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Abstract. A multi-label classifier assigns a set of labels to each data
object. A natural requirement in many end-use applications is that the
classifier also provides a well-calibrated confidence (probability) to in-
dicate the likelihood of the predicted set being correct; for example, an
application may automate high-confidence predictions while manually
verifying low-confidence predictions. The simplest multi-label classifier,
called Binary Relevance (BR), applies one binary classifier to each label
independently and takes the product of the individual label probabilities
as the overall label-set probability (confidence). Despite its many known
drawbacks, such as generating suboptimal predictions and poorly cali-
brated confidence scores, BR is widely used in practice due to its speed
and simplicity. We seek in this work to improve both BR’s confidence
estimation and prediction through a post calibration and reranking pro-
cedure. We take the BR predicted set of labels and its product score
as features, extract more features from the prediction itself to capture
label constraints, and apply Gradient Boosted Trees (GB) as a calibrator
to map these features into a calibrated confidence score. GB not only
produces well-calibrated scores (aligned with accuracy and sharp), but
also models label interactions, correcting a critical flaw in BR. We fur-
ther show that reranking label sets by the new calibrated confidence
makes accurate set predictions on par with state-of-the-art multi-label
classifiers—yet calibrated, simpler, and faster.

Keywords: Multi-label classification · Confidence score calibration ·
Reranking

1 Introduction

Multi-label classification is an important machine learning task wherein one
predicts a subset of labels to associate with a given object. For example, an
article can belong to multiple categories; an image can be associated with several
tags; in medical billing, a patient report is annotated with multiple diagnosis
codes. Formally, in a multi-label classification problem, we are given a set of label
candidates Y = {1, 2, ..., L}. Every data point x ∈ RD matches a subset of labels
y ⊆ Y , which is typically written in the form of a binary vector y ∈ {0, 1}L, with
each bit y` indicating the presence or absence of the corresponding label. The
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goal of learning is to build a classifier h : RD → {0, 1}L which maps an instance
to a subset of labels. The predicted label subset can be of arbitrary size.

The simplest approach to multi-label classification is to apply one binary
classifier (e.g., binary logistic regression or support vector machine) to predict
each label separately. This approach is called binary relevance (BR) [35] and is
widely used due to its simplicity and speed. BR’s training time grows linearly
with the number of labels, which is considerably lower than many methods that
seek to model label dependencies, and this makes BR run reasonably fast on
commonly used datasets. (Admittedly, BR may still fail to scale to datasets with
extremely large number of labels, in which case specially designed multi-label
classifiers with sub-linear time complexity should be employed instead. But in
this paper, we shall not consider such extreme multi-label classification problem.)

BR has two well-known drawbacks. First, BR neglects label dependencies
and this often leads to prediction errors: some BR predictions are incomplete,
such as tagging cat but not animal for an image, and some are conflicting,
such as predicting both the code Pain in left knee and the code Pain in

unspecified knee for a medical note. Second, the confidence score or probability
(we shall use “confidence score” and “probability” interchangeably) BR associates
to its overall set prediction y is often misleading, or uncalibrated. BR computes
the overall set prediction confidence score as the product of the individual label
confidence scores, i.e., p(y|x) =

∏L
l=1 p(yl|x). This overall confidence score often

does not reflect reality: among all the set predictions on which BR claims to
have roughly 80% confidence, maybe only 60% of them are actually correct (a
predicted set is considered “correct” if it matches the ground truth set exactly).
Having such uncalibrated prediction confidence makes it hard to integrate BR
directly into a decision making pipeline where not only the predictions but also
the confidence scores are used in downstream tasks.

In this work, we seek to address these two issues associated with BR. We
first improve the BR set prediction confidence scores though a feature-based post
calibration procedure to make confidence scores indicative of the true set accuracy
(described in Section 2). The features considered in calibration capture label
dependencies that have otherwise been missing in standard BR. Next we improve
BR’s set prediction accuracy by reranking BR’s prediction candidates using the
new calibrated confidence scores (described in Section 3). There exist multi-label
methods that avoid the label independence assumption from the beginning and
perform joint probability estimations [30, 7, 22, 13, 9, 23]; such methods often
require more complex training and inference procedures. In this paper we show
that BR base model together with our proposed post calibration/reranking
makes accurate set predictions on par with (or better than) these state-of-the-art
multi-label methods —yet calibrated, simpler, and faster.

2 Calibrate BR Multi-label Predictions

We first address BR’s confidence mis-calibration issue. There are two types of
confidence scores in BR: the confidence of an individual label prediction p(yl|x),
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and the confidence of the entire predicted set p(y|x). In this work we take for
granted that the individual label scores have already been calibrated, which
can be easily done with established univariate calibration procedures such as
isotonic regression [31] or Platt scaling [39, 28]. We are concerned here with the
set confidence calibration; note that calibrating all individual label confidence
scores does not automatically calibrate set prediction confidence scores.

2.1 Metrics for Calibration: Alignment Error, Sharpness and MSE

To describe our calibration method, we need the following formal definitions:
• c(y) ∈ [0, 1] is the confidence score associated with the set prediction y;
• v(y) ∈ {0, 1} is the 0/1 correctness of set prediction y;
• e(c) = p[v(y) = 1|c(y) = c] is the average set accuracy among all predictions
whose confidence is c. In practice, this is estimated by bucketing predictions
based on confidence scores and computing the average accuracy for each bucket.

We use the following standard metrics for calibration [21]:
• Alignment error, defined as Ey[e(c(y)) − c(y)]2, measures, on average over
all predictions, the discrepancy between the claimed confidence and the actual
accuracy. The smaller the better.
• Sharpness, defined as Vary[e(c(y))], measures how widely spread the confidence
scores are. The bigger the better.
• The mean squared error (MSE, also called Brier Score) defined as Ey[(v(y)−
c(y))2], measures the difference between the confidence and the actual 0/1 cor-
rectness. It can be decomposed into alignment error, sharpness and an irreducible
constant “uncertainty” due to only classification (not calibration) error [21]:

Ey[(v(y)− c(y))2]︸ ︷︷ ︸
MSE

= Vary[v(y)]︸ ︷︷ ︸
uncertainty

−Vary[e(c(y))]︸ ︷︷ ︸
sharpness

+Ey[(e(c(y))− c(y))2]︸ ︷︷ ︸
alignment error

(1)

Alignment error and sharpness capture two orthogonal aspects of confidence
calibration. A small alignment error implies that the confidence score is well
aligned with the actual accuracy. However, small alignment error, alone, is not
meaningful: the calibration can trivially achieve zero alignment error while being
completely uninformative by assigning to all predictions the same confidence
score, which is the average accuracy among all predictions on the dataset. A
useful calibrator should also separate good predictions from bad ones as much as
possible by assigning very different confidence scores to them. In other words, a
good calibrator should simultaneously minimize alignment error and maximize
sharpness. This can be achieved by minimizing MSE, thus MSE makes a natural
objective for calibrator training. Minimizing MSE leads to a standard regression
task: one can simply train a regressor c that maps each prediction y to its binary
correctness v(y). Note that training a calibrator by optimizing MSE does not
require estimation of e(c(y)), but evaluating its sharpness and alignment error
does. Estimating e(c(y)) by bucketing predictions has some subtle issues, as we
shall explain later when we present evaluation results in Section 2.4.



4 C. Li et al.

2.2 Features for Calibration

Besides the training objective, we also need to decide the parametric form of the
calibrator and the features to be used. In order to explain the choices we make,
we shall use the calibration on WISE dataset1 as a running example.
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Fig. 1: Multi-label set prediction confidence vs. set prediction accuracy on the
WISE dataset. In all sub-figures, each dot represents a group of 100 set predictions
with similar confidence scores. The average confidence score in the group is used
as x-coordinate, and the average prediction accuracy is used as y-coordinate. (a)
BR predictions with the original BR confidence scores. (e) Trivial calibration
that gives all predictions the same confidence score which is the overall set
accuracy on the dataset. (b) Isotonic regression (the solid line) trained on all
predictions. (f) Predictions with isotonic regression calibrated confidence. (c)
Break down all predictions by the set cardinality and train a separate isotonic
regression (the solid line) for each cardinality. (g) Predictions with confidence
calibrated by cardinality-based isotonic regressions. (d) Group all predictions
into 3 categories by the popularity of predicted label combination in the training
data ground truth (popular=the predicted label combination appears at least
100 times; rare=the predicted label combination appears less than 100 times;
new=the predicted label combination does not appear at all in training data),
and train a separate isotonic regression (the solid line) for each category. (h)
Predictions with confidence calibrated by popularity-based isotonic regressions.
To simplify the presentation, all calibrators are trained and evaluated on the
same data.

1 https://www.kaggle.com/c/wise-2014/data
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Let us start by visualizing BR’s predictions together with its original set
prediction confidence calculated as p(y|x) =

∏L
l=1 p(yl|x), in which the individual

label probabilities p(yl|x) have been well-calibrated by standard isotonic regression
procedures. We group about every 100 predictions with similar confidence scores
into a bucket, and plot those buckets as dots treating the average confidence
in the group as the x-coordinate and treating the average prediction accuracy
in the group as the y-coordinate2. Figure 1a shows that the set confidence
scores computed this way are not calibrated even when the individual label
confidence scores have been well-calibrated. Well calibrated set predictions should
approximately lie on the diagonal line. In the figure, predictions above the
diagonal are under-confident and those below the diagonal are over-confident.

The simplest way to improve the alignment is to fit another isotonic regression
to these dots (see Figure 1b), and use the regression outputs as the new calibrated
set prediction confidence scores (Figure 1f). This additional calibration makes
the dots align with the diagonal much better. Quantitatively, the alignment error
has been reduced to a small number. However, as mentioned earlier, having a
small alignment error alone is not enough, as a trivial calibrator that outputs a
constant would achieve zero alignment error (Figure 1e). One would also need to
maximize the sharpness of the scores, by assigning very different scores to good
predictions and bad predictions. Figure 1c and 1d show that there are features
that can help the calibrator better separate good predictions from bad ones.

Figure 1c breaks down all predictions by the cardinality of the predicted
set (i.e. the number of labels predicted). If we look at all predictions with
uncalibrated confidence around 0.7, their average accuracy is around 0.58 (as
shown in Figure 1b). However, Figure 1c shows that those singleton predictions
have accuracy around 0.8; those predictions containing 2 labels only have accuracy
about 0.54; and those empty set predictions have 0 accuracy (on this particular
dataset, the ground truth set is always non-empty). Clearly, predictions with
different cardinalities require different calibration mappings from the uncalibrated
confidence to the actual accuracy. Fitting a separate isotonic regression for each
cardinality results in Figure 1g, which is a clear improvement over the calibration
without cardinality (Figure 1f); thus cardinality feature greatly increases sharpness
and reduces MSE. Visually, more points have moved towards left and right ends.

Another useful feature is the popularity of predicted label set in the training
data (i.e., prior probability). Between two predictions with the same uncalibrated
BR confidence, the one that is more popular often has a higher chance of being
correct, as shown in Figure 1d. One can quantize the prior probability into
intervals and train separate isotonic regressions for different intervals. Figure 1h
shows that this also performs better than having only one isotonic regression.

Both set cardinality and prior probability are features defined on the whole
label set, rather than individual labels. Such features capture constraints and
dependencies among labels, which were not originally considered by BR. Therefore

2 This particular way of bucketing is only for visualization purpose; when we evaluate
calibration quantitatively we follow the standard practice of using 10 equal-width
buckets.
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these features supplement BR’s own prediction score and allow the calibrator to
make better overall judgments on the predicted set. There can be other features
that help the calibrator better judge set predictions. In order to incorporate
arbitrary number of features and avoid manual partitioning of the data and
training separate calibrators (which quickly becomes infeasible as the number
of features grows), a general multi-variate regressor should be employed. The
multi-variate extension of isotonic regression exists [32], but it is not well suited
to our problem because some features such as cardinality do not have a monotonic
relationship with the calibrated confidence (see Figure 1c). [21] proposes KNN
and regression trees as calibrators for general structured prediction problem.

2.3 Calibrator Model Training

In this work, we choose Gradient Boosted Trees (GB) [11] as the calibrator
model. Similar to regression trees, GB as a multi-variate regressor automatically
partitions the prediction’s feature space into regions and outputs (approximately)
the average prediction accuracy in each region as the calibrated confidence score.
GB often produces smoother output than trees and generalizes better. GB is
also very powerful in modeling complex feature interactions automatically by
building many trees on top of the features. To leverage its power we also use the
binary representation of the set prediction y itself as features for GB. This way
GB can discover additional rules concerning certain label interactions that are
not described by the manually designed features (for example, “if two conflicting
labels A and B are both predicted, the prediction is never correct, therefore
lower the confidence score”). It is also possible to use instance features x during
calibration, but we do not find it helpful because BR was already built on x.

There are two commonly used GB variants [11]. The first variant, GB-MSE,
uses the tree ensemble score as the output, and MSE as the training objective.
The second variant, GB-KL, adds a sigmoid transformation to the ensemble score
and uses KL-divergence as the training objective. GB-MSE has the advantage
of directly minimizing MSE, which matches the evaluation metric used for
calibration (see section 2.1). But it has the disadvantage that its output is not
bounded between 0 and 1 and one has to clip its output in order to treat that as
a confidence score.

GB-KL has the advantage of providing bounded output, but its training
objective does not directly match the evaluation metric used for calibration;
note, however, that minimizing KL-divergence also encourages the model output
to match the average prediction accuracy, hence achieves the calibration effect.
It may appear that one could get the best of both worlds by having sigmoid
transformation and MSE training objective at the same time. Unfortunately,
adding sigmoid makes MSE a non-convex function of the ensemble scores, thus
hard to optimize. In this paper, we choose GB-MSE as our GB calibrator and
shall simply call it GB from now on. In supplementary material, we show that
GB-KL has very similar performance.

Each BR set prediction is transformed to a feature vector (containing orig-
inal BR confidence score, set cardinality, set prior probability, and set binary
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representation) and the binary correctness of the prediction is used as the re-
gression target. Since the goal of GB calibrator is to objectively evaluate BR’s
prediction accuracy, it is critical that the calibration data to be disjoint from the
BR classifier training data. Otherwise, when BR over-fits its training data, the
calibrator will see over-optimistic results on the same data and learn to generate
over-confident scores. Similarly, it is also necessary to further separate the label
calibration data and the set calibration data, since the product of the calibrated
label probabilities is used as input to the set calibrator training.

Imposing Partial Monotonicity Imposing monotonicity is a standard prac-
tice in univariate calibration methods such as isotonic regression [31] and Platt
scaling [39, 28] as it avoids over-fitting and leads to better interpretability. Im-
posing (partial) monotonicity for a multi-variate calibrator is more challenging.
Certain features considered in calibration are expected to be monotonically re-
lated to the confidence. For example, the confidence should always increase with
the popularity (prior probability) of the predicted set, if all other features of the
prediction are unchanged. The same is true for BR score. The rest of the features,
including the cardinality of the set and the binary representation of the set, do
not have monotonic relations with confidence. Therefore the calibration function
is partially monotonic. We have done additional experiments on imposing partial
monotonicity for the GB calibrator but did not observe significant improvement
(details and experiment results are in supplementary material).

2.4 Calibration Results

Table 1: Datasets characteristics; label sets =
number of label combinations in training set;
cardinality = average number of labels per in-
stance; inst/label = the average number of training
instances per label. Datasets are obtained from
http://mulan.sourceforge.net/datasets-

mlc.html, http://cocodataset.org and
https://www.kaggle.com/c/wise-2014/data

Dataset BIBTEX OHSUMED RCV1 TMC WISE MSCOCO
domain bkmark medical news reports articles image
labels 159 23 103 22 203 80

label sets 2,173 968 622 1,104 2,782 19,597
features 1,836 12,639 47,236 49,060 301,561 4,096
instances 7,395 13,929 6,000 28,596 48,643 123,287

cardinality 2.40 1.68 3.21 2.16 1.45 2.90
inst/label 89 811 150 2,244 278 3,572

We test the proposed GB
calibrator for BR set pre-
dictions on 6 commonly
used multi-label datasets
(see Table 1 for details).
Each dataset is randomly
split into training, cali-
bration, validation and
test subsets. BR model
with logistic regression
base learners is trained
on training data; isotonic
regression label calibra-
tors and GB set calibra-
tors are trained on (dif-
ferent parts of) calibra-
tion data. All hyper pa-
rameters in BR and cali-
brators are tuned on val-
idation data. Calibration
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results are reported on
test data.

For comparison, we consider the following calibrators:

• uncalib: use the uncalibrated BR probability as it is;
• isotonic: calibrate the BR probability with isotonic regression;
• card isotonic: for each label set cardinality, train one isotonic regression;
• tree: use the features considered by GB, train a single regression tree.

To make a fair comparison, for all methods, individual label probabilities have
already been calibrated by isotonic regressions. We focus on their abilities to
calibrate set predictions. BR prediction is made by thresholding each label’s
probability (calibrated by isotonic regression) at 0.5. This corresponds to the set
with the highest BR score.

Table 2: BR prediction calibration performance in terms of MSE (the smaller
the better) and sharpness (the bigger the better). Bolded numbers are the best.

Dataset uncentainty
uncalib isotonic card isotonic tree GB

MSE sharp MSE sharp MSE sharp MSE sharp MSE sharp

BIBTEX 0.133 0.193 0.007 0.140 0.002 0.109 0.038 0.086 0.065 0.068 0.072
OHSUMED 0.232 0.226 0.015 0.221 0.013 0.182 0.051 0.211 0.039 0.189 0.047
RCV1 0.247 0.175 0.077 0.175 0.075 0.159 0.093 0.134 0.129 0.123 0.126
TMC 0.212 0.192 0.019 0.192 0.020 0.192 0.022 0.194 0.029 0.180 0.032
WISE 0.249 0.252 0.017 0.234 0.017 0.151 0.098 0.166 0.093 0.147 0.102
MSCOCO 0.227 0.158 0.075 0.151 0.075 0.150 0.076 0.163 0.070 0.143 0.083

The evaluation metrics we use are MSE, sharpness and alignment error, as
described in Section 2.1. Following the standard practice, we use 10 equal-width
buckets to estimate sharpness and alignment error. One issue with evaluation by
bucketing is that using different number of buckets leads to different estimations of
alignment error and sharpness (but not MSE and uncertainty, whose computations
do not depends on bucketing). In fact, increasing the number of buckets will
increase both the estimated alignment error and sharpness by the same amount,
due to Eq 1. Using 10 buckets often produces negligible alignment error (relative
to MSE), and the comparison effectively focuses on sharpness. This amounts to
maximizing sharpness subject to a very small alignment error [14], which is often
a reasonable goal in practice. All calibrators are able to achieve small alignment
error (on the order of 10−3 and contributing to less than 10% of the MSE), so
we do not report that. The results are summarized in Table 2. All calibrators
improve upon the BR uncalibrated probabilities. Our GB calibrator achieves the
overall best MSE and sharpness calibration performance, due to use of additional
features extracted from set predictions.
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3 Rerank Multi-label Predictions

Now we aim to improve BR’s prediction accuracy, by fixing some of the prediction
mistakes BR made due to ignoring label dependencies. Our solution is based on
the calibrator we just developed. Traditionally, the only role of a calibrator is to
map an uncalibrated confidence score to a calibrated confidence score. In that
sense the calibrator usually does not affect the classification, only the confidence.
In fact, popular univariate calibrators such as isotonic regression and Platt scaling
implement monotonic functions, thus preserve the ranking/argmax of predictions.
For our multi-variate GB calibrator, however, this is not the case. Even if we
constrain the calibrated confidence to be monotonically increasing with the BR
prediction scores, there are still other features that may affect the ranking; in
particular the argmax predictions before and after calibration might be different
y sets. If indeed different, the prediction based on calibrated confidence takes
into account label dependencies and other constraints (which BR does not), and
is more likely to be the correct set (even when the calibrated confidence is not
very high in absolute terms). Table 3 shows two such examples on the MSCOCO
image dataset. Therefore we can also use GB as a multi-label wrapper on top of
BR to rerank its predictions. We name this method as BR-rerank .

To do so, we use a two stage prediction pipeline. For each test instance x,
we first list the top K label set candidates y by highest BR uncalibrated scores.
This can be done efficiently using a dynamic programming procedure which
takes advantage of the label independence assumption made in BR, described
in [23], and included in the supplementary material of this paper for the sake
of completeness. Although the label independence assumption does not hold in
practice, we find empirically that when K is reasonably large (e.g., K = 50), the
correct y is often included in the top-K list. The chance that the correct answer
is included in the top-K list is commonly called “oracle accuracy”, and it is an
upper bound of the final prediction accuracy. Empirically, we observe the oracle
accuracy to be much higher than the final prediction accuracy, indicating that
the candidate generation stage is not a bottleneck of final performance.

Prediction stage two: send the top set candidates with their scores and addi-
tional features to the GB calibrator, and select the one with the highest calibrated
confidence as the final prediction. The calibrator has to be trained on more than
top-1 BR candidates (on a separate calibration dataset) to evaluate correctly
prediction candidates, so we train the GB calibrator on top-K candidates.

3.1 Conceptual Comparison with Related Multi-label Classifiers

Although the proposed BR-rerank classifier has a very simple design, it has
some advantages over many existing multi-label classifiers. Here we make some
conceptual comparisons between BR-rerank and related multi-label classifiers.

BR-rerank can be seen as a stacking method in which a stage-1 model provides
initial estimations and a stage-2 model uses these estimations as input and makes
the final decision. There are other stacking methods proposed in the literature,
and the two most well-known ones are called 2BR [15, 34] and DBR [25]. The
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Table 3: Predictions made by standard BR vs predictions made by reranking
BR predictions based on calibrated confidence. For each image, the top row
shows the top-5 set prediction candidates generated by BR. Numbers after
“BR” are uncalibrated confidence. Numbers after “BR-rerank” are calibrated
confidence. Top image: BR predicts {person,baseball bat} with confidence
0.58. BR-rerank predicts the correct set {person, baseball bat, baseball

glove} with confidence 0.17. Bottom image: BR predicts {person, remote,

toothbrush} with confidence 0.70. BR-rerank predicts the correct set {person,
remote} with confidence 0.18.

person, person, person, person, person,

baseball bat baseball bat, handbag, sports ball, handbag,

y candidates baseball glove baseball bat baseball bat baseball bat,

baseball glove

BR 0.58* 0.35 0.02 0.02 0.01

BR-rerank 0.16 0.17* 0.04 0.08 0.03

person, person, person, person person,

remote, remote toothbrush tennis racket,

y candidates toothbrush remote,

toothbrush

BR 0.70* 0.24 0.03 0.01 0.01

BR-rerank 0.16 0.18* 0.05 0.02 0.01

stage-1 models in 2BR and DBR are also BR models just as in BR-rerank. The
stage-2 models in 2BR and DBR work differently. In 2BR, the stage-2 model
predicts each label ` with a separate binary classifier which takes as input the
original instance feature vector x as well as all label probabilities predicted
by the stage-1 model. In DBR, the stage-2 model predicts each label ` with a
separate binary classifier which takes as input the original instance feature vector
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x as well as the binary absence/presence information of all other labels. The
absence/presence of label ` itself is not part of the input to avoid learning a trivial
mapping. During training, the absence/presence information is obtained from the
ground truth; during prediction, it is obtained from the stage-1 model’s prediction.
Clearly for DBR there is some inconsistency on how stage-2 inputs are obtained.
BR-rerank and 2BR do not suffer from such inconsistency. All three stacking
methods BR-rerank, 2BR, and DBR try to incorporate label dependencies into
final classification. However, both 2BR and DBR have a critical flaw: when their
stage-2 models make the final decision for a particular label, they do not really
take into account the final decisions made for other labels by the stage-2 model;
they instead only consider the initial estimations on other labels made by the
stage-1 model, which can be quite different. As a result, the final set predictions
made by 2BR and DBR may not respect the label dependencies/constraints
these models have learned. By contrast, the stage-2 model in BR-rerank directly
evaluates the final set prediction (based on its binary representation and other
extracted features) to make sure that the final set prediction satisfies the desired
label dependencies/constraints. For example, in the RCV1 dataset, each instance
has at least one label. But DBR predicted the empty set on 6% of the test
instances. By contrast, BR-rerank never predicted empty set on this dataset.

Many multi-label methods avoid the label independence assumption made in
BR and model the joint distribution p(y|x) in more principled ways. Examples
include Conditional Random Fields (CRF) [13], Conditional Bernoulli Mixtures
(CBM) [23], and Probabilistic Classifier Chains (PCC) [30, 7, 22, 24]. Despite the
joint estimation formulation, CRF, CBM, and PCC in practice often produce
over-confident set prediction confidence scores, due to overfitting. Their prediction
confidence must also be post-calibrated.

The pair-wise CRF model [13] captures pairwise label interactions by estimat-
ing 4 parameters for each label pair. However, because the model needs to assign
dedicated parameters to different label combinations, modeling higher order label
dependencies becomes infeasible. The BR-rerank approach we propose relies on
boosted trees to automatically build high order interactions as tree learns their
splits on the binary representation of the label set – there is no need to allocate
parameters in advance. There is another CRF model designed specifically to
capture exclusive or hierarchical label relations [9]; this works only when the
label dependency graph is strict and a priori known.

CBM is a latent variable model and represents the joint as a mixture of binary
relevance models. However, it is hard to directly control the kinds of dependencies
CBM learns, or to enforce constraints in the prediction. For example, CBM often
predicts the empty set even on dataset where empty prediction is not allowed.
There is no easy way to enforce the cardinality constraint in CBM.

PCC decomposes the joint p(y|x) into a product of conditional probabilities
p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1), and reduces a multi-label problem to
L binary problems, each of which learns a new label given all previous labels.
However, different label chaining orders can lead to different results, and to find
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the best order is often a challenge. In BR-rerank, all labels are treated as features
in the GB calibrator training and they are completely symmetric.

The Structured Prediction Energy Network (SPEN) [1] uses deep neural
networks to efficiently encode arbitrary relations between labels, which to large
degree avoids parameterization issue associated with pair-wise CRF, but it cannot
generate a confidence score for its MAP prediction as computing the normalization
constant is intractable. The Predict-and-Constraint method (PC) [2] specifically
handles cardinality constraint (but not other label constraints or relations) during
learning and prediction. Deep value network (DVN) [18] trains a neural network
to evaluate prediction candidates and then uses back-propagation to find the
prediction that leads to the maximum score. The idea is similar to our BR-rerank
idea. The difference is: DVN could only use the binary encoding of the label set,
but not any higher level features extracted from the label set, such as cardinality
and prior set probability. That is because its gradient based inference makes it
very difficult to directly incorporate such features. There are methods that seek
to rank labels [3, 12]. Our method differs from theirs in that we rank label sets
as opposed to individual labels, and we take into account label dependencies in
the label set.

3.2 Classification Results

We test the proposed BR-rerank classifier on 6 popular multi-label datasets (see
Table 1 for details). All datasets used in experiments contain at least a few
thousands instances. We do not take datasets with only a few hundred instances
as their testing performance tends to be quite unstable. We also do not consider
datasets with extremely large number of labels as our method is not designed for
extreme classification (our method aims to maximize set accuracy but on extreme
data it is very unlikely to predict the entire label set correctly due to large label set
cardinality and annotation noise). We compare BR-rerank with many other well-
known multi-label methods: Binary Relevance (BR) [35], 2BR [15, 34], DBR [25],
pair-wise Conditional Random Field (CRF) [13], Conditional Bernoulli Mixture
(CBM) [23], Probabilistic Classifier Chain (PCC) [30], Structured Prediction En-
ergy Network (SPEN) [1], PD-Sparse (PDS) [38], Predict-and-Constrain (PC) [2],
Deep value network (DVN) [18], Multi-label K-nearest neighbors (ML-KNN) [41],
and Random k-label-sets (RAKEL) [36].

For evaluation, we report set accuracy and instance F1, defined as:

set accuracy =
1

N

N∑
n=1

I(y(n) = ŷ(n)); instance F1 =
1

N

N∑
n=1

2
∑L

l=1 y
(n)
l ŷ

(n)
l∑L

l=1 y
(n)
l +

∑L
l=1 ŷ

(n)
l

,

where y(n) and ŷ(n) are the ground truth and predicted label set for the n-th in-
stance, and I(y(n) = ŷ(n)) returns 1 when the prediction is perfect and 0 otherwise.

Table 5: Training time of different methods,
measured in seconds. All algorithms run multi-
threaded on a server with 56 cores.

Dataset BIBT OHSUM RCV1 TMC WISE MSCO
BR 4 3 7 8 80 1380

BR-rerank 9 6 10 11 88 1393
CBM 64 210 70 224 1320 8520
CRF 353 268 1223 771 16363 14760

To make a fair comparison,
we use logistic regressions as the
underlying learners for BR as
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Table 4: Prediction performance in terms of set accuracy (top) and instance
F1 (bottom). Numbers are shown as percentages. Bold numbers are the best
ones on each dataset. “-” means the method could not finish within 24 hours
on a server with 56 cores and 256G RAM or 4 NVIDIA Tesla V100 GPUs. The
ranking indicates for each method, on average over datasets, what position its
performance is (lower is better). Our BR-rerank has the best average ranking on
both measures. Note also that BR is not the worst as one might naively assume.
Hyper parameters for all methods have been tuned on validation set.
Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC Rakel MLKNN

BIBTEX 16.6 21.5 16.1 20.2 22.9 23.3 14.8 16.1 16.2 20.3 21.4 18.3 8.4
OHSUMED 36.6 42.0 37.5 37.6 40.5 40.4 29.1 34.8 18.6 29.5 38.0 39.3 25.4
RCV1 44.5 53.2 42.3 45.8 55.3 53.8 27.5 40.8 13.7 39.7 48.7 46.0 46.2
TMC 30.4 33.3 32.1 31.7 30.8 28.2 26.7 23.4 20.3 23.0 31.3 27.6 18.9
WISE 52.9 60.5 51.8 55.8 61.0 46.4 - 52.4 28.3 - 55.9 3.5 2.4
MSCOCO 34.7 35.9 33.7 32.0 31.1 35.1 34.1 25.0 29.9 31.1 32.1 32.6 29.1

ranking 6.3 1.8 6.7 5.7 3.3 3.8 10.0 9.8 11.2 10.0 4.5 6.8 11.0

Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC Rakel MLKNN

BIBTEX 35.9 42.2 36.7 40.1 45.3 46.2 38.6 40.4 47.3 47.5 40.9 38.3 23.0
OHSUMED 62.9 67.5 62.9 61.5 67.2 65.6 58.8 66.4 60.0 60.5 61.7 62.3 48.6
RCV1 77.0 78.8 77.5 72.8 80.3 75.0 66.5 76.7 36.3 71.7 75.6 76.1 72.3
TMC 65.8 66.8 67.9 66.1 65.2 64.4 66.2 64.0 65.5 61.7 64.9 63.6 52.2
WISE 68.3 75.4 69.1 69.9 76.0 60.7 - 73.6 62.3 - 69.7 6.2 5.6
MSCOCO 73.0 73.2 72.6 69.6 70.0 73.9 73.2 64.8 72.7 72.7 69.6 71.7 68.2

ranking 6.3 2.5 5.5 7.3 4.0 5.7 8.3 6.8 7.5 8.8 7.5 8.7 12.0

well as the stage-1 models in BR-
rerank, 2BR and DBR. We use
gradient boosting as the under-
lying learners in PCC as well as
the stage-2 models in BR-rerank,
2BR and DBR. Each dataset is
randomly split into training, val-
idation and test subsets. All clas-
sifiers are trained on the training
set, with hyper parameters tuned on validation set. Supplementary material con-
tains implementations and hyper parameters tuning details. For BR-rerank and
2BR, since the stage-2 model uses stage-1 model’s out-of-sample prediction as
input, the stage-1 model and stage-2 model are trained on different parts of the
training data. For DBR, since the stage-2 model training only takes the ground
truth labels as input, both stage-1 model and stage-2 model are trained on the
whole training set.

Test performance is reported in Table 4. As expected, by reranking BR-
independent-prediction candidates, BR-rerank outperforms BR significantly. We
also observe that generally BR-rerank only needs to rerank the top-10 candidates
from BR in order to achieve the best performance (supplementary material
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shows how its performance changes as K increases). On each dataset, we rank
all algorithms by performance, and report each algorithm’s average ranking
across all datasets. BR-rerank has the best average ranking with both metrics,
followed by CBM and CRF. We emphasize that with slightly better performance,
BR-rerank is noticeably simpler to use than CBM and CRF. CBM and CRF
require implementing dedicated training and prediction procedures, while BR-
rerank can be ran by simply combining existing machine learning libraries such
as LIBLINEAR [10] for BR and Xgboost [4] for GB. BR-rerank is also much
faster than CBM and CRF. Its running time is determined mostly by its stage
one, the BR classifier training. See Table 5 for a comparison.

4 Other Related Work and Discussion

There are many other approaches to multi-label classification. Some of them
focus on exploiting label structures [27, 19, 6, 42]. Several approaches adapt ex-
isting machine learning models, such as Bayesian network [40], recurrent neural
networks [26, 29], and determinantal point process [37].

The idea of first generating prediction candidates and then reranking them
using richer features has been considered in several natural language processing
tasks, including parsing [8] and machine translation [33]. Here we show that the
reranking idea, with properly designed models and features, is well suited for
multi-label classification as well. Generative Adversarial Nets (GANs) [16] also
employ two models, one for generating samples and one for judging these samples.
GANs are usually trained in an unsupervised fashion, and are mainly used for
generating new samples. By contrast, our BR-rerank is trained in supervised
fashion, and its main goal is to do classification. Also the two models in GANs
are trained simultaneously, while the two models in BR-rerank are trained in
separate stages.

Besides isotonic regression and Platt scaling, there are also some recent devel-
opments on binary, multi-class, and structured prediction calibration methods [20,
17, 21, 5]. Our work instead focuses on how to design the calibrator model and fea-
tures for the BR multi-label classifier and how to take advantage of the calibrated
confidence to get better multi-label predictions.

5 Conclusion

We improve BR’s confidence estimation and prediction through a simple post
calibration and reranking procedure. We take the BR predicted set of labels
and its uncalibrated confidence as features, extract more features from the
prediction that capture label constraints, such as the label set cardinality and
prior probability, and apply gradient boosted trees (GB) as a calibrator to map the
features to a better-calibrated confidence score. GB not only uses these manually
designed features but also builds trees on binary label features to automatically
model label interactions. This allows the calibrator to better separate good
predictions from bad ones, yielding new confidence scores that are not only well
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aligned with accuracy but also sharp. We further demonstrate that using the
new confidence scores we are able to rerank BR’s prediction candidates to the
point it outperforms state-of-the-art classifiers. Our code and data are available
at https://github.com/cheng-li/pyramid.
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25. Montañes, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier,
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