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Abstract. Gaussian processes (GPs) are an elegant Bayesian approach
to model an unknown function. The choice of the kernel characterizes one’s
assumption on how the unknown function autocovaries. It is a core aspect
of a GP design, since the posterior distribution can significantly vary for
different kernels. The spectral mixture (SM) kernel is derived by modelling
a spectral density - the Fourier transform of a kernel - with a linear
mixture of Gaussian components. As such, the SM kernel cannot model
dependencies between components. In this paper we use cross convolution
to model dependencies between components and derive a new kernel
called Generalized Convolution Spectral Mixture (GCSM). Experimental
analysis of GCSM on synthetic and real-life datasets indicates the benefit
of modeling dependencies between components for reducing uncertainty
and for improving performance in extrapolation tasks.

Keywords: Gaussian processes · spectral mixture · convolution · depen-
dency · uncertainty

1 Introduction

Gaussian processes (GPs) provide regression models where a posterior distribution
over the unknown function is maintained as evidence is accumulated. This allows
GPs to learn complex functions when a large amount of evidence is available, and
it makes them robust against overfitting in the presence of little evidence. GPs
can model a large class of phenomena through the choice of the kernel, which
characterizes one’s assumption on how the unknown function autocovaries [18,17].
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The choice of the kernel is a core aspect of a GP design, since the posterior
distribution can significantly vary for different kernels. In particular, in [24]
a flexible kernel called Spectral Mixture (SM) was defined, by modelings the
kernel’s spectrum with a mixture of Gaussians. An SM kernel can be represented
by a sum of components, and can be derived from Bochner’s theorem as the
inverse Fourier Transform (FT) of its corresponding spectral density. SM kernels
assume mutually independence of its components [24,26,25].

Here we propose a generalization of SM kernels that explicitly incorporates
dependencies between components. We use cross convolution to model dependen-
cies between components, and derive a new kernel called Generalized Convolution
Spectral Mixture (GCSM) kernel. The number of hyper-parameters remains
equal to that of SM, and there is no increase in computational complexity. A
stochastic variational inference technique is used to perform scalable inference.
In the proposed framework, GCSM without cross components (that is, by only
considering auto-convolution of base components) reduces to the SM kernel.

We assess the performance of GCSM kernels through extensive experiments
on real-life datasets. The results show that GCSM is able to capture dependence
structure in time series and multi-dimensional data containing correlated pat-
terns. Furthermore, we show the benefits of the proposed kernel for reducing
uncertainty, overestimation and underestimation in extrapolation tasks. Our
main contributions can be summarized as follows:

– a new spectral mixture kernel that captures dependencies between compo-
nents;

– two metrics, posterior correlation (see Equation 10)) and learned dependency
(see Equation 19) to analyze intrinsic dependencies between components in
the SM kernel and dependencies captured by our kernel, respectively;

– an extensive comparison between the proposed GCSM and other SM kernels
in terms of spectral density, covariance, posterior predictive density and
sampling, as well as in terms of performance gain.

The remainder of this paper is organized as follows. We start by giving a
background on GPs, SM kernels, and we briefly describe related work. Next,
we introduce the GCSM kernel, and discuss the differences between the GCSM
and SM kernels. Then we describe the experimental setting and show results on
synthetic and real-world datasets. We conclude with a summary and discussion
on future work.

2 Background

A GP is any distribution over functions such that any finite set of function
values has a joint Gaussian distribution. A GP model, before conditioning on
the data, is completely specified by its mean function m(x) = E(f(x)) and
its covariance function (also called kernel) k(x,x′) = cov(f(x), f(x′)) for input
vectors x,x′ ∈ RP . It is common practice to assume that the mean function is
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simply zero everywhere, since uncertainty about the mean function can be taken
into account by adding an extra term to the kernel (cf. e.g. [18]).

The kernel induces a positive definite covariance matrix K = k(X,X) of the
training locations set X. For a regression task [18], by choosing a kernel and
inferring its hyper-parameters Θ, we can predict the unknown function value ỹ∗

and its variance V[ỹ∗] (the uncertainty) for a test point x∗ as follows:

ỹ∗ = k∗>(K + σ2
nI)−1y (1)

V[ỹ∗] = k∗∗ − k∗>(K + σ2
nI)−1k∗ (2)

where k∗∗ = k(x∗,x∗), k∗> is the vector of covariances between x∗ and X, and
y are the observed values at training locations in X. The hyper-parameters
can be optimized by minimizing the Negative Log Marginal Likelihood (NLML)
− log p(y|x, Θ). Smoothness and generalization properties of GPs depend on the
kernel function and its hyper-parameters Θ [18]. In particular, the SM kernel
[26], here denoted by kSM, is derived by modeling the empirical spectral density
as a Gaussian mixture, using Bochner’s Theorem [2,22], resulting in the following
kernel:

kSM(τ) =

Q∑
i=1

wikSMi(τ), (3)

kSMi(τ) = cos
(
2πτ>µi

) P∏
p=1

exp
(
−2π2τ2Σi,p

)
, (4)

where τ = x − x′, Q denotes the number of components, kSMi is the i-th
component, P denotes the input dimension, and wi, µi = [µi,1, ..., µi,P ], and Σi =
diag

([
σ2
i,1, ..., σ

2
i,P

])
are the weight, mean, and variance of the i-th component

in the frequency domain, respectively. The variance σ2
i can be thought of as an

inverse length-scale, µi as a frequency, and wi as a contribution. For SM kernel,
we have k̂SMi(s) = [ϕSMi(s) + ϕSMi(−s)]/2 where ϕSMi(s) = N (s;µi, Σi) is a
symmetrized scale-location Gaussian in the frequency domain.

The SM kernel does not consider dependencies between components, because
it is a linear combination of {kSMi}Qi=1 (see Equation 3). Therefore its underlying
assumption is that such components are mutually independent. One should not
confuse the spectral mixture components that make up the spectral density of
the SM kernel with the base components of the Fourier Transform (FT): (1)
FT components are periodic trigonometric functions, such as sine and cosine
functions, while SM kernel components are quasi-periodic Gaussian functions; (2)
FT components are orthogonal (i.e. the product of an arbitrary pair of Fourier
series components is zero) while the product of two arbitrary SM components is
not necessarily equal to zero; (3) the SM component in the frequency domain is a
Gaussian function covering wide frequency range while an FT component is just
a sharp peak at a single frequency, which is covered by multiple SM components.
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3 Related Work

Various kernel functions have been proposed [18], such as Squared Exponential
(SE), Periodic (PER), and general Matérn (MA). Recently, Spectral Mixture (SM)
kernels have been proposed in [24]. Additive GPs have been proposed in [4], a GP
model whose kernel implicitly sums over all possible products of one-dimensional
base kernels. Extensions of these kernels include the spectral mixture product
kernel (SMP) [25] kSMP(τ |Θ) =

∏P
p=1 kSM(τp|Θp), which uses multi-dimensional

SM kernels, and extends the application scope of SM kernels to image data and
spatial time data.Other interesting families of kernels include non-stationary
kernels [7,10,21,19], which are capable to learn input-dependent covariances
between inputs. All these mentioned kernels do not consider dependencies between
components. To the best of our knowledge, our proposed kernel is the first attempt
to explicitly model dependencies between components.

The problem of expressing structure present in the data being modeled with
kernels has been investigated also in the context of kernel composition. For
instance, in [3] a framework was introduced for composing kernel structures.
A space of kernel structures is defined compositionally in terms of sums and
products of a small number of base kernel structures. Then an automatic search
over this space of kernel structures is performed using marginal likelihood as
search criterion. Although composing kernels allows one to produce kernels
combining several high-level properties, they depend on the choice of base kernel
families, composition operators, and search strategy. Instead, here we directly
enhance SM kernels by incorporating dependency between components.

4 Dependencies between SM components

Since the SM kernel is additive, any f ∼ GP(0, kSM) can be expressed as

f =

Q∑
i=1

fi, (5)

where each fi ∼ GP(0, wikSMi) is drawn from a GP with kernel wikSMi. With a
slight abuse of notation we denote by f i the function values at training locations
X, and by f∗i the function values at some set of query locations X∗.

From the additivity of the SM kernel it follows that the fi’s are a priori
independent. Then, by using the formula for Gaussian conditionals we can give
the conditional distribution of a GP-distributed function f∗i conditioned on its
sum with another GP-distributed function f j :

f∗i
∣∣f i+j ∼ N(K∗i >K−1i+jf i+j , K∗∗i −K∗i >K−1i+jK∗i ) (6)

where f i+j = f i + f j and Ki+j = Ki +Kj . The reader is referred to [3] (Section
2.4.5) for the derivation of these results. The Gaussian conditionals express
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the model’s posterior uncertainty about the different components of the signal,
integrating over the possible configurations of the other components.

In particular, we have:

V(f∗i |f i) = K∗∗i −K∗i
>K−1i K∗i , (7)

V(f∗i |f i,f j) = K∗∗i −K∗i
>K−1i+jK

∗
i . (8)

In general V(f∗i |f i) 6= V(f∗i |f i,f j) when dependencies between components
are present. We can also compute the posterior covariance between the height of
any two functions, conditioned on their sum [3]:

Cov
(
f∗i ,f

∗
j |f i,f j

)
= −K∗i

>K−1i+jK
∗
j . (9)

We define posterior correlation ρ∗ij as normalized posterior covariance:

ρ∗ij =
Cov

(
f∗i ,f

∗
j |f i,f j

)(
V
(
f∗i |f i,f j

)
V
(
f∗j |f i,f j

))1/2 . (10)

We can use ρ∗ij 6= 0 as indicator of statistical dependence between components
i and j. In our experiments, we will use the normalized posterior covariance to
illustrate the presence of dependencies between components in SM kernels for
GPs.

5 Generalized convolution SM kernels

We propose to generalize SM kernels by incorporating cross component terms. To
this aim we use versions of the seminal Convolution theorem, which states that
under suitable conditions the Fourier transform of a convolution of two signals is
the pointwise product of their Fourier transforms. In particular, convolution in
the time domain equals point-wise multiplication in the frequency domain. The
construction of our kernel relies on the fact that any stationary kernel k(x,x′)
can be represented as a convolution form on RP (see e.g. [5,6,13])

k(x,x′) =

∫
RP

g(u) g(τ − u) du = (g ∗ g)(τ). (11)

By applying a Fourier transformation to the above general convolution form of
the kernel we obtain k̂(s) = (ĝ(s))2 in the frequency domain. For each weighted
component wikSMi(τ) in the SM kernel, we can define the function ĝSMi(s) as

ĝSMi(s) =
(
wik̂SMi(s)

)1/2
= wi

1
2

exp
(
− 1

4 (s− µi)>Σ−1i (s− µi)
)

((2π)P |Σi|)1/4
, (12)

which is the basis function of the i-th weighted spectral density. We use
cross-correlation, which is similar in nature to the convolution of two functions.
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The cross-correlation of functions f(τ) and g(τ) is equivalent to the convolution
of f(−τ) and g(τ) [1]. we have that the cross-correlation between two components
fi ∼ GP(0, wikSMi) and fj ∼ GP(0, wjkSMj) is as

ki×jGCSM(τ) = wikSMi(τ) ? wjkSMj(τ) = F−1s→τ [wiϕSMi(s) · wjϕSMj(s)] (τ) (13)

where F−1s→τ , ?, and (−) denote the inverse FT, the cross-correlation operator ,
and the complex conjugate operator, respectively. Here ϕSMi(s) = N (s;µi, Σi)
is a symmetrized scale-location Gaussian in the frequency domain (ϕSMi(s) =
ϕSMi(s)). The product of Gaussians ϕSMi(s) and ϕSMj(s) is also a Gaussian.
Therefore, the cross-correlation term in the frequency domain has also a Gaussian
form and must be greater than zero, which implies the presence of dependencies
between fi and fj .

The cross-correlation term ki×jGCSM(τ) of our new kernel, obtained as cross-
correlation of the i-th and j-th base components in SM, corresponds to the cross
spectral density term

k̂i×jGCSM(s) = ĝSMi(s) · ĝSMj(s) (14)

in the frequency domain. From (12) and (14) we obtain

k̂i×jGCSM(s) = wijaij
exp

(
− 1

2 (s− µij)>Σij−1(s− µij)
)√

(2π)P |Σij |
. (15)

The parameters for the cross spectral density term k̂i×jGCSM(s) corresponding to

the cross convolution component ki×jGCSM(τ) are:

– cross weight: wij =
√
wiwj

– cross amplitude: aij =

∣∣∣∣√4ΣiΣj

Σi+Σj

∣∣∣∣ 12 exp
(
− (µi−µj)

>(Σi+Σj)
−1(µi−µj)

4

)
– cross mean: µij =

Σiµj+Σjµi

Σi+Σj
;

– cross covariance: Σij =
2ΣiΣj

Σi+Σj

Parameters µij and Σij can be interpreted as frequency and inverse length-

scale of the cross component ki×jGCSM(τ), respectively. Cross amplitude aij is a
normalization constant which does not depend on s.

Observe that when ĝSMi(s) is equal to ĝSMj(s), wij aij , µij , and Σij reduce to

wi, 1, µi, and Σi, respectively. In this case, the cross spectral density k̂i×jGCSM(s)

is equal to k̂SMi(s). We can observe that the closer the frequencies µi and µj are
and as closer the scales Σi and Σj between components i and j in the SM kernel
are, the higher the cross convolution components contribution in GCSM will be.

Using the inverse FT, by the distributivity of the convolution operator and
by the symmetry of the spectral density, we can obtain the GCSM kernel with Q
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(auto-convolution) components as:

kGCSM(τ) =

Q∑
i=1

Q∑
j=1

cij exp
(
−2π2τ>Σijτ

)
cos
(
2πτ>µij

)
(16)

where cij = wijaij is the cross contribution incorporating cross weight and cross
amplitude to quantify the dependency between components in the GCSM kernel.
The proof that GCSM is positive semi-definite is given in the Appendix. The
auto-convolution cross-terms in GCSM correspond to the components in SM
since ki×iGCSM(τ) = kSMi(τ). It is a mixture of periodic cosine kernels and their
dependencies, weighted by exponential weights.

6 Comparisons between GCSM and SM

Fig. 1. SM and GCSM with Q components. (a) SM models only auto-convolution
between base components. (b) GCSM models both auto- and cross-convolution between
base components.

Figure 1 illustrates the difference between SM and GCSM, where each connec-
tion represents a convolution component of the kernel. SM is an auto-convolution
spectral mixture kernel that ignores the cross-correlation between base compo-
nents. The figure also shows that SM is a special case of GCSM since the latter
involves both cross convolution and auto-convolution of base components. In
GCSM, dependencies are explicitly modeled and quantified. In the experiment
illustrated in Figure 2, SM and GCSM have the same initial parameters the same
noise term. The observations are sampled from a GP(0,KSM + KGCSM).From
Figure 2 we can observe clear differences (in terms of amplitude, peak, and trend
from SM) for the kernel functions (SM: top, in dashed red; GCSM: bottom,
in dashed blue). For the corresponding spectral densities, the dependence (in
magenta) modeled by GCSM is also a Gaussian in the frequency domain, which
yields a spectral mixture with different magnitude. The posterior distribution
and sampling are obtained from GCSM and SM conditioned on six observations
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(black crosses). One can observe that the predictive distribution of GCSM has a
tighter confidence interval (in blue shadow) than SM (in red shadow).

Fig. 2. Covariance, spectral density, and posterior functions drawn from GPs with SM
and GCSM kernels conditioning on six samples. In the first row two SM components
(w1kSM1(τ) and w2kSM2(τ)) correspond to two solid lines (in cyan and black). In the
second row two GCSM components with dependent structures (k1×2

GCSM(τ)) (in magenta).
SM and GCSM plots have the same axes.

7 Scalable inference

Exact inference for GPs is prohibitively slow for more than a few thousand
datapoints, as it involves inverting the covariance matrix (K + σ2

nI)−1 and
computing the determinant of the covariance |K+σ2

nI|. This issues are addressed
by covariance matrix approximation [20,16,23] and inference approximation [9,8].

Here we employ stochastic variational inference (SVI) which provides a general-
ized framework for combining inducing points u and variational inference yielding
impressive efficiency and precision. Specifically, SVI approximates the true GP
posterior with a GP conditioned on a small set of inducing points u, which as
a set of global variables summarise the training data and are used to perform
variational inference. The variational distribution P (u) = N (u;µu, Σu) gives a
variational lower bound L3(u;µu, Σu), also called Evidence Lower Bound (ELBO)
of the quantity p(y|X). From [9], the variational distribution N (u;µu, Σu) con-
tains all the information in the posterior approximation, which represents the
distribution on function values at the inducing points u. From ∂L3

∂µu
= 0 and

∂L3

∂Σu
= 0, we can obtain an optimal solution of the variational distribution. The
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posterior distribution of testing data can be written as

p(f∗|X,y) = N (k∗uK
−1
uuµu, k

∗∗ + k∗u
>(K−1uuΣuK

−1
uu −K−1uu )k∗u) (17)

where k∗u is the GCSM covariance vector between u and test point x∗. The
complexity of SVI is O(m3) where m is the number of inducing points.

7.1 Hyper-parameter initialization

In our experiments, we use the empirical spectral densities to initialize the
hyper-parameters, as recommend in [24,10]. Different from these works, we apply
a Blackman window function to the training data to improve the quality of
empirical spectral densities, e.g. the signal to noise ratio (SNR), and to more
easily discover certain characteristics of the signal, e.g. magnitude and frequency.
We consider the windowed empirical spectral densities p(Θ|s) as derived from
the data, and then apply a Bayesian Gaussian mixture model (GMM) in order
to get the Q cluster centers of the Gaussian spectral densities [10].

p(Θ|s) =

Q∑
i=1

w̃iN (µ̃i, Σ̃i) (18)

We use the Expectation Maximization algorithm [15] to estimate the parameters
w̃i, µ̃i, and Σ̃i. The results are used as initial values of wi, µi, and Σi, respectively.

8 Experiments

We comparatively assess the performance of GCSM on real-world datasets. Three
of these datasets have been used in the literature of GP methods. The other
is a relative new dataset which we use to illustrate the capability of GPs with
the considered kernels to model irregular long term increasing trends. We use

Mean Squared Error (MSE = 1
n

∑n
i=1

(
yi − ỹi

)2
) as the performance metric for

all tasks. We used the 95% confidence interval (instead of, e.g., error bar) to
quantify uncertainty (see Equation (2)). In addition to these performance metrics,
we also consider the posterior correlation ρ∗ij (see Equation (10)) to illustrate
the underlying dependency between SM components. Moreover, to illustrate
the dependency between components captured by the cross-components in our
GCSM kernel, we use the normalized cross-correlation term:

γij(τ) =
ki×jGCSM(τ)√

kSMi(τ)kSMj(τ)
(19)

We call γij learned dependency between component i and j. Note that γij = 1 when
i = j. In our experiments we will analyze dependency between components in SM
kernel for GPs as expressed by the posterior covariance, and dependency modeled
by GCSM kernels for GPs as expressed by γij ’s. We compare GCSM with ordinary
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SM for prediction tasks on four real-life datasets: monthly average atmospheric
CO2 concentrations [18,12], monthly ozone concentrations, air revenue passenger
miles, and the larger multidimensional alabone dataset.

As baselines for comparison we consider the popular kernels implemented in
the GPML toolbox [18]: linear with bias (LIN), SE, polynomial (Poly), PER,
rational quadratic (RQ), MA, Gabor, fractional Brownian motion covariance
(FBM), underdamped linear Langevin process covariance (ULL), neural network
(NN) and SM kernels. For the considered multidimensional dataset, we use
automatic relevance determination (ARD) for other kernels to remove irrelevant
input. FBM and ULL kernels are only available for time series type of data, thus
they are not applied to this dataset. We use the GPML toolbox [17] and GPflow
[14] for ordinary and scalable inference, respectively. For GCSM, we calculate
the gradient of the parameters using an analytical derivative technique. In all
experiments we use the hyper-parameter initialization previously described for
SM and GCSM kenels.

8.1 Compact long term extrapolation

Fig. 3. Performance of SM (left) and GCSM (right) on the CO2 concentration dataset.

The monthly average atmospheric CO2 concentration dataset (cf. e.g. [18]) is
a popular experiment which shows the advantage and flexibility of GPs due to
multiple patterns with different scales in the data, such as long-term, seasonal
and short-term trends. The dataset was collected at the Mauna Loa Observatory,
Hawaii, between 1958 and 2003. We use 40% of the location points as training
data and the rest 60% as testing data. For both GCSM and SM we consider
Q = 10 components. The Gaussian mixture of the empirical spectral densities is
considered to initialize the hyper-parameters.

Figure 3(a) shows that GCSM (in dashed blue) is better than ordinary SM
(in red) in terms of predictive mean and variance. Moreover, GCSM yields a
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Fig. 4. Left: posterior correlations ρ∗ij in SM; Right: learned dependencies γij in GCSM.

smaller confidence interval than SM. Unlike SM, GCSM does not overestimate
the long-term trend. As for the analysis of the posterior correlation and learned
dependency, evidence of posterior positive and negative correlations ρ∗ij can be
observed for SM components (3, 4, 7) (left subplot in Figure 4). These posterior
correlations have been used for prediction (see Supplementary material). The
right plot in Figure 4 shows clear evidence of learned dependency γij for GCSM
components (2, 3, 4). GCSM and SM are optimized independently, so component
identifiers in the figures do not necessarily correspond to each other. Observe
that plots for GCSM kernel with i = j (right subplot) show stripes because of
the normalization term in Equation (19).

8.2 Modeling irregular long term decreasing trends

Fig. 5. Performance of SM (left) and GCSM (right) on the ozone concentration dataset.
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Fig. 6. Left: posterior correlations ρ∗ij in SM; Right: learned dependencies γij in GCSM.

We consider the monthly ozone concentration dataset (216 values) collected
at Downtown L. A. from time range Jan 1955 - Dec 1972. This dataset has
different characteristics than the CO2 concentration one, namely a gradual long
term downtrend and irregular peak values in the training data which are much
higher than those in the testing data. These characteristics make extrapolation
a challenging task. Here we use the first 60% of observations for training, and
the rest (40%) for testing (shown in black and green in Figure 5, respectively).
Again we consider Q = 10 components for both kernels.

Figure 5 shows that the ozone concentration signal has a long term decreasing
tendency while the training part has a relatively stable evolution. Here SM fails
to discover such long term decreasing tendency and overestimates the future
trend with low confidence. Instead, GCSM is able to confidently capture the
long term decreasing tendency. These results substantiate the beneficial effect of
using cross-components for correcting overestimation and for reducing predictive
uncertainty.

Results in Table 1 show that on this dataset GCSM consistently achieves a
lower MSE compared with SM and other baselines.

Figure 6 shows posterior correlation (left plot) and learned dependency (right
plot), The texture of the posterior correlation ρ∗ij among SM components (2, 6, 7)
demonstrates a more complicated posterior correlation between these components
than that of the previous experiment. The learned dependency γij is clearly visible
between components (2, 3, 7).

8.3 Modeling irregular long term increasing trends

In this experiment we consider another challenging extrapolation task, using
the air revenue passenger miles6 with time range Jan 2000 - Apr 2018, monthly
collected by the U.S. Bureau of Transportation Statistics. Given 60% recordings at

6 https://fred.stlouisfed.org/series/AIRRPMTSI



Incorporating Dependencies in Spectral Kernels for Gaussian Processes 13

Fig. 7. Performance of SM (left) and GCSM (right) on air revenue passenger miles.
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Fig. 8. Left: posterior correlations ρ∗ij in SM; Right: learned dependencies γij in GCSM.

the beginning of the time series, we wish to extrapolate the remaining observations
(40%). In this setting we can observe an apparent long term oscillation tendency
in the training observations which is not present in the testing data. As shown
in Figure 7, even if at the beginning (in 2001) there seems to be a decreasing
trend due to 9/11 attack and since 2010 was known as a disappointing year for
safety, there is a positive trend as a result of a boosting of the airline market and
extensive globalization.

In order to show the need for GCSM in a real-life scenarios, we consider the
air revenue passenger miles dataset that contains a fake long term oscillation
tendency happened in the training data but not in the testing data. The air
revenue passenger miles 7 with time range Jan 2000 - Apr 2018 was monthly
collected by U.S. Bureau of Transportation Statistics.

7 https://fred.stlouisfed.org/series/AIRRPMTSI

https://fred.stlouisfed.org/series/AIRRPMTSI
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Results in Table 1 show that on this dataset GCSM consistently achieves a
lower MSE compared with SM and other baselines. In particular, kernels such
as SE, Periodic and Matérn 5/2 have a poor performance on this extrapolation
task.

In Figure 8, the left plot shows the posterior correlation ρ∗ij among SM
components (2, 5, 10), and the right subplot the learned dependency γij between
components (1, 3, 9).

8.4 Prediction with large scale multidimensional data

After comparing GCSM and SM on extrapolation tasks on time series with diverse
characteristics, we investigate comparatively its performance on a prediction
task using a large multidimensional dataset, the abalone dataset. The dataset
consists of 4177 instances with 8 attributes: Sex, Length, Diameter, Height,
Whole weight, Shucked weight, Viscera weight, and Shell weight. The goal is
to predict the age of an abalone from physical measurements. Abalone’s age is
measured by cutting the shell through the cone, staining it, and counting the
number of rings through a microscope. Thus the task is to predict the number of
rings from the above mentioned attributes. We use the first 3377 instances as
training data and the remaining 800 as testing data. For both GCSM and SM we
used Q = 5 components. We use the windowed empirical density to initialize the
hyper-parameters, as described in Section 7.1. Here components are multivariate
Gaussian distributions in the frequency domain.

Results in Table 1 show that also on this type of task GCSM achieves lower
MSE than SM.

Table 1. Performances between GCSM and other kernels. Left: MSE, right: NLML.

Kernel CO2 Ozon Air Abalone

LIN 39.09 1.86 57.64 10.93
SE 128502.50 10.40 4967.18 8.14

Poly 132369.70 11.36 5535.81 6.30
PER 53.37 3.87 276.07 7.98
RQ 985.39 1.86 168.33 5.38
MA 110735.30 9.83 4711.33 7.52

Gabor 131931.30 2.09 5535.84 4.80
FBM 193.18 2.56 172.01 –.–
ULL 117500.40 9.34 405.07 –.–
NN 326.81 1.69 116.66 5.60
SM 9.36 0.97 36.28 3.59

GCSM 1.19 0.59 10.02 3.29

Kernel CO2 Ozon Air Abalone

LIN 451.38 235.68 462.01 24261.35
SE 399.90 208.53 456.68 21246.86

Poly 1444.80 375.86 735.39 17964.17
PER 459.53 236.71 456.38 18775.23
RQ 222.17 196.96 430.86 15988.48
MA 278.33 208.17 451.03 20288.56

Gabor 1444.62 240.55 735.41 15400.84
FBM 910.61 202.42 457.792 –.–
ULL 819.09 206.85 441.31 –.–
NN 460.73 225.46 449.31 17695.80
SM 62.09 160.75 328.56 8607.99

GCSM 64.34 160.48 300.69 8566.35

SM and GCSM kernels achieve comparable performance in terms of NLML
(see right part of Table 1). This seems surprising, given the smaller uncertainty
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and MSE results obtained by GCSM. However, note that NLML is the sum of
two terms (and a constant term that is ignored): a model fit and a complexity
penalty term. The first term is the data fit term which is maximized when the
data fits the model very well. The second term is a penalty on the complexity of
the model, i.e. the smoother the better. When Optimizing NLML finds a balance
between the two and this changes with the data observed.

Overall, results indicate the beneficial effect of modeling directly dependencies
between components, as done in our kernel.

9 Conclusion

We proposed the generalized convolution spectral mixture (GCSM) kernel, a gen-
eralization of SM kernels with an expressive closed form to modeling dependencies
between components using cross convolution in the frequency domain.

Experiments on real-life datasets indicate that the proposed kernel, when
used in GPs, can identify and model the complex structure of the data and be
used to perform long-term trends forecasting. Although here we do not focus on
non-stationary kernels, GCSM can be transformed into a non-stationary GCSM,
through parameterizing weights wi(x), means µi(x), and σi(x) as kernel matrices
by means of a Gaussian function. Future work includes the investigation of more
generalized non-stationary GCSM.

An issue that remains to be investigated is efficient inference. This is a core
issue in GP methods which needs to be addressed also for GPs with GCSM
kernels. Lev́y process priors as proposed in [11] present a promising approach for
tackling this problem, by regularizing spectral mixture for automatic selection of
the number of components and pruning of unnecessary components.
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