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Abstract. Supervised machine learning applications in the health do-
main often face the problem of insufficient training datasets. The quan-
tity of labelled data is small due to privacy concerns and the cost of data
acquisition and labelling by a medical expert. Furthermore, it is quite
common that collected data are unbalanced and getting enough data to
personalize models for individuals is very expensive or even infeasible.
This paper addresses these problems by (1) designing a recurrent Gen-
erative Adversarial Network to generate realistic synthetic data and to
augment the original dataset, (2) enabling the generation of balanced
datasets based on a heavily unbalanced dataset, and (3) to control the
data generation in such a way that the generated data resembles data
from specific individuals. We apply these solutions for sleep apnea de-
tection and study in the evaluation the performance of four well-known
techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Per-
ceptron, and Support Vector Machine. All classifiers exhibit in the exper-
iments a consistent increase in sensitivity and a kappa statistic increase
by between 0.72·10−2 and 18.2·10−2.
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1 Introduction

The development of deep learning has led in recent years to a wide range of
machine learning (ML) applications targeting different aspects of health [24].
Together with the recent development of consumer electronics and physiological
sensors this promises low cost solutions for health monitoring and disease detec-
tion for a very broad part of the population at any location and any time. The
benefits of automatic disease detection and especially early prognosis and life
style support to keep healthy are obvious and result in a healthier society and
substantial reduction of health expenses. However, there are high demands on
the reliability of any kind of health applications and the applied ML methods
must be able to learn reliably and operate with high performance. To achieve this
with supervised learning, appropriate (labelled) datasets gathered with the phys-
iological sensors that shall be used in a health application are needed for training
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such that classifiers can learn to sufficiently generalize to new data. However,
there are several challenges related to training datasets for health applications
including data quantity, class imbalance, and personalization.

In many domains, the quantity of labelled data has increased substantially,
like computer vision and natural language processing, but it remains an inherent
problem in the health domain [24]. This is due to privacy concerns as well as the
costs of data acquisition and data labelling. Medical experts are needed to label
data and crowdsourcing is not an option. To enable medical experts to label
data, data are typically acquired with two sensor sets. One set with the sensors
that should be used in a health application and one sensor set that represents
the gold standard for the given task. This problem is magnified by the fact
that any new physiological sensor requires new data acquisition and labelling.
Furthermore, there is a high probability that the data acquisition results in an
unbalanced dataset. Since many health applications aim to detect events that
indicate a health issue there should “ideally” be equally many time periods with
and without these events. In general, this is unrealistic for a recording from an
individual as well as across a larger population that is not selected with prior
knowledge of their health issues. For example, in the recent A3 study [30] at
the Oslo University Hospital individuals with atrial fibrillation were screened for
sleep apnea. In a snapshot from this study with 328 individuals, 62 are classified
as normal, 128 with mild apnea, 100 with moderate apnea, and 38 with severe
apnea. The severeness of sleep apnea is captured by the Apnea Hypopnea Index
(AHI) which measures the average number of apnea events per hour and is
classified as follows: AHI<15, (normal), 15≤ AHI<30, (moderate), AHI≥30,
(severe)3. It is unrealistic to expect that a sufficiently large dataset for training
can be collected from each individual, because it is inconvenient, requires medical
experts to label the data, and might be infeasible due to practical reasons for
those that develop the application and classifier.

The objectives of this work are to address these problems with insufficient
datasets in the health domain: (1) generate synthetic data from a distribution
that approximates the true data distribution to enhance the original dataset;
(2) use this approximate distribution to generate data in order to rebalance the
original dataset; (3) examine the possibility to generate personalized data that
correspond to specific individuals; and (4) investigate how these methods can
lead to performance improvements for the classification task.

The mentioned problems are relevant for many applications in the health do-
main. As a proof-of-concept, we focus in our experimental work on the detection
of obstructive sleep apnea (OSA). OSA is a condition that is characterized by fre-
quent episodes of upper airway collapse during sleep, and is being recognized as
a risk factor for several clinical consequences, including hypertension and cardio-
vascular disease. The detection and diagnosis is performed via polysomnography
(PSG). PSG is a cumbersome, intrusive and expensive procedure with very long
waiting times. Traditionally, PSG is performed in a sleep laboratory. It requires

3 From a ML viewpoint only individuals with severe sleep apnea would produce bal-
anced recordings.
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the patient to stay overnight and record various physiological signals during
sleep, such as the electrocardiogram, electroencephalogram, oxygen saturation,
heart rate, and respiration from the abdomen, chest and nose. These signals
are manually evaluated by a sleep technician to give a diagnosis. In our earlier
work [18], we could show that ML can be used to classify PSG data with good
performance, even if only a subset of the signals is used, and that the quality of
collected data with commercial-of-the-shelf respiratory sensors approaches the
quality of equipment used for clinical diagnosis [19].

In this work, we use different conditional recurrent GAN designs, and four
well-known classification techniques, i.e., K-Nearest Neighbor (KNN), Random
Forest (RF), Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM)
to achieve the aforementioned objectives. Since we want to use datasets that
are publicly available and open access, we use the Apnea-ECG and MIT-BIH
databases from Physionet [1, 2] for our experiments. The reminder of this paper
is organized as follows: Section 2 presents related works, and Section 3 our meth-
ods. In Section 4 we evaluate these methods through three experiments. Section
5 concludes this paper.

2 Related Work

Although the GAN framework [12] has recently acquired significant attention for
its capability to generate realistic looking images [23, 17], we are interested in
time series generation. The GAN is not as widely used for time series generation
as for images or videos, however, works which investigate this approach exist
[22]. There are also relevant applications for sequential discrete data [31].

Most works are related to Objective 1 [10, 6]. Hyland et al. [10] use a con-
ditional recurrent GAN (based on [21]) to generate realistic looking intensive
care unit data, preconditioned on class labels, which have continuous time series
form. Among other experiments, they train a classifier to identify a held out set
of real data and show the possibility of training exclusively on synthetic data for
this task. They also introduce the opposite procedure (train with the real data
and test on the synthetic) for distribution evaluation. We use similar methods to
synthesize data in the context of OSA, but we expand these techniques by intro-
ducing a metric for evaluating the synthetic data quality which is based on their
combination. We also investigate methods to give different importance to differ-
ent recordings. Other works related to medical applications of GANs include [16,
5]. Our work is associated with the use of multiple GANs in combination and
uses different design and metrics from the above works (both works use designs
based on combinations of an auto-encoder and a GAN). Many approaches that
include multiple GANs exist such as [9, 14].

We note that most of the related work with the exception of [5] focuses in-
dividually on the synthetic data generation and evaluation, and not how to use
these data to augment the original dataset to potentially improve the generaliza-
tion capability of other classifiers. To the best of our knowledge only few works
[8, 25, 20] exist that examine the potential application of GANs to produce real-
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istic synthetic data for class rebalancing of a training dataset. Only one of them
uses specifically a recurrent GAN architecture. Finally, we did not find any rele-
vant work that depicts the data distribution as a mixture of different recording
distributions, with the end-goal of producing more personalized synthetic data.

3 Method

The goal of data augmentation in this work is to train classifiers to successfully
detect in physiological time series data health events of interest. In our use case
this means to classify every 30 or 60 second window of a sleep recording as apneic
(i.e., an apnea event happened) or non-apneic.

Fig. 1. GAN Augmentation

We use a conditional recurrent GAN to generate a synthetic dataset (SD, see
Figure 1) to augment the original training dataset (RDTRAIN ) (Objective 1) and
to rebalance an unbalanced RDTRAIN (Objective 2). Furthermore, we extend
the single GAN architecture to a multiple GAN architecture to generate more
synthetic data that is potentially closer to the test data to enable personalized
training (Objective 3). In this section, we introduce the datasets we use, the two
GAN architectures, and the metrics used to evaluate the quality of the generated
data.

3.1 Data

We focus on the nasal airflow signal (NAF), because it can adequately be used to
train a classifier to recognize apneas and yields the best single signal performance
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[18]. Furthermore, NAF is contained in most recordings (in 12 recordings4) in the
MIT-BIH database. From the Apnea-ECG database we use eight sleep recordings
(i.e., a01, a02, a03, a04, c01, c02, c03, b01) that contain the NAF signal with
durations 7-10 hours. From MIT-BIH we use the 12 recordings that include the
NAF signal. Note that MIT-BIH has low data quality (noisy wave-forms, values
out of bounds, etc.), especially when compared to Apnea-ECG.

The sampling frequency is 100Hz for Apnea-ECG and 250Hz for MIT-BIH
and all recordings contain labels for every minute window of breathing for Apnea-
ECG and for every 30 seconds window for MIT-BIH. These labels classify a win-
dow as apneic or non-apneic. For Apnea-ECG, there are four severe OSA, apneic
recordings(a01-a04) and four normal, non-apneic recordings (c01-c03,b01). AHIs
vary from 0 to 77.4. For MIT-BIH, AHIs vary from 0.7 to 100.8. The only pre-
processing we perform is rescaling and downsampling of the data to 1Hz.

3.2 Single GAN Architecture

In order to solve the problems of too small and unbalanced datasets we generate
synthetic data and augment the original dataset. Due to its recent successes in
generating realistic looking synthetic data, e.g., images and music, we use the
GAN framework, in particular, a conditional recurrent GAN. The conditional
aspect allows us to control the class of the generated data (apneic, non-apneic).
Thus, data from both classes can be generated and the front-end classifiers are
able to learn both apneic and non-apneic event types. The generative network G
takes as input random sequence from a distribution pz(z) and returns a sequence
that after training should resemble our real data. The discriminator D takes as
input the real data with distribution pData(x) and the synthetic data from G,
and outputs the probability of the input being real data. Using cross-entropy
error, we obtain the value function [12]:

min
G

max
D

V (D,G) = Ex∼pData(x)[logD(x)] + Ez∼pZ(z)[1− logD(G(z))] (1)

G has the objective to minimize the probability that D correctly identifies
the generated data as synthetic (second term of Eq. 1). D has the objective to
maximize the probability to correctly classify data as either real or synthetic.

The objective of the generator is to fool the discriminator such that it classi-
fies generated data as real. Through the training the generator learns to produce
realistic looking synthetic data. Consequently, the generated data distribution
converges to the real data distribution [12]. Inspired by [10], we use a conditional
LSTM [15] as G and D, because we are interested in time series generation of
sequentially correlated data. LSTMs are able to store information over extended
time intervals and avoid the vanishing and exploding gradient issues [11]. G pro-
duces a synthetic sequence of values for the nasal airflow and D classifies each
individual sample as real or fake based on the history of the sequence.
4 slp01, slp02a , slp02b, slp03 , slp04, slp14, slp16, slp32, slp37, slp48, slp59, slp66,
slp67x
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3.3 Multiple GAN Architecture

The aim for this approach is to ensure that the SD represents in a realistic
manner all recordings in RDTRAIN . Each person, depending on various envi-
ronmental and personal factors has different breathing patterns, but individual
characterization is possible.

Fig. 2. Three GANs trained separately
with a chance to interchange subsets

Such an individualization is often
described as bias towards a particu-
lar patient [11]. We, in contrast, make
the hypothesis that different record-
ing sessions have different data dis-
tributions, which together constitute
the total apnea/non-apnea distribu-
tion of the dataset. In our case differ-
ent recordings correspond to different
individuals. A distinction is made be-
tween the recordings and the modes
in their distribution since a record-
ing can have more than one mode in
its distribution, and different modes
in the feature space can be common
for different recordings. Since we have
insufficient data per recording to suc-
cessfully perform the experiments of
this section, we define disjoint sub-
sets of recordings (hereby called sub-
sets), the union of which constitutes
the original recording set. Under this hypothesis, the data distribution can be
depicted as a mixture of the different recording distributions:

pData(x) =

krec∑
i=0

wripreci(x) =

ksub∑
j=0

wsjpsubj (x) (2)

with:

psubj (x) =
∑

l∈subj

wsbljprecl(x) (3)

where krec is the total number of recordings, ksub is the total number of
subsets, preci is the data distribution of recording i, and wri = 1/krec assuming
equal contribution per recording, psubj and wsj is the distribution and weights
of subset j, and wsblj the weights of the recording within each subset.

We restate Eq. 1 to explicitly include the distributions of the subsets by
dedicating a pair of G and D to each subset. This allows each GAN to prioritize
the data from its respective subset, thus making it less probable to exhibit mode
collapse for modes contained in the examined recordings. Each subset contains
one apneic and one non-apneic recording (see Section 3.1, 4.4).
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The goal of this method is to properly represent all recordings in the SD.
The potential decrease of collapsing modes due to the use of multiple GANs for
different data is an added benefit. There are relevant publications that use similar
ensemble techniques to specifically address this issue backed by theoretical or
methodological guarantees [29, 14].

Since the amount of data per recording is too low to train GAN with only
two recordings, we allow each GAN to train with data from the training subset
of another GAN with a controllable probability (see Figure 2). Per iteration, for
GANj we perform a weighted dice toss such that J = (1, 2..., j, ..., ksub), and
p = (p1, p2, ...pj , ...pksub

) where J is a random variable following the multino-
mial distribution and p the parameter probability vector of the outcomes. For
GANj pj = p, and p1 = p2 = ... = pi.. = pksub

= 1−p
ksub−1∀i 6= j for a chosen

value p . Note that the larger the chosen p, the more pronounced the modes
of the recording combination that corresponds to GANi will be. It is relatively
straightforward to show that:

Proposition 1. A GAN satisfying the conditions of Proposition 2 of [12] and
trained with a dataset produced from the above method will converge to the mix-
ture distribution: ps(x) =

∑ksub

i wipsubi(x) where wi = P (J = j).

Based on this proposition, this method creates a variation of the original
dataset, that gives different predefined importance to the different subsets (see
Appendix G for details). The same proposition holds for individual recordings.
The value function now for a GAN takes the following form:

min
G

max
D

V (D,G) = Ex∼ps(x)[logD(x)] + Ez∼pZ(z)[1− logD(G(z))] (4)

3.4 Metrics

Measuring the quality of data produced by a GAN is a difficult task, since the
definition of “realistic” data is inherently vague. However, it is necessary, because
the performance of the front-end classifiers is not necessarily a direct measure-
ment of how realistic the synthetic data are. In this subsection we introduce the
metrics we use to measure the quality of the synthetic data.

T metric: Hyland et al. [10] introduce two empirical evaluation metrics for
data quality: TSTR (Train on Synthetic Test on Real) and TRTS (Train on Real
Test on Synthetic). Empirical evaluation indicates that these metrics are useful
in our case, however each one has disadvantages. To solve some of these issues
we combine them via taking their harmonic mean (in the Appendix F we explain
problems with these metrics and reasons to use the harmonic mean):

T =
2 ∗ TSTR ∗ TRTS
TSTR+ TRTS

(5)

MMD: We chose the Maximum Mean Discrepancy (MMD) [13] measure-
ment since other well-established measurements (e.g., log likelihood) are either
not well suited for GAN assessment, because plausible samples do not necessarily
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imply high log likelihood and vice versa [28], or they are focused on images, like
the inception score [26]. There is also a wide variety of alternative approaches
[3], however we use the MMD since it is simple to calculate, and is generally in
line with our visual assessment of the quality of the generated data.

We follow the method from [27] to optimize the applied MMD via maximizing
the ratio between the MMD estimator and the square root of the estimator of
the asymptotic variance of the MMD estimator (the t-statistic). Inspired by [10],
we further separate parts of the real and synthetic datasets to MMD training
and MMD test sets (each contains half real and half synthetic data points). To
maximize the estimator of the t-statistic for the training data we run gradient
descent to the parameters of our kernel (i.e., Radial Basis Function (RBF) with
variance σ as parameter). Then we test the MMD measurement on the MMD
test set with the parameters that have been optimized with the training set. In
the next section we evaluate the data based on these metrics.

4 Evaluation

To analyze how well we can achieve our objectives with the two GAN architec-
tures, we design three experiments. Before we describe these experiments and
their results, we analyze in Section 4.1 the quality of the synthetic data with
the T-metric, MMD, and visual inspection. In Sections 4.2-4.4 we present and
analyze the experiments. Together with accuracy, specificity, and sensitivity, we
use the kappa coefficient [7] as performance metric since it better captures the
performance of two-class classification in a single metric than accuracy. For all
experiments, the pre-processing of the data is minimal (Section 3.1) and we use
a wide variety of relatively basic methods as front-end classifiers. This is be-
cause we want to focus on investigating the viability of GAN augmentation as
a means of performance improvement for a general baseline case. However, the
GAN augmentation is applicable to any type of data (e.g., pre-processed apnea
data) and is independent of the front-end classifiers. For details about the GAN
and the front-end classifiers parameters and design please refer to Appendix A.

4.1 Data Quality Evaluation

To measure the similarity between the synthetic and the real distribution we
use the MMD and T-metric (see example in Figure 3). We execute the tests
every 10 epochs during training. Both scores improve as the training procedure
progresses, until they stabilize (with minor variation). The T-metric is more
unstable with epochs with high score in the initial training phase. However,

after epoch 600, the performance of the metric stabilizes around 0.9. Simi-
larly, the majority of MMD variations stop (with few exceptions) around epoch
400.

Another important criterion for recognizing whether the generated data are
realistic is the visual inspection of the data. Although not as straightforward as
for images, apnea and non-apnea data can be visually distinguished. In Figures 4
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Fig. 3. Mean of T-metric (left) and MMD (right) scores throughout the GAN training

Fig. 4. Real apneic data (left) and good synthetic apneic data (right) for 600sec

and 5 we show examples of real and realistic-looking synthetic data. The gener-
ated data are realistic-looking and difficult to distinguish from the real data. For
further evaluation of the visual quality and diversity of the real and generated
data please refer to the Appendix H.

4.2 Experiment 1: Data Augmentation

In this experiment we investigate whether augmenting RDTRAIN with realistic
SD generated from a GAN trained with the same RDTRAIN can have a positive
impact on the front-end classifier performance.

Experiment Description: We iterate the experiment 15 times for Apnea-
ECG and 10 times for MIT-BIH: We partition RD into RDTRAIN (with 50% of
RD data points), RDTEST (25%) and a validation set (25%) via random subsam-
pling. We train the GAN with RDTRAIN . The GAN training is very unstable
for the data of the two datasets (especially for MIT-BIH), and a good quality
based on our metrics and visual inspection does not necessarily correspond to
high performance of the front-end classifiers. For this reason, we use the valida-
tion dataset to evaluate the front-end classifier performance. We save the trained
GAN model periodically throughout training, generate SD, augment RDTRAIN ,
and measure the front-end classifier performance on the validation set. The GAN
with the maximum validation set performance, and empirically acceptable MMD
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and T-metric values is chosen to generate SD. To obtain better performance for
the MIT-BIH experiments with MLP and KNN, we concatenated data of many
good performing models on the validation set, instead of only using the model
with the best validation performance.

Fig. 5. Real (left) and good synthetic (right) non-apneic data , 175 sec

Results: Due to limited space we present in the main text only the kappa
statistic for all front-end classifiers (Table 1), and the accuracy, sensitivity, and
specificity for the MLP classifier (Table 2) to indicate the general behaviour we
observe for all the classifiers. For accuracy, specificity, and sensitivity for KNN,
RF and MLP please refer to Appendix B. We use this presentation convention
for all experiments (Appendices C and D for Experiments 2 and 3 respectively).

Table 1. Kappa statistic and standard error for all front-end classifiers for Apnea-ECG
and MIT-BIH. All kappa values are multiplied by 100 for legibility.

Kappa statistic (X·10−2) for Apnea-ECG (A), and MIT-BIH (M)
MLP RF KNN SVM

A: Baseline 85.89±0.36 90.08±0.26 88.12±0.40 74.75±0.40
A: Exp1:Synth 78.29±0.97 83.88±0.56 85.76±0.49 75.04±0.55
A: Exp1:Augm 86.93±0.45 90.88±0.28 90.12±0.37 76.90±0.57
M: Baseline 25.04±0.88 30.95±1.10 27.15±1.01 0.0±0.0
M: Exp1:Synth 18.35±0.86 21.80±0.95 16.84±1.26 11.02±0.96
M: Exp1:Augm 27.01±0.61 33.01±0.87 29.22±1.01 14.93±1.22

Baseline shows the performance of the front-end classifiers trained only with
RDTRAIN . For the synthetic case (Exp1:Synth) they are trained only with SD,
and for the augmented case (Exp1:Augm) with RDTRAIN and SD.

For Apnea-ECG, Exp1:Augm exhibits for all front-end classifiers a statisti-
cally significant improvement of the mean of the kappa statistic at p = 0.05.
The p-value for the one-tailed two sample t-test relative to the Baseline is: p=
0.042 (MLP), p=0.035 (RF), p=0.005 (KNN), p=0.002 (SVM). Notice that SD



Augmenting Physiological Time Series Data 11

yields a good performance on its own, and even surpasses the performance of
the Baseline for the SVM. We assume that this is due to the better balancing of
the synthetic data in relation to the real. In SD, 50% of the generated minutes
are apneic and 50% non-apneic, whereas in RDTRAIN approximately 62.2% are
non-apneic and 37.8% are apneic depending on the random subsampling.

For MIT-BIH, Exp1:Augm shows in most cases a significant improvement of
the kappa statistic values relative to the Baseline for all front-end classifiers when
we perform the 2-sample one tailed t-test, i.e., p=0.012 (MLP), p=0.062 (RF),
p=0.029 (KNN), and p'0 (SVM). The overall performance is very low, due to
the very low data quality for this dataset. Since our pre-processing is minimal
this is to be expected. Notice that the SVM actually does not learn at all for
the Baseline case. In all the iterations we performed, it classifies all minutes as
non-apneic. Interestingly, both for Exp1:Synth and Exp1:Augm, there is a big
improvement for the SVM, since the algorithm successfully learns to a certain
extent in these cases. We assume that this is due to the better class balance (more
apneas present in the datasets of Exp1:Synth and Exp1:Augm). Generally, for
MIT-BIH the augmentation seems to have a beneficial effect on performance.

Table 2. Accuracy specificity and sensitivity for the MLP classifier

MLP Classifier Apnea-ECG (A), and MIT-BIH (M)
Acc. Spec. Sens.

A: Baseline 93.19±0.17 94.78±0.19 90.83±0.39
A: Exp1:Synth 89.26±0.49 85.48±1.14 95.02±0.94
A: Exp1:Augm 93.66±0.20 94.62±0.24 92.28±0.46
M: Baseline 64.6±0.37 75.95±1.16 48.41±1.26
M: Exp1:Synth 59.76±0.5 61.6±2.58 57.17±3.16
M: Exp1:Augm 64.7±0.25 69.92±0.78 57.08±1.22

From Table 2 we notice that for Exp1:Augm, the MLP (both for MIT-BIH
and Apnea-ECG) exhibits a clear improvement in sensitivity and a small drop
in specificity. This pattern is present for all front-end classifiers. For Exp1:Augm
there is always a clear improvement in sensitivity, and either a small increase or
decrease in specificity. This is an important advantage in a healthcare context
since sensitivity reflects the ability of a classifier to recognize pathological events.
This observation serves as a motivation for Experiment 2.

Implications for OSA Detection: The goal of this experiment is to reflect
a real application scenario in which we have relatively equal amount of data from
different patients to train with, and we perform classification for these patients.
An example could be mobile OSA detection for patients after monitoring. It
serves as an indication that augmentation with synthetic data can yield per-
formance improvements for classifiers that are trained with the goal of OSA
detection.
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4.3 Experiment 2: Rebalancing Skewed Datasets

To analyze how well the single GAN architecture can be used to rebalance a
skewed dataset, we need to create a skewed dataset because Apnea-ECG is nearly
balanced with a ratio of 62.2% non-apneic and 37.8% apneic.

Experiment Description: We separate RD into RDTRAIN and RDTEST

on a per-recording basis instead of a per event-basis as in the previous experi-
ment. We randomly choose one apneic and one non-apneic recording as RDTEST

(i.e., a01 and b01 respectively), and as RDTRAIN we use the remaining six
recordings. We choose to evaluate this scenario using Apnea-ECG since it is the
dataset for which our front-end classifiers exhibit the better performance.

Fig. 6. Training and Test sets for Experiment 2

To create an unbalanced dataset, one apneic recording (i.e., a04 chosen ran-
domly) is removed from the training dataset RDTRAIN (Figure 6) resulting in
72.2% non-apneic and 27.8% apneic training data. The augmentation in this ex-
periment rebalances the classes to 50% apneic and 50% non-apneic. This means
that we only generate apneic data with the GAN (i.e., SD contains only apneic
minutes) and combine them with the original dataset to form AD.

Table 3. Kappa statistic and standard error for all front-end classifiers.

Exp2: Kappa statistic (X·10−2) a01b01-unbalanced
MLP RF KNN SVM

Baseline 88.44±0.54 91.92±0.26 93.16±0.16 74.6±0.2
Exp2:Augm 93.40± 0.63 94.56±0.16 94.76±0.45 92.88±0.64

Note that a04 is removed from the training set both for the baseline/augmented
training of the front-end classifiers and also for the training of the GAN, i.e., the
apneic minute generation relies only on the other two apneic recordings. A vali-
dation set is extracted from a01 and b01. Throughout the training of the GAN
the validation set is periodically evaluated by the front-end classifiers which are
trained each time with AD. We choose the model that generates the SD with
which the front-end classifiers perform the best on the validation set. For this
experiment we perform five iterations.

Results: The results are shown in Tables 3 and 4. For Exp2:Augm we train
the front-end classifiers with AD (i.e., apneic SD and RDTRAIN without a04),
and for the Baseline we train with RDTRAIN without a04. In both cases we
evaluate on RDTEST . Compared to Baseline, a performance improvement occurs
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Table 4. Accuracy, specificity and sensitivity for MLP

Exp2: MLP a01b01-unbalanced Acc.,Spec.,Sens.
Acc. Spec. Sens.

Baseline 94.22±0.27 99.44±0.09 89.12±0.44
Exp2:Augm 96.70±0.31 98.82±0.24 94.62±0.51

for Exp2:Augm. This can be noticed in terms of accuracy for the MLP (Table
4, first column) and in terms of kappa for all front-end classifiers (all columns
of Table 3). The SVM seems to benefit the most from the rebalancing process.
Again, in terms of specificity and sensitivity we notice a similar behaviour as in
the previous experiment, i.e., increased sensitivity and stable specifity.

To further evaluate the potential of the proposed technique we compared the
results with results when training with the Synthetic Minority Over-sampling
Technique (SMOTE) [4]. For all classifiers the proposed method is marginally to
significantly superior (i.e.,MLP: 88.7±0.25·10−2, SVM: 90.9±0.41·10−2, KNN:
94.54±0.36·10−2, RF: 93.42±0.27·10−2).

Implications for OSA Detection: OSA data are generally very unbal-
anced towards non-apneic events. This experiment implies that GAN augmenta-
tion with synthetic data can be used to efficiently rebalance OSA data. This has
a positive effect on the detection of apneic events and on the overall classification
performance for OSA detection, based on the classifiers we experimented with.

4.4 Experiment 3: Personalization with Multiple GANs

In this experiment, we analyze whether we can improve performance by indirect
personalization during GAN training. By Personalization we mean that we aim
to make the learned distribution of the GAN to approach the specific distribution
of the RDTEST for a given proximity metric (MMD). Since we do not use a01
and b01 for the training of the GAN the method we apply is indirect. We use
a01 and b01 from Apnea-ECG as RDTEST .

Experiment Description: Based on the discussion in Section 3.3, we sep-
arate our training recordings into three subsets (Figure 7). Then we create three
GANs (GAN 1, GAN 2, and GAN 3) and we use each subset to train the re-
spective GAN, with a non-zero probability of choosing another subset for the
gradient update based on a weighted dice toss (see Section 3.3). We set p = 0.4
(see Figure 2), i.e., for one gradient update of GAN 1, the mini-batch is selected
with probability 0.4 from Subset1, and probability 0.3 from Subset 2 and 3.
We do the same for GAN 2 and 3. The choice of p is made via experimental
evaluation.

Proposition 1 implies that through this training, a GAN converges to a mix-
ture of distributions with weights for each subset distribution j equal to P (J = j)
(see Eq. 4). By controlling P (J = j) we control the weights of the mixture, and
thus the degree to which each subset of recordings is represented in SD.

We use the validation set from a01 and b01 (obtained as in Experiment 2)
for two purposes: (1) to evaluate the SD from the three GANs (SD 1, SD 2 and
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Fig. 7. Training and Test sets for Experiment 3

Table 5. Kappa statistic for front-end classifiers

Exp3: Kappa statistic (X·10−2), a01b01 as RDTEST

MLP RF KNN SVM
Baseline 92.36±0.37 92.88±0.38 93.12±0.21 88.20±0.37
Exp3:Augm 93.08±0.59 93.6±0.62 94.50±0.39 91.72±0.94
Exp3:AugmP 93.36±0.40 94.36±0.31 94.58±0.17 93.92±0.23

SD 3) and (2) to calculate the MMD between SD 1-3 and this validation set.
We examine two cases: In Exp3:Augm, SD 1, SD 2, and SD 3 are combined
with RDTRAIN to form AD. SD 1, SD 2, and SD 3 combined have the same size
as RDTRAIN . In Exp3:AugmP, we identify the SD that has the lowest MMD
in relation to the validation set, and use the corresponding GANi to generate
more data until SDi has the size of RDTRAIN . AD is formed by combining
RDTRAIN and SDi. In Exp3:AugmP, we perform indirect personalization, since
the SDi selected originates from the GAN that best matches the distribution of
RDTEST based on the MMD metric. This occurs since the validation set is also
extracted from a01 and b01. The experiment is repeated 5 times.

Results: The results are found in Tables 5 and 6. We see that the general
behavior is similar to the previous experiments. Again there are improvements
for the augmented cases in relation to the Baseline. There are improvements in
sensitivity and a small drop in specificity for the MLP cases, which is the case
also for the other classifiers (with the exception of RF).

Generally, Exp3:AugmP, exhibits slightly better performance both in terms
of kappa and accuracy. SVM and RF seem to gain the most benefits from this
approach. Interestingly, in Exp3:AugmP SVM surpasses MLP in terms of kappa.

Table 6. Accuracy, specificity and sensitivity for MLP

Exp3: MLP a01b01 Acc.,Spec.,Sens.
Acc. Spec. Sens.

Baseline 96.18±0.18 98.92±0.07 93.54±0.25
Exp3:Augm 96.54±0.29 98.4±0.19 94.74±0.51
Exp3:AugmP 96.68±0.20 98.64±0.18 95.2±0.25

To further investigate the viability of Exp3:AugmP method we examine in
Appendix E different recording combinations as RDTEST (i.e., a02c01, a04b01
and a03b01) and perform Baseline and Exp3:AugmP evaluations for the front-
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end classifiers. For all cases, for all front-end classifiers we notice improvements
for the kappa statistic, that vary from (RF, a02c01):0.28·10−2 to (MLP, a03b01):
27.12·10−2, especially for low performing cases, e.g., for the (MLP, a03b01) case
Baseline kappa is 57.4·10−2 and Exp3:AugmP kappa is 84.5·10−2.

Implications for OSA Detection: This experiment implies that person-
alization can indeed have a positive impact on classification performance for the
detection of OSA. Even the simple indirect approach of Exp3:AugmP exhibits
performance advantages for all front-end classifiers in relation to when it is not
applied in Exp3:Augm.

5 Conclusion

In this work we examined how dataset augmentation via the use of the GAN
framework can improve the classification performance in three scenarios for OSA
detection. We notice that for all the cases the augmentation clearly helps the
classifiers to generalize better. Even for the simpler classifiers like KNN, we see
that augmentation has a beneficial effect on performance. The largest perfor-
mance improvement is achieved for the SVM for Experiment 2, and in all the
cases the metric that increases the most is sensitivity. This leads us to believe
that the class balancing that GAN can provide with synthetic data can be useful
in situations for which one class is much less represented than others. This is
even more pronounced in cases like OSA detection where the vast majority of
the data belongs to one of two classes.

As a next step we plan to investigate the viability of creating synthetic
datasets that are differentially private. As health data are in many cases withheld
from public access, we want to investigate the performance of front-end classifiers
when using synthetic datasets that have privacy guarantees and examine how
this impacts the performance of the classifiers. Additionally, for the NAF signal,
the Apnea-ECG dataset contains only severe apneic or non-apneic patients, and
MIT-BIH is generally too noisy. Thus, we want as a next step to investigate dif-
ferent datasets that contain more patients with average AHIs so that the GAN
can also map transitional OSA states that are realistic. This could potentially
help a classifier to further capture apneic characteristics from a wider range.
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