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Abstract. T-distributed stochastic neighbour embedding (t-SNE) is a
widely used data visualisation technique. It differs from its predecessor
SNE by the low-dimensional similarity kernel: the Gaussian kernel was
replaced by the heavy-tailed Cauchy kernel, solving the ‘crowding prob-
lem’ of SNE. Here, we develop an efficient implementation of t-SNE for a
t-distribution kernel with an arbitrary degree of freedom ν, with ν →∞
corresponding to SNE and ν = 1 corresponding to the standard t-SNE.
Using theoretical analysis and toy examples, we show that ν < 1 can
further reduce the crowding problem and reveal finer cluster structure
that is invisible in standard t-SNE. We further demonstrate the striking
effect of heavier-tailed kernels on large real-life data sets such as MNIST,
single-cell RNA-sequencing data, and the HathiTrust library. We use do-
main knowledge to confirm that the revealed clusters are meaningful.
Overall, we argue that modifying the tail heaviness of the t-SNE kernel
can yield additional insight into the cluster structure of the data.
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1 Introduction

T-distributed stochastic neighbour embedding (t-SNE) [12] and related methods
[15, 13] are used for data visualisation in many scientific fields dealing with thou-
sands or even millions of high-dimensional samples. They range from single-cell
cytometry [1] and transcriptomics [16, 19], where samples are cells and features
are proteins or genes, to population genetics [4], where samples are people and
features are single-nucleotide polymorphisms, to humanities [14], where samples
are books and features are words.

T-SNE was developed from an earlier method called SNE [5]. The central idea
of SNE was to describe pairwise relationships between high-dimensional points
in terms of normalised affinities: close neighbours have high affinity whereas
distant samples have near-zero affinity. SNE then positions the points in two
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dimensions such that the Kullback-Leibler divergence between the high- and
low-dimensional affinities is minimised. This worked to some degree but suffered
from what was later called the ‘crowding problem’: distinct high-dimensional
clusters tended to overlap in the embedding. The idea of t-SNE was to adjust
the kernel transforming pairwise low-dimensional distances into affinities: the
Gaussian kernel was replaced by the heavy-tailed Cauchy kernel (t-distribution
with one degree of freedom ν), ameliorating the crowding problem.

The choice of the specific heavy-tailed kernel was mostly motivated by math-
ematical and computational simplicity: a t-distribution with ν = 1 has a density
proportional to 1/(1+x2) which is mathematically compact and fast to compute.
However, a t-distribution with any finite ν has heavier tails than the Gaussian
distribution (which corresponds to ν →∞). It is therefore reasonable to explore
the whole spectrum of the values of ν from ∞ to 0. Given that t-SNE (ν = 1)
outperforms SNE (ν = ∞), it might be that for some data sets ν < 1 would
offer additional insights into the structure of the data.

While this seems like a straightforward extension and has already been dis-
cussed in the literature [10, 18], no efficient implementation of this idea has been
available until now. T-SNE is usually optimised via adaptive gradient descent.
While it is easy to write down the gradient for an arbitrary value of ν, the exact
t-SNE from the original paper requires O(n2) time and memory, and cannot be
run for sample sizes much larger than n ≈ 10 000. Efficient approximations have
been developed allowing to run approximate t-SNE for much larger sample sizes
[11, 9], but until now have only been implemented for ν = 1. As a result, the
effect of ν 6= 1 on large real-life datasets has remained unknown.

Here we show that the recent FIt-SNE approximation [9] can be modified
to use an arbitrary value of ν and demonstrate that ν < 1 can reveal ‘hidden’
structure, invisible with standard t-SNE.

2 Results

2.1 t-SNE with arbitrary degree of freedom

SNE defines directional affinity of point xj to point xi as

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
.

For each i, this forms a probability distribution over all points j 6= i (all pi|i
are set to zero). The variance of the Gaussian kernel σ2

i is chosen such that the
perplexity of this probability distribution

exp
(
− ln(2) ·

∑
j 6=i

pj|i log2 pj|i

)
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has some pre-specified value. In symmetric SNE (SSNE)5 and t-SNE the affinities
are symmetrised and normalised

pij =
pi|j + pj|i

2n

to form a probability distribution on the set of all pairs (i, j).
The points are then arranged in a low-dimensional space to minimise the

Kullback-Leibler (KL) divergence between pij and the affinities in the low-
dimensional space, qij :

L =
∑
i,j

pij log
pij
qij
,

qij =
wij
Z
, wij = k(‖yi − yj‖), Z =

∑
k 6=l

wkl.

Here k(d) is a kernel that transforms Euclidean distance d between any two
points into affinities, and yi are low-dimensional coordinates (all qii are set to
0).

SNE uses the Gaussian kernel k(d) = exp(−d2). T-SNE uses the t-distribution
with one degree of freedom (also known as Cauchy distribution): k(d) = 1/(1 +
d2). Here we consider a general t-distribution kernel

k(d) =
1

(1 + d2/ν)(ν+1)/2
. (?)

As in [18], we use a simplified version defined as

k(d) =
1

(1 + d2/α)α
. (??)

This kernel corresponds to the scaled t-distribution with ν = 2α−1. This means
that using (??) instead of (?) in t-SNE produces an identical output apart from
the global scaling by

√
2ν/(ν + 1). At the same time, (??) allows to use any

α > 0, including α ∈ (0, 1/2] corresponding to negative ν, i.e. it allows kernels
with tails heavier than any possible t-distribution.6 Yang et al. [18] use the same
kernel but with α replaced by 1/α, and call it ‘heavy-tailed SNE’ (HSSNE).

The gradient of the loss function (see Appendix or [18]) is

∂L
∂yi

= 4
∑
j

(pij − qij)w1/α
ij (yi − yj).

Any implementation of exact t-SNE can be easily modified to use this expression
instead of the α = 1 gradient.

5 In the following text we will not make a distinction between the symmetric SNE
(SSNE) and the original, asymmetric, SNE.

6 Equivalently, we could use an even simpler kernel k(d) = (1 + d2)−α that differs
from (??) only by scaling. We prefer (??) because of the explicit Gaussian limit at
α→∞.
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Fig. 1. Toy example with ten Gaussian clusters. (A) SNE visualisation of 10 spherical
clusters that are all equally far away from each other (α = 100). (B) Standard t-SNE
visualisation of the same data set (α = 1). (C) t-SNE visualisation with α = 0.5. The
same random seed was used for initialisation in all panels. Scale bars are shown in the
bottom-right of each panel.

Modern t-SNE implementations make two approximations. First, they set
most pij to zero, apart from only a small number of close neighbours [11, 9],
accelerating the attractive force computations (that can be very efficiently par-
allelised). This carries over to the α 6= 1 case. The repulsive forces are approxi-
mated in FIt-SNE by interpolation on a grid, further accelerated with the Fourier
transform [9]. This interpolation can be carried out for the α 6= 1 case in full
analogy to the α = 1 case (see Appendix).

Importantly, the runtime of FIt-SNE with α 6= 1 is practically the same as
with α = 1. For example, embedding MNIST (n = 70 000) with perplexity 50 as
described below took 90 seconds with α = 1 and 97 seconds with α = 0.5 on a
computer with 4 double-threaded cores, 3.4 GHz each.7

2.2 Toy examples

We first applied exact t-SNE with various values of α to a simple toy data
set consisting of several well-separated clusters. Specifically, we generated a 10-
dimensional data set with 100 data points in each of the 10 classes (1000 points
overall). The points in class i were sampled from a Gaussian distribution with
covariance I10 and mean µi = 4ei where ei is the i-th basis vector. We used
perplexity 50, and default optimisation parameters (1000 iterations, learning rate
200, early exaggeration 12, length of early exaggeration 250, initial momentum
0.5, switching to 0.8 after 250 iterations).

7 The numbers correspond to 1000 gradient descent iterations. The slight speed de-
crease is due to a more efficient implementation of the interpolation code for the
special case of α = 1.
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Fig. 2. Toy example with ten ‘dumbbell’-shaped clusters. (A) SNE visualisation of 10
dumbbell-shaped clusters (α = 100). (B) Standard t-SNE visualisation (α = 1). (C)
t-SNE visualisation with α = 0.5.

Figure 1 shows the t-SNE results for α = 100, α = 1, and α = 0.1. A t-
distribution with ν = 2α − 1 = 199 degrees of freedom is very close to the
Gaussian distribution, so here and below we will refer to the α = 100 result as
SNE. We see that class separation monotonically increases with decreasing α:
t-SNE (Figure 1B) separates the classes much better than SNE (Figure 1A), but
t-SNE with α = 0.5 separates them much better still (Figure 1C).

In the above toy example, the choice between different values of α is mostly
aesthetic. This is not the case in the next toy example. Here we change the
dimensionality to 20 and shift 50 points in each class by 2e10+i and the remaining
50 points by −2e10+i (where i is the class number). The intuition is that now
each of the 10 classes has a ‘dumbbell’ shape. This shape is invisible in SNE
(Figure 2A) and hardly visible in standard t-SNE (Figure 2B), but becomes
apparent with α = 0.5 (Figure 2C). In this case, decreasing α below 1 is necessary
to bring out the fine structure of the data.

2.3 Mathematical analysis

We showed that decreasing α increases cluster separation (Figures 1, 2). Why
does this happen? An informal argument is that in order to match the between-
cluster affinities pij , the distance between clusters in the t-SNE embedding needs
to grow when the kernel becomes progressively more heavy-tailed [12].

To quantify this effect, we consider an example of two standard Gaussian
clusters in 10 dimensions (n = 100 in each) with the between-centroid distance
set to 5

√
2; these clusters can be unambiguously separated. We use exact t-

SNE (perplexity 50) with various values of α from 0.2 to 3.0 and measure the
cluster separation in the embedding. As a scale-invariant measure of separation
we used between-centroids distance divided by the root-mean-square within-
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Fig. 3. Separation in the t-SNE visualisation between the two well-separated clusters
as a function of α. Separation was measured as the between-centroids distance divided
by the root-mean-square within-cluster distance.

cluster distance. Indeed, we observed a monotonic decrease of this measure with
growing α (Figure 3).

The informal argument mentioned above can be replaced by the following
formal one. Consider two high-dimensional clusters (n points in each) with all
pairwise within-cluster distances equal to Dw and all pairwise between-cluster
distances equal to Db � Dw (this can be achieved in the space of 2n dimensions).
In this case, the pij matrix has only two unique non-zero values: all within-cluster
affinities are given by pw and all between-cluster affinities by pb,

pw =
K(Dw)

n
[
(n− 1)K(Dw) + nK(Db)

]
pb =

K(Db)

n
[
(n− 1)K(Dw) + nK(Db)

] ,
where K(D) is the Gaussian kernel corresponding to the chosen perplexity value.
Consider an exact t-SNE mapping to the space of the same dimensionality. In
this idealised case, t-SNE can achieve zero loss by setting within- and between-
cluster distances dw and db in the embedding such that qw = pw and qb = pb.
This will happen if

k(db)

k(dw)
=
K(Db)

K(Dw)
.

Plugging in the expression for k(d) and denoting the constant right-hand side
by c < 1, we obtain √

α+ d2b
α+ d2w

= c−1/(2α).
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Fig. 4. MNIST data set (n = 70 000). (A) SNE visualisation (α = 100). (B) Standard
t-SNE visualisation (α = 1). (C) t-SNE visualisation with α = 0.5. The colours are
consistent across panels (A–C), labels are shown in (A). PCA initialisation was used in
all three cases. Transparency 0.5 for all dots in all three panels. Arrows mark clusters
shown in (D). (D) Average images for some individual sub-clusters from (C). The
sub-clusters were isolated via DBSCAN with default settings as it is implemented in
scikit-learn. Up to five subclusters with at least 100 points are shown, ordered from
top to bottom by abundance.

The left-hand side can be seen as a measure of class separation close to the one
used in Figure 3, and the right-hand side monotonically decreases with increasing
α.

In the simulation shown in Figure 3, the pij matrix does not have only two
unique elements, the target dimensionality is two, and the t-SNE cannot possi-
bly achieve zero loss. Still, qualitatively we observe the same behaviour: approx-
imately power-law decrease of separation with increasing α.

2.4 Real-life data sets

We now demonstrate that these theoretical insights are relevant to practical use
cases on large-scale data sets. Here we use approximate t-SNE (FIt-SNE).

MNIST We applied t-SNE with various values of α to the MNIST data set
(Figure 4), comprising n = 70 000 grayscale 28 × 28 images of handwritten
digits. As a pre-processing step, we used principal component analysis (PCA)
to reduce the dimensionality from 784 to 50. We used perplexity 50 and default
optimisation parameters apart from learning rate that we increased to η = 1000.8

For easier reproducibility, we initialised the t-SNE embedding with the first two
PCs (scaled such that PC1 had standard deviation 0.0001).

To the best of our knowledge, Figure 4A is the first existing SNE (α = 100)
visualisation of the whole MNIST: we are not aware of any SNE implementation

8 To get a good t-SNE visualisation of MNIST, it is helpful to increase either the
learning rate or the length of the early exaggeration phase. Default optimisation
parameters often lead to some of the digits being split into two clusters. In the
cytometric context, this phenomenon was described in detail by [2].
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that can handle a dataset of this size. It produces a surprisingly good visu-
alisation but is nevertheless clearly outperformed by standard t-SNE (α = 1,
Figure 4B): many digits coalesce together in SNE but get separated into clearly
distinct clusters in t-SNE. Remarkably, reducing α to 0.5 makes each digit further
split into multiple separate sub-clusters (Figure 4C), revealing a fine structure
within each of the digits.

To demonstrate that these sub-clusters are meaningful, we computed the
average MNIST image for some of the sub-clusters (Figure 4D). In each case,
the shapes appear to be meaningfully distinct: e.g. for the digit “4”, the hand-
writing is more italic in one sub-cluster, more wide in another, and features a
non-trivial homotopy group (i.e. has a loop) in yet another one. Similarly, digit
“2” is separated into three sub-clusters, with the most abundant one showing a
loop in the bottom-left and the next abundant one having a sharp angle instead.
Digit “1” is split according to the stroke angle. Re-running t-SNE using random
initialisation with different seeds yielded consistent results. Points that appear
as outliers in Figure 4C mostly correspond to confusingly written digits.

MNIST has been a standard example for t-SNE starting from the original t-
SNE paper [12], and it has been often observed that t-SNE preserves meaningful
within-digit structure. Indeed, the sub-clusters that we identified in Figure 4C
are usually close together in Figure 4B.9 However, standard t-SNE does not
separate them into visually isolated sub-clusters, and so does not make this
internal structure obvious.

Single-cell RNA-sequencing data For the second example, we took the tran-
scriptomic dataset from [16], comprising n = 23 822 cells from adult mouse cortex
(sequenced with Smart-seq2 protocol). Dimensions are genes, and the data are
the integer counts of RNA transcripts of each gene in each cell. Using a custom
expert-validated clustering procedure, the authors divided these cells into 133
clusters. In Figure 5, we used the cluster ids and cluster colours from the original
publication.

Figure 5A shows the standard t-SNE (α = 1) of this data set, following
common transcriptomic pre-processing steps as described in [7]. Briefly, we row-
normalised and log-transformed the data, selected 3000 most variable genes and
used PCA to further reduce dimensionality to 50. We used perplexity 50 and
PCA initialisation. The resulting t-SNE visualisation is in a reasonable agree-
ment with the clustering results, however it lumps many clusters together into
contiguous ‘islands’ or ‘continents’ and overall suggests many fewer than 133
distinct clusters.

Reducing the number of degrees of freedom to α = 0.6 splits many of the con-
tiguous islands into ‘archipelagos’ of smaller disjoint areas (Figure 5B). In many
cases, this roughly agrees with the clustering results of [16]. Figure 5C shows
a zoom-in into the Vip clusters (west-southwest part of panel B) that provide
one such example: isolated islands correspond well to the individual clusters

9 This can be clearly seen in an animation that slowly decreases α from 100 to 0.5,
see http://github.com/berenslab/finer-tsne.
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Fig. 5. Tasic et al. data set (n = 23 822). (A) Standard t-SNE visualisation (α = 1).
Cluster ids and cluster colours are taken from the original publication [16]: cold colours
for excitatory neurons, warm colours for inhibitory neurons, and grey/brown colours for
non-neural cells such as astrocytes or microglia. (B) t-SNE visualisation with α = 0.6.
(C) A zoom-in into the left side of panel (B) showing all Vip clusters from Tasic et al.
Black circles mark cluster centroids (medians).

(or sometimes pairs of clusters). Importantly, the cluster labels in this data set
are not ground truth; nevertheless the agreement between cluster labels and t-
SNE with α = 0.6 provides additional evidence that this data categorisation is
meaningful.

HathiTrust library For the final example, we used the HathiTrust library
data set [14]. The full data set comprises 13.6 million books and can be de-
scribed with several million features that represent word counts of each word in
each book. We used the pre-processed data from [14]: briefly, the word counts
were row-normalised, log-transformed, projected to 1280 dimensions using ran-
dom linear projection with coefficients ±1, and then reduced to 100 PCs.10 The
available meta-data include author name, book title, publication year, language,
and Library of Congress classification (LCC) code. For simplicity, we took a
n = 408 291 subset consisting of all books in Russian language. We used per-
plexity 50 and learning rate η = 10 000.

Figure 6A shows the standard t-SNE visualisation (α = 1) coloured by the
publication year. The most salient feature is that pre-1917 books cluster together
(orange/red colours): this is due to the major reform of Russian orthography
implemented in 1917, leading to most words changing their spelling. However,
not much of a substructure can be seen among the books published after (or
before) 1917. In contrast, t-SNE visualisation with α = 0.5 fragments the corpus
into a large number of islands (Figure 6B).

10 The 13.6 · 106 × 100 data set was downloaded from https://zenodo.org/record/

1477018.
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Fig. 6. Russian language part of the HathiTrust library (n = 408 291). (A) Standard
t-SNE visualisation (α = 1). Colour denotes publication year. (B) t-SNE visualisa-
tion with α = 0.5. Black contours in both panels are kernel density estimate contour
lines for mathematical literature (lower right) and poetry (upper left), plotted with
seaborn.kdeplot() with Gaussian bandwidth set to 2.0. Contour levels were manu-
ally tuned to enclose the majority of the books).

We can identify some of the islands by inspecting the available meta-data.
For example, mathematical literature (LCC code QA, n = 6490 books) is not
separated from the rest in standard t-SNE, but occupies the leftmost island in
t-SNE with α = 0.5 (contour lines in the bottom right in both panels). Several
neighbouring islands correspond to the physics literature (LCC code QC, n =
5104 books; not shown). In an attempt to capture something radically different
from mathematics, we selected all books authored by several famous Russian
poets11 (n = 1369 in total). This is not a curated list: there are non-poetry
books authored by these authors, while many other poets were not included
(the list of poets was not cherry-picked; we made the list before looking at the
data). Nevertheless, when using α = 0.5, the poetry books printed after 1917
seemed to occupy two neighbouring islands, and the ones printed before 1917
were reasonably isolated as well (Figure 6B, top and left). In the standard t-SNE
visualisation poetry was not at all separated from the surrounding population
of books.

11 Anna Akhmatova, Alexander Blok, Joseph Brodsky, Afanasy Fet, Osip Mandelstam,
Vladimir Mayakovsky, Alexander Pushkin, and Fyodor Tyutchev.
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3 Related work

Yang et al. [18] introduced symmetric SNE with the kernel family

k(d) =
1

(1 + αd2)1/α
,

calling it ‘heavy-tailed symmetric SNE’ (HSSNE). This is exactly the same kernel
family as (??), but with α replaced by 1/α. However, Yang et al. did not show
any examples of heavier-tailed kernels revealing additional structure compared
to α = 1 and did not provide an implementation suitable for large sample sizes
(i.e. it is not possible to use their implementation for n & 10 000). Interestingly,
Yang et al. argued that gradient descent is not suitable for HSSNE and suggested
an alternative optimisation algorithm; here we demonstrated that the standard
t-SNE optimisation works reasonably well in a wide range of α values (but see
Discussion).

Van der Maaten [10] discussed the choice of the degree of freedom in the
t-distribution kernel in the context of parametric t-SNE. He argued that ν > 1
might be warranted when embedding the data in more than two dimensions. He
also implemented a version of parametric t-SNE that optimises over ν. However,
similar to [18], [10] did not contain any examples of ν < 1 being actually useful
in practice.

UMAP [13] is a promising recent algorithm closely related to an earlier
largeVis [15]; both are similar to t-SNE but modify the repulsive forces to make
them amenable for a sampling-based stochastic optimisation. UMAP uses the
following family of similarity kernels:

k(d) =
1

1 + ad2b
,

which reduces to Cauchy when a = b = 1 and is more heavy-tailed when 0 <
b < 1. UMAP default is a ≈ 1.6 and b ≈ 0.9 with both parameters adjusted
via the min dist input parameter (default value 0.1). Decreasing min dist all
the way to zero corresponds to decreasing b to 0.79. In our experiments, we
observed that modifying min dist (or b directly) led to an effect qualitatively
similar to modifying α in t-SNE. For some data sets this required manually
decreasing b below 0.79. In case of MNIST, b = 0.3, but not b = 0.79, revealed
sub-digit structure (Figure S1) — an effect that has not been described before
(cf. [13] where McInnes et al. state that min dist is “an essentially aesthetic
parameter”). In other words, the same conclusion seems to apply to UMAP:
heavy-tailed kernels reveal a finer cluster structure. A more in-depth study of
the relationships between the two algorithms is beyond the scope of this paper.

4 Discussion

We showed that using α < 1 in t-SNE can yield insightful visualisations that are
qualitatively different compared to the standard choice of α = 1. Crucially, the
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Fig. 7. Quality assessment of the MNIST embedding with α ∈ [0.5, 100] after 1000
gradient descent iterations with learning rate η = 1000 (scaled PCA initialisation).
The horizontal axis is on the log scale. The α values were sampled on a grid with step
0.01 for α < 1, 0.25 for 1 ≤ α ≤ 5 and 1 for α > 5. The black line shows KL divergence
(left axis) with minimum at α = 1.5. Running gradient descent with α = 0.5 for 10 000
iterations (Figure S3) lowered KL divergence down to 3.6, which was still above the
minimum value. Blue lines show neighbourhood preservation (the fraction of k nearest
neighbours of each point that remain within k nearest neighbours in the embedding,
averaged over all n = 70 000 points) for k = 10, k = 50, and k = 100.

choice of α = 1 was made in [12] for the reasons of mathematical convenience,
and we are not aware of any a priori argument in favour of α = 1. As α 6= 1
still yields a t-distribution kernel (scaled t-distribution to be precise), we prefer
not to use a separate acronym (HSSNE [18]). If needed, one can refer to t-SNE
with α < 1 as ‘heavy-tailed’ t-SNE.

We found that lowering α below 1 makes progressively finer structure appar-
ent in the visualisation and brings out smaller clusters, which — at least in the
data sets studied here — are often meaningful. In a way, α < 1 can be thought of
as a ‘magnifying glass’ for the standard t-SNE representation. We do not think
that there is one ideal value of α suitable for all data sets and all situations; in-
stead we consider it a useful adjustable parameter of t-SNE, complementary to
the perplexity. We observed a non-trivial interaction between α and perplexity:
Small vs. large perplexity makes the affinity matrix pij represent the local vs.
global structure of the data [7]. Small vs. large α makes the embedding represent
the finer vs. coarser structure of the affinity matrix. In practice, it can make sense
to treat it as a two-dimensional parameter space to explore. However, for large
data sets (n & 106), it is computationally unfeasible to substantially increase the
perplexity from its standard range of 30–100 (as it would prohibitively increase
the runtime), and so α becomes the only available parameter to adjust.

One important caveat is to be kept in mind. It is well-known that t-SNE,
especially with low perplexity, can find ‘clusters’ in pure noise, picking up random
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fluctuations in the density [17]. This can happen with α = 1 but gets exacerbated
with lower values of α. A related point concerns clustered real-life data where
separate clusters (local density peaks) can sometimes be connected by an area
of lower but non-zero density: for example, [16] argued that many pairs of their
133 clusters have intermediate cells. Our experiments demonstrate that lowering
α can make such clusters more and more isolated in the embedding, creating a
potentially misleading appearance of perfect separation (see e.g. Figure 1). In
other words, there is a trade-off between bringing out finer cluster structure and
preserving continuities between clusters.

Choosing a value of α that yields the most faithful representation of a given
data set is challenging because it is difficult to quantify ‘faithfulness’ of any given
embedding [8]. For example, for MNIST, KL divergence is minimised at α ≈ 1.5
(Figure 7), but it may not be the ideal metric to quantify the embedding quality
[6]. Indeed, we found that k-nearest neighbour (KNN) preservation [8] peaked
elsewhere: the peak for k = 10 was at α ≈ 1.0, for k = 50 at α ≈ 0.9, and
for k = 100 at α ≈ 0.8 (Figure 7). We stress that we do not think that KNN
preservation is the most appropriate metric here; our point is that different
metrics can easily disagree with each other. In general, there may not be a single
‘best’ embedding of high-dimensional data in a two-dimensional space. Rather,
by varying α, one can obtain different complementary ‘views’ of the data.

Very low values of α correspond to kernels with very wide and very flat tails,
leading to vanishing gradients and difficult convergence. We found that α = 0.5
was about the smallest value that could be safely used (Figure S2). In fact, it may
take more iterations to reach convergence for 0.5 < α < 1 compared to α = 1. As
an example, running t-SNE on MNIST with α = 0.5 for ten times longer than we
did for Figure 4C, led to the embedding expanding much further (which leads to
a slow-down of FIt-SNE interpolation) and, as a result, resolving additional sub-
clusters (Figure S3). On a related note, when using only one single MNIST digit
as an input for t-SNE with α = 0.5, the embedding also fragments into many
more clusters (Figure S4), which we hypothesise is due to the points rapidly
expanding to occupy a much larger area compared to what happens in the full
MNIST embedding (Figure S4). This can be counterbalanced by increasing the
strength of the attractive forces (Figure S4). Overall, the effect of the embedding
scale on the cluster resolution remains an open research question.

In conclusion, we have shown that adjusting the heaviness of the kernel tails
in t-SNE can be a valuable tool for data exploration and visualisation. As a
practical recommendation, we suggest to embed any given data set using various
values of α, each inducing a different level of clustering, and hence providing
insight that cannot be obtained from the standard α = 1 choice alone.12

12 Our code is available at http://github.com/berenslab/finer-tsne. The main FIt-
SNE repository at http://github.com/klugerlab/FIt-SNE was updated to support
any α (version 1.1.0).
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5 Appendix

The loss function, up to a constant term
∑
pij log pij , can be rewritten as follows:

L = −
∑
i,j

pij log qij = −
∑
i,j

pij log
wij
Z

= −
∑
i,j

pij logwij + log
∑
i,j

wij , (1)

where we took into account that
∑
pij = 1. The first term in Eq. (1) contributes

attractive forces to the gradient while the second term yields repulsive forces.
The gradient is

∂L
∂yi

= −2
∑
j

pij
1

wij

∂wij
∂yi

+ 2
∑
j

1

Z

∂wij
∂yi

(2)

= −2
∑
j

(pij − qij)
1

wij

∂wij
∂yi

. (3)

The first expression is more convenient for numeric optimisation while the second
one can be more convenient for mathematical analysis.

For the kernel

k(d) =
1

(1 + d2/α)α

the gradient of wij = k(‖yi − yj‖) is

∂wij
∂yi

= −2w
α+1
α (yi − yj). (4)

Plugging Eq. 4 into Eq. 3, we obtain the expression for the gradient [18]13

∂L
∂yi

= 4
∑
j

(pij − qij)w1/α
ij (yi − yj).

For numeric optimisation it is convenient to split this expression into the
attractive and the repulsive terms. Plugging Eq. 4 into Eq. 2, we obtain

∂L
∂yi

= Fatt + Frep

where

Fatt = 4
∑
j

pijw
1/α
ij (yi − yj)

Frep = −4
∑
j

w
α+1
α

ij /Z(yi − yj)

13 Note that the C++ Barnes-Hut t-SNE implementation [11] absorbed the factor 4
into the learning rate, and the FIt-SNE implementation [9] followed this convention.



Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations 15

It is noteworthy that the expression for Fattr has wij raised to the 1/α power,
which cancels out the fractional power in k(d). This makes the runtime of Fattr

computation unaffected by the value of α. In FIt-SNE, the sum over j in Fattr

is approximated by the sum over 3Π approximate nearest neighbours of point
i obtained using Annoy [3], where Π is the provided perplexity value. The 3Π
heuristic comes from [11]. The remaining pij values are set to zero.

The Frep can be approximated using the interpolation scheme from [9]. It
allows fast approximate computation of the sums of the form∑

jK(‖yi − yj‖)

and ∑
jK(‖yi − yj‖)yj ,

where K(·) is any smooth kernel, by using polynomial interpolation of K on a
fine grid.14 All kernels appearing in Frep are smooth.
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