted losses using robust estimators like the median-
of-means estimator, which is crucial for controlling variance in settings where the
modifier function M has a large dynamic range. Second, even when the modifier
function is only known up to a scaling factor, we can construct an alternative
estimator using self-normalized sampling [41, 37] to use this partial information,
while still maintaining asymptotic correctness. Finally and importantly, for the
common case of an unknown modifier function, we demonstrate techniques for
estimating it from partially labeled data.

Our contributions are as follows: 1) We provide a novel application of tra-
ditional importance weighting to deep generative models. This has connections
to many types of GAN loss functions through the theory of U-statistics. 2) We
propose several variants of our importance weighting framework for different prac-
tical scenarios. When dealing with particularly difficult functions M , we propose
to use robust median-of-means estimation and show that it has similar theoretical
guarantees under weaker assumptions, i.e. bounded second moment. When M
is not known fully (only up to a scaling factor), we propose a self-normalized
estimator. 3) We conduct an extensive experimental evaluation of the proposed
methods on both synthetic and real-world datasets. This includes estimating M
when less than 4% of the data is labeled with user-provided exemplars.

1.1 Related Work

Our method aims to generate samples from a distribution P, given access to
samples fromMP. While to the best of our knowledge this has not been explicitly
addressed in the GAN literature, several approaches have related goals.
Domain adaptation: Our formulation is related to but distinct from the prob-
lem of Domain Adaptation (DA). The challenge of DA is, “If I train on one
distribution and test on another, how do I maximize performance on test data?”
Critically, the test data is available and extensively used. Instead, our method
solves the problem, “Given only a training data distribution, how do I generate
from arbitrarily modified versions of it?” The former uses two datasets – one
source and one target – while the latter uses one dataset and accommodates an
arbitrary number of targets. The methodologies are inherently different because
the information available is different.

Typical approaches to DA involve finding domain-invariant feature represen-
tations for both source and target data. Blitzer, Pereira, Ben-David, and Daume
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[5, 3, 9] write extensively on techniques involving feature correlation and mutual
information within classification settings. Pan, Huang, and Gong [38, 39, 24, 16]
propose methods with similar goals that find kernel representations under which
source and target distributions are close. The work of [24] and [43] address
covariate shift using kernel-based and importance-weighted techniques, but still
inhabit a different setting from our problem since they perform estimation on
specific source and target datasets.

Recently, the term DA has been used in the context of adversarially-trained
image-to-image translation and downstream transfer learning tasks [25, 45, 50, 22].
Typically the goal is to produce representations of the same image in both source
and target domains. Such problems begin with datasets from both domains,
whereas our setting presents only one source dataset and seeks to generate
samples from a hypothetical, user-described target domain.

Inverse probability weighting: Inverse probability weighting (IPW), originally
proposed by [23] and still in wide use in the field of survey statistics [32], can
be seen as a special case of importance sampling. IPW is a weighting scheme
used to correct for biased treatment assignment methods in survey sampling. In
such settings, the target distribution is known and the sampling distribution is
typically finite and discrete, and can easily be estimated from data.

Conditional GANs: Conditional GANs (C-GANs) are an extension of GANs
that aim to simulate from a conditional distribution, given some covariate. In
the case where our modifier function M can be represented in terms of a low-
dimensional covariate space, and if we can generate samples from the marginal
distribution ofMP on that space, then we can, in theory, use a C-GAN to generate
samples from P, by conditioning on the sampled covariates. This strategy suffers
from two limitations. First, it assumes we can expressM in terms of a sampleable
distribution on a low-dimensional covariate space. For settings where M varies
across many data dimensions or across a high-dimensional latent embedding, this
ability to sample becomes untenable. Second, learning a family of conditional
distributions is typically more difficult than learning a single joint distribution.
As we show in our experiments, C-GANs often fail if there are too few real
exemplars for a given covariate setting.

Related to C-GANs, [8] proposes conditional generation and a classifier for
assigning samples to specific discriminators. While not mentioned, such a structure
could feasibly be used to preferentially sample certain modes, if a correspondence
between latent features and numbered modes were known.

Weighted loss: In the context of domain adaptation for data with discrete class
labels, the strategy of reweighting the Maximum Mean Discrepancy (MMD) [18]
based on class probabilities has been proposed by [47]. This approach, however,
differs from ours in several ways: It is limited to class imbalance problems, as
opposed to changes in continuous-valued latent features; it requires access to the
non-conforming target dataset; it provides no theoretical guarantees about the
weighted estimator; and it is not in the generative model setting.
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Other uses of importance weights in GANs: The language and use of
importance weights is not unique to this application, and has been used for
other purposes within the GAN context. In [19], for example, importance weights
are used to provide policy gradients for GANs in a discrete-data setting. Our
application is different in that our target distribution is not that of our data, as it
is in [19]. Instead we view our data as having been modified, and use importance
weights to simulate closer to the hypothetical and desired unmodified distribution.

2 Problem Formulation and Technical Approach

The problem: Given training samples from a distribution MP, our goal is to
construct (train) a generator function G(·) that produces i.i.d. samples from a
distribution P.

To train G(·), we follow the methodology of a Generative Adversarial Network
(GAN) [17]. In brief, a GAN consists of a pair of interacting and evolving neural
networks – a generator neural network with outputs that approximate the desired
distribution, and a discriminator neural network that distinguishes between
increasingly realistic outputs from the generator and samples from a training
dataset.

The loss function is a critical feature of the GAN discriminator, and evaluates
the closeness between the samples of the generator and those of the training
data. Designing good loss functions remains an active area of research [2, 30].
One popular loss function is the Maximum Mean Discrepancy (MMD) [18], a
distributional distance that is zero if and only if the two distributions are the
same. As such, MMD can be used to prevent mode collapse [42, 7] during training.

Our approach: We are able to train a GAN to generate samples from P using
a simple reweighting modification to the MMD loss function. Reweighting forces
the loss function to apply greater penalties in areas of the support where the
target and observed distributions differ most.

Below, we formally describe the MMD loss function, and describe its impor-
tance weighted variants.

Remark 1 (Extension to other losses). While this paper focuses on the MMD
loss, we note that the above estimators can be extended to any estimator that
can be expressed as the expectation of some function with respect to one or more
distributions. This class includes losses such as squared mean difference between
two distributions, cross entropy loss, and autoencoder losses [44, 20, 34]. Such
losses can be estimated from data using a combination of U-statistics, V-statistics
and sample averages. Each of these statistics can be reweighted, in a manner
analogous to the treatment described above. We provide more comprehensive
details in Table 1, and in Section 3.1 we evaluate all three importance weighting
techniques as applied to the standard cross entropy GAN objective.
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2.1 Maximum Mean Discrepancy between Two Distributions

The MMD projects two distributions P and Q into a reproducing kernel Hilbert
space (RKHS) H, and evaluates the maximum mean distance between the two
projections, i.e.

MMD(P,Q) := sup
f∈H

(EX∼P[f(X)]−EY∼Q[f(Y )]) .

If we specify the kernel mean embedding µP of P as µP =
∫
k(x, ·)dP(x), where

k(·, ·) is the characteristic kernel defining the RKHS, then we can write the square
of this distance as

MMD2(P,Q) = ||µP − µQ||2H
= EX,X′∼P[k(X,X

′)] + EY,Y ′∼Q[k(Y, Y
′)]

− 2EX∼P,Y∼Q[k(X,Y )]. (1)

In order to be a useful loss function for training a neural network, we must be able
to estimate MMD2(P,Q) from data, and compute gradients of this estimate with
respect to the network parameters. Let {xi}n be a sample {X1 = x1, . . . , Xn =
xn} : Xi ∼ P, and {yi}m be a sample {Y1 = y1, . . . , Ym = ym} : Yi ∼ Q. We can
construct an unbiased estimator M̂MD2(P,Q) of MMD2(P,Q) [18] using these
samples as

M̂MD2(P,Q) = 1
n(n−1)

∑n
i 6=j k(xi, xj)

+ 1
m(m−1)

∑m
i 6=j k(yi, yj)

− 2
nm

∑n
i=1

∑m
j=1 k(xi, yj). (2)

2.2 Importance Weighted Estimator for Known M

We begin with the case whereM (which relates the distribution of the samples and
the desired distribution; formally the Radon-Nikodym derivative) is known. Here,
the reweighting of our loss function can be framed as an importance sampling
problem: we want to estimate MMD2(P,Q), which is in terms of the target
distribution P and the distribution Q implied by our generator, but we have
samples from the modified MP. Importance sampling [37] provides a method for
constructing an estimator for the expectation of a function φ(X) with respect
to a distribution P, by taking an appropriately weighted sum of evaluations of
φ at values sampled from a different distribution. We can therefore modify the
estimator in (2) by weighting each term in the estimator involving data point
xi using the likelihood ratio P(xi)/M(xi)P(xi) = 1/M(xi), yielding an unbiased
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importance weighted estimator that takes the form

M̂MD2
IW (P,Q) = 1

n(n−1)
∑n

i6=j
k(xi,xj)

M(xi)M(xj)

+ 1
m(m−1)

∑m
i 6=j k(yi, yj)

− 2
nm

∑n
i=1

∑m
j=1

k(xi,yj)
M(xi)

. (3)

While importance weighting using the likelihood ratio yields an unbiased
estimator (3), the estimator may not concentrate well because the weights
{1/M(xi)}n may be large or even unbounded. We now provide a concentration
bound for the estimator in (3) for the case where weights {1/M(xi)}n are upper-
bounded by some maximum value.

Theorem 1. Let M̂MD2
IW (P,Q) be the unbiased, importance weighted estimator

for MMD2(P,Q) defined in (3), given m i.i.d samples from MP and Q, and
maximum kernel value K. Further assume that 1 ≤ 1/M(x) ≤W for all x ∈ X .
Then

P
(
M̂MD2

IW (P,Q)−MMD2(P,Q) > t
)
≤ C,

where C = exp((−2t2m2)/(K
2(W + 1)4))

m2 := bm/2c

These guarantees are based on estimator guarantees in [18], which in turn
build on classical results by Hoeffding [21, 20]. We defer the proof of this theorem
to the extended version of this work [12].

2.3 Robust Importance Weighted Estimator for Known M

Theorem 1 is sufficient to guarantee good concentration of our importance
weighted estimator only when 1/M(x) is uniformly bounded by some constant
W , which is not too large. Many class imbalance problems fall into this setting.
However, 1/M(x) may be unbounded in practice. Therefore, we now intro-
duce a different estimator, which enjoys good concentration even when only
EX∼MP[1/M(X)2] is bounded, while 1/M(x) may be unbounded for many values
of x.

The estimator is based on the classical idea of median of means [35, 26, 1, 29]5.
Given m samples from MP and Q, we divide these samples uniformly at random
into k equal sized groups, indexed {(1), ..., (k)}. Let M̂MD2

IW (P,Q)(i) be the
value obtained when the estimator in (3) is applied on the i-th group of samples.
Then our median of means based estimator is given by

M̂MD2
MIW (P,Q) = median

{
M̂MD2

IW (P,Q)(1), . . . , M̂MD2
IW (P,Q)(k)

}
. (4)

5 [29] appeared concurrently and contains a different approach for the unweighted
estimator. Comparisons are left for future work.
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Theorem 2. Let M̂MD2
MIW (P,Q) be the asymptotically unbiased median of

means estimator defined in (4) using k = mt2/(8K2σ2) groups. Further assume
that n=m and let W2 = EX∼MP[1/M(X)2] be bounded. Then

P
(
|M̂MD2

MIW (P,Q)−MMD2(P,Q)| > t
)
≤ C,

where C = exp((−mt2)/(64K2σ2))

σ2 = O
(
W 2

2 +MMD4(P,Q)
)
.

We defer the proof of this theorem to the extended version of this work [12].
Note that the confidence bound in Theorem 2 depends on the term W2 being
bounded. This is the second moment of 1/M(X) where X ∼MP. Thus, unlike in
Theorem 1, this confidence bound may still hold even if 1/M(x) is not uniformly
bounded. When 1/M(X) is heavy-tailed with finite variance, e.g. Pareto (α > 2)
or log-normal, then Theorem 2 is valid but Theorem 1 does not apply.

In addition to increased robustness, the median of means MMD estimator is
more computationally efficient: since calculating M̂MD2

IW (P,Q) scales quadrati-
cally in the batch size, using the median of means estimator introduces a speed-up
that is linear in the number of groups.

2.4 Self-normalized Importance Weights for Unknown M

To specify M , we must know the forms of our target and observed distributions
along any marginals where the two differ. In some settings this is available:
consider for example a class rebalancing setting where we have class labels
and a desired class ratio, and can estimate the observed class ratio from data.
This, however, may be infeasible if M is continuous and/or varies over several
dimensions, particularly if data are arriving in a streaming manner. In such a
setting it may be easier to specify a thinning function T that is proportional to M ,
i.e. MP = TP

Z for some unknown Z, than to estimate M directly. This is because
T can be directly obtained from an estimate of how much a given location is
underestimated, without any knowledge of the underlying distribution.

This setting—where the 1/M weights used in Section 2.2 are only known up
to a normalizing constant—motivates the use of a self-normalized importance
sampling scheme, where the weights wi ∝ P(xi)

M(xi)P(xi)
= Z

T (xi)
are normalized

to sum to one [41, 37]. For example, by letting wi =
1

T (xi)
, the resulting self-

normalized estimator for the squared MMD takes the form

M̂MD2
IW (P,Q) =

∑n
i6=j wiwjk(xi,xj)∑n

i6=j wiwj

+
∑m

i 6=j
k(yi,yj)
m(m−1)

− 2
∑n

i=1

∑m
j=1 wik(xi,yj)

m
∑n

i=1 wi
. (5)

While use of self-normalized weights means this self-normalized estimator is
biased, it is asymptotically unbiased, with the bias decreasing at a rate of 1/n
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[28]. Although we have motivated self-normalized weights out of necessity, in
practice they often trade off bias for reduced variance, making them preferable
in some practical applications [37].

More generally, in addition to not knowing the normalizing constant Z,
we might also not know the thinning function T . For example, T might vary
along some latent dimension—perhaps we want to have more images of people
fitting a certain aesthetic, rather than corresponding to a certain observed
covariate or class. In this setting, a practitioner may be able to estimate T (xi),
or equivalently wi, for a small number of training points xi, by considering how
much those training points are under- or over-represented. Continuous-valued
latent preferences can therefore be expressed by applying higher weights to points
deemed more appealing. From here, we can use function estimation techniques,
such as neural network regression, to estimate T from a small number of labeled
data points.

2.5 Approximate Importance Weighting by Data Duplication

In the importance weighting scheme described above, each data point is assigned
a weight 1/M(xi). We can obtain an approximation to this method by including
d1/M(xi)e duplicates of data point xi in our training set. We refer to this
approach as importance duplication. Importance duplication obviously introduces
discretization errors, and if our estimator is a U-statistic it will introduce bias
(e.g. in the MMD example, if two or more copies of the data point xi appear in a
minibatch, then k(xi, xi) will appear in the first term of (2)). However, as we
show in the experimental setting, even though this approach lacks theoretical
guarantees it provides generally good performance.

Data duplication can be done as a pre-processing step, making it an appealing
choice if we have an existing GAN implementation that we do not wish to modify.
In other settings, it is less appealing, since duplicating data adds an additional
step and increases the amount of data the algorithm must process. Further, if we
were to use this approximation in a setting where M is unknown, we would have
to perform this data duplication on the fly as our estimate of M changes.

3 Evaluation

In this section, we show that our estimators, in conjunction with an appropriate
generator network, allow us to generate simulations that are close in distribution
to our target distribution, even when we only have access to this distribution
via a biased sampling mechanism. Further, we show that our method performs
comparably with, or better than, conditional GAN baselines.

Most of our weighted GAN models are based on the MMD-GAN of [30], replac-
ing the original MMD loss with either our importance weighted loss M̂MD2

IW (P,Q)

(IW-MMD), our median of means loss M̂MD2
MIW (P,Q) (MIW-MMD), or our

self-normalized loss M̂MD2
SNIW (P,Q) (SNIW-MMD). We also use a standard

MMD loss with an importance duplicated dataset (ID-MMD). Other losses used
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Table 1: Constructing importance weighted estimators for losses involving U-
statistics, V-statistics and sample averages. Here, U is the set of all r-tuples
of numbers from 1 to n without repeats, and V is the set of r-tuples allowing
repeats. Below, let Xu,∗ = Xu1

, ... , Xur
.

D̂(P,Q) D̂IW (P,Q) D̂SNIW (P,Q)

U-statistic
1

nPr

∑
u∈U

g(Xu,∗)
1

nPr

∑
u∈U

g(Xu,∗)

M(Xu1)···M(Xur )

∑
u∈U wu1 ···wurg(Xu,∗)∑

u∈U wu1 ···wur

V-statistic
1

nr

∑
v∈V

g(Xv,∗)
1

nr

∑
v∈V

g(Xv,∗)

M(Xv1)···M(Xvr )

∑
v∈V wv1 ···wvrg(Xv,∗)∑n

vr=1 wv1 ···wvr

Average
1

nm

n∑
i=1

m∑
j=1

f(Xi, Yj)
1

nm

n∑
i=1

m∑
j=1

f(Xi, Yj)

M(Xi)

∑n
i=1 wi

∑m
j=1 f(Xi, Yj)

m
∑n

i=1 wi

in [30] are also appropriately weighted, following the form in Table 1. In the
synthetic data examples of Section 3.1, the kernel is a fixed radial basis function,
while in all other sections it is adversarially trained using a discriminator network
as in [30].

To demonstrate that our method is applicable to other losses, in Section 3.1
we also create models that use the standard cross entropy GAN loss, replacing
this loss with either an importance weighted estimator (IW-CE), a median of
means estimator (MIW-CE) or a self-normalized estimator (SNIW-CE). We also
combine a standard cross entropy loss with an importance duplicated dataset
(ID-CE). These models used a two-layer feedforward neural network with ten
nodes per layer.

Where appropriate, we compare against a conditional GAN (C-GAN). If M is
known exactly and expressible in terms of a lower-dimensional covariate space, a
conditional GAN (C-GAN) offers an alternative method to sample from P: learn
the appropriate conditional distributions given each covariate value, sample new
covariate values, and then sample from P using each conditional distribution.

3.1 Can GANs with Importance Weighted Estimators Recover
Target Distributions, Given M?

To evaluate whether using importance weighted estimators can recover target
distributions, we consider a synthetically generated distribution that has been
manipulated along a latent dimension. Under the target distribution, a latent
representation θi of each data point lives in a ten-dimensional space, with each
dimension independently Uniform(0,1). The observed data points xi are then
obtained as θTi F , where Fij ∼ N (0, 1) represents a fixed mapping between the
latent space and D-dimensional observation space. In the training data, the
first dimension of θi has distribution p(θ) = 2θ, 0 < θ ≤ 1. We assume that the
modifying function M(xi) = 2θi,1 is observed, but that the remaining latent
dimensions are unobserved.
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In our experiments, we generate samples from the target distribution using
each of the methods described above, and include weighted versions of the cross
entropy GAN to demonstrate that importance weighting can be generalized to
other losses.

To compare methods, we report the empirically estimated KL divergence
between the target and generated samples in Table 2. Similar results using squared
MMD and energy distance are shown in the extended version of this work [12].
For varying real dimensions D, importance weighted methods outperform C-GAN
under a variety of measures.

In some instances C-GAN performs well in two dimensions, but deteriorates
quickly as the problem becomes more challenging with higher dimensions. We
also note that many runs of C-GAN either ran into numerical issues or diverged;
in these cases we report the best score among runs, before training failure.

Table 2: Estimated KL divergence between generated and target samples (mean
± standard deviation over 20 runs).

Model 2D 4D 10D

IW-CE 0.1768 ± 0.0635 0.4934 ± 0.1238 2.7945 ± 0.5966
MIW-CE 0.3265 ± 0.1071 0.6251 ± 0.1343 3.3093 ± 0.7179
SNIW-CE 0.0925 ± 0.0272 0.3864 ± 0.1478 2.3060 ± 0.6915
ID-CE 0.1526 ± 0.0332 0.3444 ± 0.0766 1.4128 ± 0.3288
IW-MMD 0.0343 ± 0.0230 0.0037 ± 0.0489 0.5133 ± 0.1718
MIW-MMD 0.2698 ± 0.0618 0.0939 ± 0.0522 0.8501 ± 0.3271
SNIW-MMD 0.0451 ± 0.0132 0.1435 ± 0.0377 0.6623 ± 0.0918
C-GAN 0.0879 ± 0.0405 0.3108 ± 0.0982 6.9016 ± 2.8406

While the above experiment can be evaluated numerically and provide good
results for thinning on a continuous-valued variable, it is difficult to visualize the
outcome. In order to better visualize whether the target distribution is correctly
achieved, we also run experiments with explicit and easily measurable class
distributions. In Figure 2, we show a class rebalancing problem on MNIST digits,
where an initial uneven distribution between three classes can be accurately rebal-
anced. In the extended version of this work [12], we also show good performance
modifying a balanced distribution to specific boosted levels. Together, these
experiments provide evidence that importance weighting controls the simulated
distribution in the desired way.

3.2 In a High-dimensional Image Setting, How Does Importance
Weighting Compare with Conditional Generation?

Next we evaluate performance of importance weighted MMD on high-dimensional
image generation. In this section we address two questions: Can our estimators
generate simulations from P in such a setting, and how do the resulting images
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(a) Source, uneven distri-
bution of 0s, 1s, and 5s

(b) Source (left), simula-
tion (right); target of 1/3-
1/3-1/3

(c) Simulations, bal-
anced distribution

Fig. 2: Importance weights are used to accurately rebalance an uneven class
distribution.

compare with those obtained using a C-GAN? To do so, we evaluate several
generative models on the Yearbook dataset [15], which contains over 37,000 high
school yearbook photos across over 100 years and demonstrates evolving styles
and demographics. The goal is to produce images uniformly across each half
decade. Each GAN, however, is trained on the original dataset, which contains
many more photos from recent decades.

Since we have specified M in terms of a single covariate (time), we can
compare with C-GANs. For the C-GAN, we use a conditional version of the
standard DCGAN architecture (C-DCGAN) [40].

Figure 3 shows generated images from each network. All networks were trained
until convergence. The images show a diversity across hairstyles, demographics
and facial expressions, indicating the successful temporal rebalancing. Even
while importance duplication introduces approximations and lacks the theoretical
guarantees of the other two methods, all three importance-based methods achieve
comparable quality. Since some covariates have fewer than 65 images, C-DCGAN
cannot learn the conditional distributions, and is unstable across a variety of
training parameters. Implementation details and additional experiments are
shown in the extended version of this work [12].

3.3 When M Is Unknown, but Can Be Estimated Up to a
Normalizing Constant on a Subset of Data, Are We Able to
Sample from our Target Distribution?

In many settings, especially those with high-dimensional latent features, we will
not know the functional form of M , or even the corresponding thinning function
T . We would still, however, like to be able to express a preference for certain areas
of the latent space. To do so, we propose labeling a small subset of data using
weights that correspond to preference. To expand those weights to the entire
dataset, we train a neural network called the estimated weighting function. This
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(a) Conditional DCGAN (b) ID-MMD

(c) Importance Weighting (IW-MMD) (d) Median of Means (MIW-MMD)

Fig. 3: Example generated images for all example networks, Yearbook dataset [15].
Target distribution is uniform across half-decades, while the training set is
unbalanced.

weighting function takes encoded images as input, and outputs continuous-valued
weights. Since this function exists in a high-dimensional space that changes as the
encoder is updated, and since we do not know the full observed distribution on
this space, we are in a setting unsuitable for conditional methods, and therefore
use self-normalized estimators (SNIW-MMD).

We evaluate using a collection of sevens from the MNIST dataset, where
the goal is to generate more European-style sevens with horizontal bars. Out of
5915 images, 200 were manually labeled with a weight (reciprocal of a thinning
function value), where sevens with no horizontal bar were assigned a 1, and
sevens with horizontal bars were assigned weights between 2 and 9 based on the
width of the bar.
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(a) Data (b) Generator (c) KS distance

Fig. 4: Partial labeling and an importance weighted estimator boost the presence of
sevens with horizontal bars. In 4a and 4b, samples are sorted by predicted weight,
and in 4c, the empirical CDFs of data, generated, and importance duplicated
draws, are shown, where the latter serves as a theoretical target. The generated
distribution is close in distance to the target.

Fig. 4a shows 64 real images, sorted in terms of their predicted weights
– note that the majority have no horizontal bar. Fig. 4b shows 64 generated
simulations, sorted in the same manner, clearly showing an increase in the
number of horizontal-bar sevens.

To test the quantitative performance, we display and compare the empirical
CDFs of weights from simulations, data, and importance duplicated data. For
example, if a batch of data [A,B,C] has weights [1, 3, 2], this implies that we
expected three times as many B-like points and two times as many C-like points
as A-like points. A simulator that achieves this target produces simulations
like [A,B,B,B,C,C] with weights [1, 3, 3, 3, 2, 2], equivalent to an importance
duplication of data weights. Using importance duplicated weights as a theoretical
target, we measure our model’s performance by computing the Kolmogorov-
Smirnov (KS) distance between CDFs of simulated and importance duplicated
weights. Fig. 4c shows a small distributional distance between simulations and
their theoretical target, with dKS = 0.03, p = 0.457.

4 Conclusions and Future Work

We present three estimators for the MMD (and a wide class of other loss functions)
between target distribution P and the distribution Q implied by our generator.
These estimators can be used to train a GAN to simulate from the target
distribution P, given samples from a modified distribution MP. We present
solutions for when M is potentially unbounded, is unknown, or is known only up
to a scaling factor.

We demonstrate that importance weighted estimators allow deep generative
models to match target distributions for common and challenging cases with
continuous-valued, multivariate latent features. This method avoids heuristics
while providing good empirical performance and theoretical guarantees.
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Though the median of means estimator offers a more robust estimate of the
MMD, we may still experience high variance in our estimates, for example if we
rarely see data points from a class we want to boost. An interesting future line
of research is exploring how variance-reduction techniques [11] or adaptive batch
sizes [10] could be used to overcome this problem.
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