Generative Adversarial Networks for
Failure Prediction

Shuai Zheng®Y, Ahmed Farahat, and Chetan Gupta

Industrial AI Lab, Hitachi America Ltd
Santa Clara, CA, USA
{Shuai.Zheng, Ahmed.Farahat ,Chetan.Gupta}@hal.hitachi.com

Abstract. Prognostics and Health Management (PHM) is an emerging
engineering discipline which is concerned with the analysis and predic-
tion of equipment health and performance. One of the key challenges in
PHM is to accurately predict impending failures in the equipment. In
recent years, solutions for failure prediction have evolved from building
complex physical models to the use of machine learning algorithms that
leverage the data generated by the equipment. However, failure predic-
tion problems pose a set of unique challenges that make direct application
of traditional classification and prediction algorithms impractical. These
challenges include the highly imbalanced training data, the extremely
high cost of collecting more failure samples, and the complexity of the
failure patterns. Traditional oversampling techniques will not be able to
capture such complexity and accordingly result in overfitting the train-
ing data. This paper addresses these challenges by proposing a novel
algorithm for failure prediction using Generative Adversarial Networks
(GAN-FP). GAN-FP first utilizes two GAN networks to simultaneously
generate training samples and build an inference network that can be
used to predict failures for new samples. GAN-FP first adopts an info-
GAN to generate realistic failure and non-failure samples, and initialize
the weights of the first few layers of the inference network. The infer-
ence network is then tuned by optimizing a weighted loss objective using
only real failure and non-failure samples. The inference network is further
tuned using a second GAN whose purpose is to guarantee the consistency
between the generated samples and corresponding labels. GAN-FP can
be used for other imbalanced classification problems as well. Empirical
evaluation on several benchmark datasets demonstrates that GAN-FP
significantly outperforms existing approaches, including under-sampling,
SMOTE, ADASYN, weighted loss, and infoGAN augmented training.

Keywords: Generative Adversarial Networks - Failure Prediction - Im-
balanced Classification

1 Introduction

Reliability of industrial systems, products and equipment is critical not only to
manufacturers, operating companies, but also to the entire society. For example,

2 S. Zheng et al.

in 2017, due to electrical fault in a refrigerator, Grenfell Tower fire in London
killed 72 people, hospitalized 74 and caused 200 million to 1 billion GBP prop-
erty damage [1]. Because of the profound impact and extreme costs associated
with system failures, methods that can predict and prevent such catastrophes
have long been investigated. These methodologies can be grouped under the
framework of Prognostics and Health Management (PHM), where prognostics is
the process of predicting the future reliability of a product by assessing the ex-
tent of deviation or degradation of the product while the product is still working
properly; health management is the process of real time measuring and moni-
toring. The benefits of accurate PHM approaches include: 1) providing advance
warning of failures; 2) minimizing unnecessary maintenance, extending main-
tenance cycles, and maintaining effectiveness through timely repair actions; 3)
reducing cost related to inspection and maintenance, reducing cost related to
system downtime and inventory by scheduling replacement parts in the right
time; and 4) improving the design of future systems [2, 3]. Failure prediction is
one of the main tasks in PHM.

Failure prediction approaches can be categorized into model-based approaches
and data-driven approaches [4]. Model-based approaches use mathematical equa-
tions to incorporate a physical understanding of the system, and include both
system modeling and physics-of-failure (PoF) modeling. The limitation is that
the development of these models requires detailed knowledge of the underlying
physical processes that lead to system failure. Furthermore, the physical models
are often unable to model environmental interactions. Alternatively, data-driven
techniques are gaining popularity. There are several reasons: 1) data-driven
methods learn the behavior of the system based on monitored data and can
work with incomplete domain knowledge; 2) data-driven methods can learn cor-
relations between parameters and work well in complex systems, such as aircraft
engines, HPC systems [5], large manufacturing systems; 3) with the development
of IoT systems, large amount of data is being collected in real time, which makes
real time monitoring and alerts for PHM possible.

However, data-driven techniques for failure prediction have a set of unique
challenges. Firstly, for many systems and components, there is not enough failure
examples in the training data. Physical equipment and systems are engineered
not to fail and as a result failure data is rare and difficult to collect. Secondly,
complex physical systems have multiple failure and degradation modes, often
depending upon varying operating conditions. One way to overcome these chal-
lenges is to artificially generate failure data such that different failure modes and
operating conditions are adequately covered and machine learning models can
be learned over this augmented data. Traditionally, oversampling has been used
to generate more training samples. However, oversampling cannot capture the
complexity of the failure patterns and can easily introduce undesirable noise with
overfitting risks due to the limitation of oversampling models. With the success-
ful application of Generative Adversarial Networks (GANs) [6] in other domains,
GANSs provide a natural way to generate additional data. For example, in com-
puter vision, GANs are used to generate realistic images to improve performance

GANSs for Failure Prediction 3

in applications, such as, biomedical imaging [7], person re-identification [8] and
image enhancement [9]. In addition, GANs have been used to augment classifi-
cation problems by using semi-supervised learning [10, 11] or domain adaptation
[12]. However, GAN methods cannot guarantee the consistency of the generated
samples and their corresponding labels. For example, infoGAN is claimed to
have 5% error rate in generating MNIST digits [13].

In this work, we propose a novel algorithm that utilizes GANs for Failure
Prediction (GAN-FP). Compared to existing work, our contributions are:

1. We propose GAN-FP in which three different modules work collaboratively
to train an inference network: (1) In one module, realistic failure and non-
failure samples are generated using infoGAN. (2) In another module, the
weighted loss objective is adopted to train inference network using real failure
and non-failure samples. In our design, this inference network shares the
weights of the first few layers with the discriminator network of the infoGAN.
(3) In the third module, the inference network is further tuned using a second
GAN by enforcing consistency between the output of the first GAN and label
generated by the inference network.

2. We design a collaborative mini-batch training scheme for GANs and the
inference network;

3. We conduct several experiments that show significant improvement over ex-
isting approaches according to different evaluation criteria. Through visual-
ization, we verify that GAN-FP generates realistic sensor data, and captures
discriminative features of failure and non-failure samples.

4. Failure prediction is the motivation and typical use case of our design. For
broader applications, GAN-FP can be applied to other general imbalanced
classification problems as well.

2 Background

2.1 Imbalanced classification for failure prediction

Existing approaches to handle imbalanced data can be categorized into two
groups: re-sampling (oversampling/undersampling) and cost-sensitive learning.
Re-sampling method aims to balance the class priors by undersampling the
majority non-failure class or oversampling the minority failure class (or both)
[14]. Chawla et al. [15] proposed SMOTE oversampling, which generates new
synthetic examples from the minority class between the closest neighbors from
this class. He et al. [16] proposed ADASYN oversampling, which uses a weighted
distribution for different minority class examples according to their level of dif-
ficulty in learning. Inspired by the success of boosting algorithms and ensemble
learning, re-sampling techniques have been integrated into ensemble learning
[14]. Cost-sensitive learning assigns higher misclassification costs to the fail-
ure class than to the non-failure class [17]. Zhang et al. [18] proposed an evo-
lutionary cost-sensitive deep belief network for imbalanced classification, which
uses adaptive differential evolution to optimize the misclassification costs. Using

4 S. Zheng et al.

Latent code ¢ Real data

Noise z x

(Z C)—' l"ReaI/Fake
B

Generated data

Fig. 1: InfoGAN architecture: latent code ¢ and noise vector z are combined as
input for generator G, x’ = G(z, ¢) is generated data, x is real data, discrimina-
tor D tries to distinguish generated data from real data, network @ is used to
maximize Lyutuar (EQ.(2)), loss Ly is given in Eq.(3).

weighted softmax loss function, Jia et al. [19] proposed a framework called Deep
Normalized CNN for imbalanced fault classification of machinery to overcome
data imbalanced distribution. Many hybrid methods combine both re-sampling
and cost-sensitive learning [20]. However, limitations exist in both categories.
For instance, oversampling can easily introduce undesirable noise with overfit-
ting risks, and undersampling removes valuable information due to data loss.
Cost-sensitive learning requires a good insight into the modified learning algo-
rithms and a precise identification of reasons for failure in mining skewed dis-
tributions. Data with highly skewed classes also pose a challenge to traditional
discriminant algorithms, such as subspace and feature representation learning
[21-26]. This makes it further difficult to achieve ideal classification accuracy in
failure prediction tasks.

2.2 GAN

Recently, generative models such as Generative Adversarial Networks (GANS)
have attracted a lot of interest from researchers and industrial practitioners.
Goodfellow et al. formulated GAN into a minimax two-player game, where they
simultaneously train two models: a generator network G that captures the data
distribution, and a discriminator network D that estimates the probability that
a sample comes from the true data rather than the generator network G. The
goal is to learn the generator distribution p(x’) of G over data x’ that matches
the real data distribution p(x). The generator network G generates samples by
transforming a noise vector z ~ p(z) into a generated sample G(z). This gen-
erator is trained by playing against the discriminator network D that aims to
distinguish between samples from true data distribution p(x) and the genera-
tor distribution p(x’). Formally, the minimax game is given by the following
expression:

minmax V' (D, G) = Exeyiug 108 D)) + Egmyimllog(1 - DG@))]. (1)
InfoGAN [13] is an information-theoretic extension to GAN. InfoGAN de-

composes the input noise vector into two parts: incompressible noise vector z
and latent code vector c. The latent code vector c targets the salient structured

GANSs for Failure Prediction 5

Label for Gy’ Real data
Noise z
)
(zy")— eal/Fake
| Ly

Generatedeata

Fig.2: Conditional GAN (CGAN) architecture: ' and noise vector z are com-
bined as input for generator G, x’ = G(z,y’) is generated data, (x,y) is real
data-label pair, (x’,y’) is generated data-label pair, discriminator D tries to dis-
tinguish generated data-label pair from real data-label pair, loss Logay is given
in Eq.(4).

semantic features of the data distribution and can be further divided into cate-
gorical and continuous latent code, where the categorical code controls sample
labels and continuous code controls variations. Thus, in infoGAN, the generated
sample becomes G(z,c). InfoGAN introduces a distribution Q(c|x) to approxi-
mate p(c|x) and maximizes the variational lower bound, Liutuai (G, @), of the
mutual information, I(c; G(z,c)):

Lmutual(Gy Q) = IEcmp(c),wa(z,c) [IOg Q(C | X)] + H(C)7 (2)

where Liutual(G, Q) is easy to approximate with Monte Carlo simulation. In
practice, Lyutuqr can be maximized with respect to @ directly and with re-
spect to G via the reparametrization trick. InfoGAN is defined as the following
minimax game with a variational regularization of mutual information and a
hyperparameter Ag:

Icr;llél max Li(D,G,Q) =V (D,G) — Ao Lmutual (G, Q). (3)

Figure 1 shows the structure of infoGAN.

Conditional GAN (CGAN) [27] adds extra label information 3’ to generator
G for conditional generation. In discriminator D, both x and y are presented
as inputs and D tries to distinguish if data-label pair is from generated or real
data. Figure 2 shows the architecture of CGAN. The objective of CGAN is given
as the following minimax game:

mci;n max Legan (D, G) =E(x,y)~p(x,y) [log D(x, y)]+

Eznpimllog(l = D(G(z,y'),y))]- (4)

3 GAN-FP: GAN for Failure Prediction

3.1 Motivation

In failure prediction problems, we collect a lot of training data x and the corre-
sponding labels y. Training data x usually is sensor data coming from equipment,

6 S. Zheng et al.

but can be image, acoustics data as well. Label y contains a lot of non-failure
label Os and very few failure label 1s.

Given a failure prediction problem, one choice is to construct a deep inference
neural network and adopt weighted loss objective. As there are not enough real
failure samples, test samples with failure labels are often misclassified to the
prevalent non-failure class. As mentioned earlier, in this work, we propose the
use of GANSs to generate realistic failure samples.

To control the class labels of generated samples, we can choose Conditional
GAN (CGAN) or infoGAN. CGAN was shown to mainly capture class-level fea-
tures [13, 28]. In addition to capturing class-level features, infoGAN captures fine
variations of features that are continuous in nature using continuous latent code.
As mentioned earlier, PHM data has multiple failure modes, and is continuous
in nature, hence we use infoGAN as a basic building block in our design.

One problem with simply using infoGAN, is that it cannot guarantee that
the generated sample is from a desired class. This means that some generated
samples might end up having the wrong label. For example, infoGAN is claimed
to have 5% error rate in generating MNIST digits [13]. When we have a 2-
class highly imbalanced classification problem like failure prediction, this can
have significant negative impact on the usefulness of this approach. In order
to alleviate this problem, we propose the use of a second GAN to enforce the
consistency of data-label pairs. In the second GAN, we use the inference network
P as a label generator.

Once we have generated data, a traditional approach is to use both the
generated and real samples to train a classifier. However, since we are sharing
layers between the inference network and the discriminator network in the first
GAN, and training all three modules simultaneously, we can directly use this
inference network to achieve higher inference accuracy.

During building the model, we alternate between the following steps:

1. Update the infoGAN to generate realistic samples for failure and non-failure
labels.

2. Update the inference network P using real data. We bootstrap P using the
weights of the first few layers of the discriminator of the infoGAN. This is
a common approach to save training time and utilize the ability of GAN to
extract features.

3. Update inference network P along with the discriminator in the second GAN
to make sure that the generated samples and corresponding labels are con-
sistent. This will increase the discriminative power of inference network P.

3.2 GAN-FP model

Figure 3 shows the design of GAN-FP.

Module 1 adopts an infoGAN to generate class-balanced samples. For the
input categorical latent code ¢, we randomly generate labels Os (non-failure)
and 1s (failure) with equal probability. The continuous latent code ¢ and noise
vector z is generated using uniform random process within range [0, 1]. Generator

GANSs for Failure Prediction 7

Real data

I—oReaI/Fake Real data, label

1Sha red layer
Generated label

I — yl (x’,y,
l Generated]data, label Module 3

>
| Module 2 |

Fig.3: GAN-FP architecture: there are 3 modules. Module 1 (network G, D
and Q) is used to generate failure and non-failure samples using adversarial
loss L1 (Eq.(3)). Module 2 (network P) is an inference module with weighted
loss Ly (Eq.(5)), which trains a deep neural network using real data and label.
Module 3 (network P and Ds) is a modified CGAN module with adversarial
loss Ly (Eq.(6)), where network Dy takes data-label pair as input and tries to
distinguish whether the pair comes from real data label (x,y) or from generated
data label (x',9’).

Latent code ¢ 25

Noise z

(z,0)
Module 1

Adversarial Loss

x'

Generated|data

Real data
Weighted
Inference Loss

network G is a deep neural network with input (z,c), and outputs generated
sample x’, where x’ has the same size as real data x. Discriminator network D
aims to distinguish generated sample x’ from real sample x. Network @) aims to
maximize the mutual information between latent code ¢ and generated sample x’.
By jointly training network G, D and @), module 1 solves the minimax problem
denoted in Eq.(3). The first few layers of the discriminative layer D + @Q will
capture a lot of implicit features about the data. In order to reduce the overall
training time, we are going to reuse these weights while training the inference
network in the Module 2.

Module 2 consists of a deep neural network P and solves a binary classifi-
cation problem with weighted loss based on real data and real label. Network P
shares the first several layers with D and takes as input real data x and outputs
a probability (denoted as P(x)) within range [0, 1] indicating the chance that x
is a failure sample. The real label is denoted as y (0 or 1). In our design, the loss
function Ly for module 2 is cross entropy:

min Ly(P) = Egx,y)mp(ey) [-wylog(P(x)) — (1 —y)log(1 = P(x))], (5)

where weight w = 2umber of nonfailure samples 9 Note at this step, the input for
number of failure samples ’

network P is class-imbalanced real data and labels. Loss Lo is a weighted version
which emphasizes more on failure sample prediction. In the training of Module

3, the weights of inference network P will be further tuned using generated data
and labels.

8 S. Zheng et al.

Algorithm 1 Mini-batch SGD solving GAN-FP.

Input: Real data and label pairs {x;,y;}, where ¢ = 1,2, ..., n, hyperparameter Aq,
AD, AP, AD,, AL,, batch size b.

Output: Network parameters g, 0p, 0q, 0p, 0p, for networks G, D, Q, P, D, re-
spectively.

1: Initialize 6q, 0p, g, Op, O0p,.

2: repeat

3: Randomly choose b data and label pairs from {x;,y;}.

4: Randomly generate b latent code ¢ and noise z, where c is class-balanced, noise
z is uniform random variables.

5: Update Module 1 discriminator network #p by ascending along its stochastic
gradient w.r.t. maxp Ap L1 (D) and share the weights of the first few layers with P.

6: Update Module 1 generator and @Q-network 6g, g by descending along its
stochastic gradient w.r.t. ming g A¢L1(G, Q).

T Update inference network 6p by descending along its stochastic gradient w.r.t.
minp Az, L2(P) and use P as the generator of Module 3.
8: Update Module 3 discriminator network 6p, by ascending along its stochastic

gradient w.r.t. maxp Ap, L3(D2).

9: Update Module 3 generator network 0p by descending along its stochastic gra-
dient w.r.t. minp ApL3(P).

10: until Convergence

Module 3 consists of network P and Dy and enforces generated data-label
pair (x’,y) to look like real data-label pair (x,y). P serves as the generator
network. Given x’, the generated label y' = P(x’) needs to be as correct as
possible. Dy tries to distinguish the generated data-label pair from real pair.
The minimax objective for module 3 is given as:

mlin max L3(P, D2) =E(x y)~p(x,y) [l0g D2(X,)]
2

+ Exp(x[log(1 = Da([x', P(x')]))]- (6)

While training this module, the weights of the inference network P will be further
tuned to increase the discrimination between failure and non-failure labels. The
effectiveness of Module 3 to improve inference network P will be validated by
comparing the performance of GAN-FP with infoGAN augmented training (de-
noted as InfoGAN AUG in experiments), where we train the inference network
P with generated data without using Module 3.

3.3 Algorithm

Algorithm 1 summarizes the procedure for training GAN-FP. The input data
includes real data-label pairs (x;,y;), where i = 1,2, ...,n, and hyperparameter
AG, AD, Ap, AD,, AL,, which control the weights of different losses, as in tra-
ditional regularization approaches [29,30]. The output of this algorithm is the
trained neural network parameters 6¢, 0p, 0, 0p, 0p, for network G, D, Q, P,

GANSs for Failure Prediction 9

1.0 1.0 1.0 1.0

= 51 —h— sl —h— sl —h— sl
08—+ = 0.8] -+ =2 08] -+ = 08{ -+ =
—t— S3 - 3 —h— 3 —— s3
506 +SM 5 0.6 st 5 0.6 st 5 0.6 4 sd
3 g g g :
z g g 2
—-
02 02 O,Z-M 02
0.0 0.0 0.0 0.0
0

5 10 0 5 10 0 5 10 0 5 10
Time Time Time Time

(a) Failure. (b) Failure. (c) Non-failure. (d) Non-failure.

Fig.4: Real CMAPSS FDO0O01 failure and non-failure samples.

1.0 1.0 1.0 1.0
—— sl —h— sl
0.8 ~* s2 0.8 0.8 0.8+ s2
—4— S3 —*— 53
5 0.6 % s4 5 0.6 5 0.6 5 0.6 —* s4 \
Z 2 v /Y 2 2
804 & 0.4 1‘ & 0.4+ K04 y
0.2 = 0.2 4 0.24 0.2
0.0 0.0 T T 0.0 0.0 T T
o 5 10 0 5 10 0 5 10
Time Time Time Time
(a) Failure. (b) Failure. (c¢) Non-failure. (d) Non-failure.

Fig. 5: Generated CMAPSS FDO001 failure and non-failure samples.

Dy respectively. Step 1 initializes network parameters. Then we run the mini-
batch loop until Ly, Ly and L3 converge. In each mini-batch loop, Step 3 first
randomly chooses a batch of real data-label pairs. Step 4 generates batch size of
latent code ¢ and z. Step 5 to 9 update all 3 modules.

4 Visualization of generated samples

We take CMAPSS FDO0O01 data as an example to visualize the generated samples
and examine if the proposed GAN-FP can generate realistic enough fake samples
for failure prediction task. CMAPSS FDO001 data contains failure and non-failure
data for turbofan engines. Each engine sample includes 21 sensors and their
readings are in a continuous time window with 15 time steps. Detailed description
of CMAPSS FDO001 is given in Section 5.1. Due to space limitations, we chose
4 sensors (sl, s2, 83, s4) and plotted them from real samples and generated
samples. In Figure 4, we visualize 2 real failure samples and 2 real non-failure
samples. As we can see, for failure samples, sensor s1 has higher values than other
sensors, sensor s2 and s3 have lower values than sl and s4, especially for time
from 6 to 14; for non-failure samples, sensor s4 has lower values, sensor s2 and
s3 have higher values than sensor sl and s4. In Figure 5, we visualize the same
4 sensors from 2 generated failure samples and 2 generated non-failure samples.
We observe similar visual properties as in Figure 4: for failure samples, sensor
s2 and s3 have lower values than sl and s4, especially for time from 6 to 14;
for non-failure samples, sensor s2 and s3 have higher values than sensor sl and
s4. We also observe that noises exist in generated samples. For example, at time

10 S. Zheng et al.

11, sensor s4 in Figure 5b has a big drop, but at time 12, s4 increases back to a
higher value. Though real sensor data seems more smooth than generated sensor
data, GAN-FP is able to capture the major properties for this failure prediction
task. This shows that GAN-FP can generate very good failure and non-failure
samples and different levels of variations exist in the generated samples.

5 Experiments

5.1 Data

We conduct experiments on one Air Pressure System (APS) data set from trucks
[31] and four turbofan engine degradation data sets from NASA CMAPSS (Com-
mercial Modular Aero-Propulsion System Simulation) [32]. For APS data, air
pressure system generates pressured air that are utilized in various functions in
a truck, such as braking and gear changes. The failure class consists of component
failures for a specific component of the APS system. The non-failure class con-
sists of samples not related to APS failures. The CMAPSS data consists of four
subsets: FD001, FD002, FD003, and FD0004. Data attributes are summarized
in Table 1. In each subset, the data records a snapshot of turbofan engine sensor
data at each time cycle, which includes 26 columns: 1st column represents engine
ID, 2nd column represents the current operational cycle number, 3-5 columns
are the three operational settings that have a substantial effect on engine per-
formance, 6-26 columns represent the 21 sensor values. The engine is operating
normally at the start of each time series, and develops a fault at some point in
time. The fault grows in magnitude until a system failure. The four CMAPSS
data sets have different number of operating conditions and fault conditions. For
example, FD001 data has one operating condition and one fault condition, and
FDO002 has six operating conditions and one fault condition. CMAPSS data set
is considered benchmark for predictive maintenance [33].

5.2 Experimental setup and evaluation criteria

We use fully connected layers for all the networks. Table 2 shows the network
structures for both APS and CMAPSS data. For example, G network for APS
data consists of 3 layers, with the first layer 64 nodes, second layer 64 nodes
and last layer 170 nodes. For APS data, network Q and P share the first two
layers with network D. For CMAPSS data, network Q and P share the first four
layers with network D. For both APS and CMAPSS data, the noise vector z is
a 60-dimensional vector with uniform random values within [0, 1]. Latent code ¢
includes 1-dimensional categorical code and 3-dimensional continuous code with
uniform random values within [0, 1]. The activation function is rectified linear
unit by default.

For evaluation, we use AUC (Area Under Curve), (precision, recall, F1) with
macro average, micro average, and for the failure class only. All compared meth-
ods output the probability that a sample is a failure sample. We then compute

GANSs for Failure Prediction 11

Table 1: Data sets.

Fault condition #

Name Dimension |Failure sample #|Non-failure sample #|Operating condition #
APS 170 1,000 59,000 N/A
CMAPSS FD001 315 2,000 12,031 1

CMAPSS FD002 315 5,200 31,399 6

CMAPSS FD003 315 2,000 16,210 1

CMAPSS FD004 315 4,980 39,835 6

N/A
1

1
2
2

Table 2: Network structures.

Network APS CMAPSS

G 64,64,170 | 64, 256,500,500, 315
D 170,64, 1 315, 500, 500, 256, 1
Q 170, 64, 64, 1|315, 500, 500, 256, 64, 1
P 170,64, 64, 1315, 500, 500, 256, 64, 1
Do 171,64,1 316, 500, 500, 256, 1

the precision and recall curve and calculate AUC. We then can compute both
failure and non-failure class precision, recall and F1. Larger values indicate bet-
ter performance in all these metrics. More about these metrics can be found in
[34].

We compare GAN-FP with 17 other methods. For the first 16 methods, we
conduct experiments using 4 classifiers in 4 different sampling settings. The 4
classifiers are DNN, SVM (Support Vector Machines), RF (Random Forests)
and DT (Decision Trees). The 4 sampling settings are: undersampling, weighted
loss, SMOTE oversampling and ADASYN oversampling. The structure of DNN
is the same as network P in GAN-FP. Parameters of SVM, RF and DT are
tuned to achieve the best accuracy. For undersampling, we fix the failure samples
and randomly draw equal size number of non-failure samples for training. For
each experiment, we perform 10 times random undersampling. For weighted
loss objective, we assign the same class weights as used in Eq.(5). Lastly, we
compare with infoGAN augmented DNN (denoted as InfoGAN AUG), which
uses infoGAN to generate more failure samples to make the class distribution
balanced and then train a DNN for classification. InfoGAN AUG is used to
validate the effectiveness of Module 3. Experiments were performed in a 5-fold
cross-validation fashion.

5.3 Algorithm convergence

To examine the training convergence, we take CMAPSS FD001 data as an
example and plot the loss changes along the training process. From Eq.(3),
we know that Module 1 loss consists of three parts: discriminator (D) loss
minp —V (D), generator (G) loss ming V(G) and mutual information (Q) loss
ming g —Lmutua (G, Q). Figure 6a shows that D loss and G loss converge along
the training. Mutual information (Q) loss is minimized and converged after about

12 S. Zheng et al.

2,000 batches. Advanced accelerating algorihtm can reduce training time fur-
thermore [35]. Figure 6b shows that Ly loss Eq.(5) is decreasing from 0 to 3,000
batches. Figure 6¢ shows that D2 loss and generator P loss of Module 3 converge
along the training. Overall, this shows the effectiveness of Algorithm 1.

5.4 Effect of class imbalance

We compare the classification performance of different approaches when the
number of majority non-failure samples is decreased. Figure 7 shows that, for
CMAPSS FDO001, there is no significant performance loss when the number
of majority non-failure samples is decreased. Among all experiments, GAN-FP
gives the best performance in terms of the four metrics.

5.5 Comparison with other methods

Table 3 shows the result for APS data. Table 4, 5, 6 and 7 show the results for
CMAPSS. The best performing methods in each column is in bold. Note that
CMAPSS data sets have different levels of difficulty since they have different
number of operating conditions and fault conditions. Overall, GAN-FP shows
better results in terms of AUC and F1 score compared to its counterparts. The
fact that GAN-FP outperforms InfoGAN AUG shows the effectiveness of Module
3.

6 Conclusion

In conclusion, we proposed a novel model GAN-FP for imbalanced classification
and failure prediction, and experimented it on industrial data. This novel design
not only improves modeling performance, but also can have significant potential
economical and social values.

References

1. Monaghan, A.: Hotpoint tells customers to check fridge-freezers after grenfell tower
fire. The Guardian (2017)

2. Vichare, N.M., Pecht, M.G.: Prognostics and health management of electron-
ics. IEEE transactions on components and packaging technologies 29(1), 222-229
(2006)

3. Mosallam, A., Medjaher, K., Zerhouni, N.: Data-driven prognostic method based
on bayesian approaches for direct remaining useful life prediction. Journal of In-
telligent Manufacturing 27(5), 1037-1048 (2016)

4. Pecht, M.G.: A prognostics and health management roadmap for information and
electronics-rich systems. IEICE ESS Fundamentals Review 3(4), 4-25-4_32 (2010)

5. Zheng, S., Shae, Z.Y., Zhang, X., Jamjoom, H., Fong, L.: Analysis and model-
ing of social influence in high performance computing workloads. In: European
Conference on Parallel Processing. pp. 193-204. Springer Berlin Heidelberg (2011)

GANSs for Failure Prediction 13
Table 4: CMAPSS FDO001.
AUC Macro Micro Failure
Precision Recall F1 |Precision Recall F1 |Precision Recall F1
Undersampling|0.6381 | 0.7525 0.7895 0.7687| 0.8785 0.8785 0.8785| 0.5624 0.6650 0.6094
DNN Weighted loss |{0.6030 | 0.7327 0.7614 0.7455| 0.8678 0.8678 0.8678| 0.5315 0.6125 0.5691
SMOTE 0.6196 | 0.7397 0.7678 0.7524| 0.8717 0.8717 0.8717| 0.5437 0.6225 0.5804
ADASYN 0.6185 | 0.7473 0.7559 0.7515| 0.8764 0.8764 0.8764| 0.5635 0.5875 0.5753
Undersampling|0.6331 | 0.7592 0.7720 0.7653| 0.8824 0.8824 0.8824| 0.5825 0.6175 0.5995
SVM Weighted loss |0.6498 | 0.7485 0.7972 0.7689| 0.8757 0.8757 0.8757| 0.5511 0.6875 0.6118
SMOTE 0.6295 | 0.7491 0.7822 0.7638| 0.8767 0.8767 0.8767| 0.5579 0.6500 0.6005
ADASYN 0.6224 | 0.7461 0.7893 0.7646| 0.8746 0.8746 0.8746| 0.5492 0.6700 0.6036
Undersampling|0.5531 | 0.7046 0.7466 0.7218 | 0.8497 0.8497 0.8497| 0.4782 0.6025 0.5332
RF Weighted loss |0.5378 | 0.7067 0.7504 0.7245| 0.8507 0.8507 0.8507| 0.4813 0.6100 0.5380
SMOTE 0.5701 | 0.7486 0.7355 0.7418| 0.8771 0.8771 0.8771| 0.5733 0.5375 0.5548
ADASYN 0.5238 | 0.7322 0.7134 0.7221| 0.8696 0.8696 0.8696| 0.5470 0.4950 0.5197
Undersampling|0.5279 | 0.6096 0.7109 0.5977| 0.6901 0.6901 0.6901| 0.2787 0.7400 0.4049
DT Weighted loss [0.4699 | 0.6631 0.6695 0.6662| 0.8336 0.8336 0.8336| 0.4200 0.4400 0.4298
SMOTE 0.4521 | 0.6406 0.6629 0.6500| 0.8151 0.8151 0.8151| 0.3758 0.4500 0.4096
ADASYN 0.4471 | 0.6373 0.6596 0.6466| 0.8130 0.8130 0.8130| 0.3701 0.4450 0.4041
InfoGAN AUG 0.6128 | 0.7256 0.7716 0.7446| 0.8621 0.8621 0.8621| 0.5129 0.6450 0.5714
GAN-FP 0.6927| 0.8021 0.7759 0.7881| 0.8992 0.8992 0.8992| 0.6707 0.6022 0.6346
Table 5: CMAPSS FD002.
AUC Macro Micro Failure
Precision Recall F1 |Precision Recall F1 |Precision Recall F1
Undersampling|0.5503 | 0.6996 0.7501 0.7193| 0.8452 0.8452 0.8452| 0.4662 0.6173 0.5312
DNN Weighted loss |0.5431 | 0.7014 0.7549 0.7219| 0.8458 0.8458 0.8458 | 0.4681 0.6279 0.5363
SMOTE 0.5383 | 0.6920 0.7675 0.7166| 0.8331 0.8331 0.8331| 0.4427 0.6760 0.5350
ADASYN 0.5377 | 0.6910 0.7666 0.7156| 0.8322 0.8322 0.8322| 0.4410 0.6750 0.5334
Undersampling|0.5212 | 0.6888 0.7057 0.6965| 0.8454 0.8454 0.8454 | 0.4601 0.5106 0.4840
SVM Weighted loss |0.5199 | 0.6869 0.7021 0.6939| 0.8447 0.8447 0.8447| 0.4576 0.5029 0.4792
SMOTE 0.5438 | 0.6844 0.7435 0.7055| 0.8324 0.8324 0.8324| 0.4366 0.6192 0.5121
ADASYN 0.5444 | 0.6917 0.7334 0.7085| 0.8419 0.8419 0.8419| 0.4559 0.5817 0.5112
Undersampling|0.4610 | 0.6649 0.7293 0.6853| 0.8149 0.8149 0.8149| 0.4005 0.6096 0.4834
RF Weighted loss [0.4836 | 0.6675 0.7234 0.6868| 0.8206 0.8206 0.8206 | 0.4087 0.5875 0.4821
SMOTE 0.4368 | 0.6519 0.7225 0.6714| 0.7999 0.7999 0.7999| 0.3752 0.6144 0.4659
ADASYN 0.4409 | 0.6524 0.7204 0.6718| 0.8018 0.8018 0.8018| 0.3772 0.6067 0.4652
Undersampling|0.4956 | 0.5892 0.6753 0.5668 | 0.6583 0.6583 0.6583| 0.2494 0.6990 0.3676
DT Weighted loss [0.4149 | 0.6306 0.6338 0.6322| 0.8184 0.8184 0.8184| 0.3651 0.3760 0.3704
SMOTE 0.3949 | 0.5848 0.6221 0.5929| 0.7549 0.7549 0.7549| 0.2732 0.4365 0.3360
ADASYN 0.4244 | 0.5999 0.6451 0.6104| 0.7641 0.7641 0.7641| 0.2959 0.4788 0.3658
InfoGAN AUG 0.5484 | 0.6945 0.7658 0.7187| 0.8363 0.8363 0.8363| 0.4489 0.6673 0.5367
GAN-FP 0.5666| 0.7081 0.7488 0.7249| 0.8521 0.8521 0.8521| 0.4847 0.6043 0.5379

6. Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural

14 S. Zheng et al.
Table 6: CMAPSS FDO003.
AUC Macro Micro Failure
Precision Recall F1 |Precision Recall F1 |Precision Recall F1
Undersampling|0.6211 | 0.7423 0.7998 0.7663| 0.8971 0.8971 0.8971| 0.5263 0.6750 0.5915
DNN Weighted loss |0.6035 | 0.7654 0.7654 0.7654 | 0.9078 0.9078 0.9078| 0.5825 0.5825 0.5825
SMOTE 0.6207 | 0.7376 0.8142 0.7674| 0.8935 0.8935 0.8935| 0.5126 0.7125 0.5962
ADASYN 0.6199 | 0.7451 0.7964 0.7670| 0.8987 0.8987 0.8987| 0.5331 0.6650 0.5918
Undersampling|0.5718 | 0.7469 0.7666 0.7562| 0.9004 0.9004 0.9004 | 0.5446 0.5950 0.5687
SVM Weighted loss |0.6338 | 0.7449 0.8123 0.7722| 0.8979 0.8979 0.8979| 0.5282 0.7025 0.6030
SMOTE 0.6166 | 0.7356 0.7967 0.7606| 0.8935 0.8935 0.8935| 0.5134 0.6725 0.5823
ADASYN 0.6113 | 0.7480 0.7799 0.7625| 0.9007 0.9007 0.9007| 0.5435 0.6250 0.5814
Undersampling|0.5152 | 0.7223 0.7778 0.7452| 0.8871 0.8871 0.8871| 0.4913 0.6375 0.5550
RF Weighted loss [0.5693 | 0.7520 0.7602 0.7560| 0.9026 0.9026 0.9026 | 0.5566 0.5775 0.5669
SMOTE 0.5266 | 0.7164 0.7933 0.7454| 0.8816 0.8816 0.8816| 0.4747 0.6800 0.5591
ADASYN 0.5276 | 0.7120 0.7866 0.7402| 0.8794 0.8794 0.8794| 0.4676 0.6675 0.5499
Undersampling|0.5460 | 0.6206 0.7671 0.6229| 0.7453 0.7453 0.7453 | 0.2744 0.7950 0.4080
DT Weighted loss {0.4309 | 0.6625 0.6607 0.6616| 0.8678 0.8678 0.8678| 0.4000 0.3950 0.3975
SMOTE 0.4751 | 0.6604 0.7052 0.6780| 0.8554 0.8554 0.8554| 0.3839 0.5125 0.4390
ADASYN 0.4364 | 0.6408 0.6782 0.6555| 0.8463 0.8463 0.8463| 0.3510 0.4625 0.3991
InfoGAN AUG 0.6167 | 0.7620 0.7768 0.7691| 0.9067 0.9067 0.9067| 0.5728 0.6100 0.5908
GAN-FP 0.7093| 0.7584 0.8635 0.7970| 0.9040 0.9040 0.9040| 0.5416 0.8117 0.6497
Table 7: CMAPSS FD004.
AUC Macro Micro Failure
Precision Recall F1 |Precision Recall F1 |Precision Recall F1
Undersampling|0.4826 | 0.7038 0.7719 0.7297| 0.8748 0.8748 0.8748 | 0.4550 0.6396 0.5317
DNN Weighted loss [0.5065 | 0.7197 0.7788 0.7436| 0.8847 0.8847 0.8847| 0.4860 0.6426 0.5534
SMOTE 0.5360 | 0.7107 0.7802 0.7374| 0.8786 0.8786 0.8786| 0.4670 0.6536 0.5448
ADASYN 0.5398 | 0.7192 0.7711 0.7408 | 0.8852 0.8852 0.8852| 0.4871 0.6245 0.5473
Undersampling|0.4588 | 0.6770 0.7760 0.7070| 0.8501 0.8501 0.8501| 0.3979 0.6807 0.5022
SVM Weighted loss [0.4553 | 0.6749 0.7756 0.7048 | 0.8478 0.8478 0.8478| 0.3935 0.6827 0.4993
SMOTE 0.4983 | 0.6986 0.7767 0.7268| 0.8700 0.8700 0.8700| 0.4428 0.6566 0.5289
ADASYN 0.4978 | 0.6979 0.7708 0.7248| 0.8706 0.8706 0.8706 | 0.4432 0.6426 0.5246
Undersampling|0.4748 | 0.6914 0.7335 0.7090| 0.8721 0.8721 0.8721| 0.4403 0.5552 0.4911
RF Weighted loss [0.4685 | 0.6836 0.7421 0.7060| 0.8648 0.8648 0.8648 | 0.4217 0.5843 0.4899
SMOTE 0.4227 | 0.6730 0.7612 0.7010| 0.8503 0.8503 0.8503| 0.3941 0.6466 0.4897
ADASYN 0.4035 | 0.6618 0.7493 0.6882| 0.8417 0.8417 0.8417| 0.3740 0.6305 0.4695
Undersampling|0.4947 | 0.5996 0.7195 0.5957| 0.7263 0.7263 0.7263| 0.2464 0.7108 0.3660
DT Weighted loss [0.4026 | 0.6450 0.6437 0.6443| 0.8601 0.8601 0.8601| 0.3692 0.3655 0.3673
SMOTE 0.4243 | 0.6118 0.6746 0.6285| 0.8097 0.8097 0.8097| 0.2922 0.5010 0.3691
ADASYN 0.4195 | 0.6097 0.6709 0.6259| 0.8085 0.8085 0.8085| 0.2887 0.4940 0.3644
InfoGAN AUG 0.5581 | 0.7209 0.7784 0.7443| 0.8855 0.8855 0.8855| 0.4885 0.6406 0.5543
GAN-FP 0.5638| 0.7260 0.7773 0.7475| 0.8890 0.8890 0.8890| 0.4992 0.6338 0.5585

information processing systems. pp. 2672-2680 (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

GANSs for Failure Prediction 15

Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmenta-
tion using generative adversarial neural networks. In: International Conference on
Artificial Neural Networks. pp. 626—634. Springer (2017)

Zhong, 7., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for
person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 5157-5166 (2018)

Yun, K., Bustos, J., Lu, T.: Predicting rapid fire growth (flashover) using condi-
tional generative adversarial networks. Electronic Imaging 2018(9), 1-4 (2018)
Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.R.: Good semi-
supervised learning that requires a bad gan. In: Advances in Neural Information
Processing Systems. pp. 6510-6520 (2017)

Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A bayesian data augmen-
tation approach for learning deep models. In: Advances in Neural Information
Processing Systems. pp. 2797-2806 (2017)

Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised
pixel-level domain adaptation with generative adversarial networks. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). vol. 1, p. 7
(2017)

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan:
Interpretable representation learning by information maximizing generative adver-
sarial nets. In: Advances in neural information processing systems. pp. 2172-2180
(2016)

Nejatian, S., Parvin, H., Faraji, E.: Using sub-sampling and ensemble clustering
techniques to improve performance of imbalanced classification. Neurocomputing
276, 55-66 (2018)

Chawla, N.V., Bowyer, K.W., Hall, L..O., Kegelmeyer, W.P.: Smote: synthetic mi-
nority over-sampling technique. Journal of artificial intelligence research 16, 321—
357 (2002)

He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence). pp. 1322-1328.
IEEE (2008)

Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: A deep convolu-
tional feature learned by positive-sharing loss for contour detection. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
3982-3991 (2015)

Zhang, C., Tan, K.C., Li, H., Hong, G.S.: A cost-sensitive deep belief network for
imbalanced classification. IEEE Transactions on Neural Networks and Learning
Systems (2018)

Jia, F., Lei, Y., Lu, N., Xing, S.: Deep normalized convolutional neural network
for imbalanced fault classification of machinery and its understanding via visual-
ization. Mechanical Systems and Signal Processing 110, 349-367 (2018)

Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: Svms modeling for highly imbal-
anced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 39(1), 281-288 (2009)

Zheng, S., Ding, C.: Kernel alignment inspired linear discriminant analysis. In:
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 401-416. Springer Berlin Heidelberg (2014)

Zheng, S., Cai, X., Ding, C.H., Nie, F., Huang, H.: A closed form solution to
multi-view low-rank regression. In: AAAI pp. 1973-1979 (2015)

16

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

S. Zheng et al.

Zheng, S., Nie, F., Ding, C., Huang, H.: A harmonic mean linear discriminant anal-
ysis for robust image classification. In: 2016 IEEE 28th International Conference
on Tools with Artificial Intelligence (ICTAI). pp. 402-409. IEEE (2016)

Zheng, S.: Machine Learning: Several Advances in Linear Discriminant Analysis,
Multi-View Regression and Support Vector Machine. Ph.D. thesis, The University
of Texas at Arlington (2017)

Zheng, S., Ding, C., Nie, F., Huang, H.: Harmonic mean linear discrimi-
nant analysis. IEEE Transactions on Knowledge and Data Engineering (2018).
https://doi.org/10.1109/TKDE.2018.2861858

Zheng, S., Ding, C.: Sparse classification using group matching pursuit. Neurocom-
puting 338, 83-91 (2019). https://doi.org/10.1016/j.neucom.2019.02.001

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

Lee, M., Seok, J.: Controllable generative adversarial network. arXiv preprint
arXiv:1708.00598 (2017)

Zheng, S., Ding, C., Nie, F.: Regularized singular value decomposition and appli-
cation to recommender system. arXiv preprint arXiv:1804.05090 (2018)

Zheng, S., Ding, C.: Minimal support vector machine. arXiv preprint
arXiv:1804.02370 (2018)

Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling
for aircraft engine run-to-failure simulation. In: 2008 international conference on
prognostics and health management. pp. 1-9. IEEE (2008)

Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long short-term memory net-
work for remaining useful life estimation. In: Prognostics and Health Management
(ICPHM), 2017 IEEE International Conference on. pp. 88-95. IEEE (2017)

Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
Zheng, S., Vishnu, A., Ding, C.: Accelerating deep learning with shrinkage and
recall. In: 2016 IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS). pp. 963-970. IEEE (2016)

GANSs for Failure Prediction

17

—— Dloss
—— G loss
—— Q loss

0 2000 4000
of batches

(a) Module 1 loss.

0

2000

4000

of batches

(b) Module 2 loss.

e

—— D2 loss

—— Generator P loss

0 2000

4000
of batches

(c) Module 3 loss.

Fig. 6: Loss.
o7 e
Aty —* 0.75{F—— o.e«b%:‘
N NP ST
\—‘/\‘\‘/ﬁ 0701 0.5 o
o.5~/\‘/"“\./' 0.65 | ‘/\/_\/:
I ooz 4 L
(a) AUC. (b) Macro F1. (¢) Micro F1. (d) Failure F1.

GAN-FP
DNN
SVM

RF

Fig. 7: CMAPSS FDO001 class imbalance effect using GAN-FP and classifiers with
SMOTE: in each figure, the x-axis ¢ indicates (1000 x ¢) non-failure samples are
randomly removed from the training data, we do not remove failure samples.
The testing samples are fixed for all experiments.

Table 3: APS result.

AUC Macro Micro Failure
Precision Recall F1 |Precision Recall F1 |Precision Recall F1
Undersampling|0.5751 | 0.7393 0.8118 0.7705| 0.9827 0.9827 0.9827| 0.4847 0.6350 0.5498
DNN Weighted loss |0.6131 | 0.8027 0.8042 0.8034| 0.9871 0.9871 0.9871| 0.6119 0.6150 0.6135
SMOTE 0.7077 | 0.8434 0.8350 0.8391| 0.9896 0.9896 0.9896 | 0.6923 0.6750 0.6835
ADASYN 0.6971 | 0.8040 0.8561 0.8279| 0.9878 0.9878 0.9878| 0.6128 0.7200 0.6621
Undersampling|0.3130 | 0.6995 0.7706 0.7293| 0.9791 0.9791 0.9791| 0.4066 0.5550 0.4693
SVM Weighted loss [0.3004 | 0.6829 0.7623 0.7151| 0.9773 0.9773 0.9773| 0.3737 0.5400 0.4417
SMOTE 0.5673 | 0.7432 0.8169 0.7749| 0.9830 0.9830 0.9830| 0.4924 0.6450 0.5584
ADASYN 0.5188 | 0.7225 0.8158 0.7606| 0.9810 0.9810 0.9810| 0.4510 0.6450 0.5309
Undersampling|0.4274 | 0.6449 0.8813 0.7052| 0.9647 0.9647 0.9647| 0.2934 0.7950 0.4286
RF Weighted loss |0.3750 | 0.6838 0.7333 0.7054| 0.9781 0.9781 0.9781| 0.3765 0.4800 0.4220
SMOTE 0.4137 | 0.6602 0.7414 0.6919| 0.9747 0.9747 0.9747| 0.3289 0.5000 0.3968
ADASYN 0.3387 | 0.6302 0.8360 0.6832| 0.9626 0.9626 0.9626 | 0.2655 0.7050 0.3858
Undersampling|0.5614 | 0.5928 0.9330 0.6376 | 0.9311 0.9311 0.9311| 0.1868 0.9350 0.3114
DT Weighted loss |0.6310 | 0.8194 0.8022 0.8106| 0.9879 0.9879 0.9879| 0.6455 0.6100 0.6272
SMOTE 0.6471 | 0.7751 0.8625 0.8125| 0.9858 0.9858 0.9858 | 0.5547 0.7350 0.6323
ADASYN 0.6094 | 0.7567 0.8420 0.7930| 0.9842 0.9842 0.9842| 0.5187 0.6950 0.5940
InfoGAN AUG 0.7343 | 0.8335 0.8744 0.8527| 0.9898 0.9898 0.9898 | 0.6711 0.7550 0.7106
GAN-FP 0.8085| 0.8662 (.8955 0.8803| 0.9918 0.9918 0.9918| 0.7358 0.7959 0.7647

