
Distributed Learning of Non-Convex Linear
Models with One Round of Communication

Mike Izbicki1 and Christian R. Shelton2

1 Claremont McKenna College, Claremont, CA, USA
mike@izbicki.me

2 UC Riverside, Riverside, CA, USA
cshelton@cs.ucr.edu

Abstract. We present the optimal weighted average (OWA) distributed
learning algorithm for linear models. OWA achieves statistically optimal
learning rates, uses only one round of communication, works on non-
convex problems, and supports a fast cross validation procedure. The
OWA algorithm first trains local models on each of the compute nodes;
then a master machine merges the models using a second round of
optimization. This second optimization uses only a small fraction of the
data, and so has negligible computational cost. Compared with similar
distributed estimators that merge locally trained models, OWA either
has stronger statistical guarantees, is applicable to more models, or has a
more computationally efficient merging procedure.
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1 Introduction

Many datasets are too large to fit in the memory of a single machine. To analyze
them, we must partition the data onto many machines and use distributed
algorithms. Existing distributed learning algorithms fall into one of two categories:

Interactive algorithms require many rounds of communication between ma-
chines. Representative examples include [4, 14, 8, 16, 27, 23]. These algorithms
resemble standard iterative algorithms where each iteration is followed by a
communication step. The appeal of interactive algorithms is that they enjoy the
same statistical performance as standard sequential algorithms. That is, given m
machines each with n data points of dimension d, interactive algorithms have error
that decays as O(

√
d/mn) for linear models. But, interactive algorithms have

three main disadvantages. First, these algorithms are slow when communication
latency is the bottleneck. An extreme example occurs in the federated learning
environment proposed by McMahan et al. [18], which uses cell phones as the
computational nodes. Recent work on interactive algorithms focuses on reducing
this communication as much as possible [8, 27, 23]. Second, these algorithms
require special implementations. They are not easy for non-experts to implement
or use, and in particular they do not work with off-the-shelf statistics libraries



2 M. Izbicki, C. Shelton

provided by (for example) Python, R, and Matlab. Third, because of the many
rounds of communication, any sensitive information in the data is likely to leak
between machines.

Non-interactive algorithms require only a single round of communication.
Each machine independently solves the learning problem on a small subset of
data, then a master machine merges the solutions together. These algorithms
solve all the problems of interactive ones: they are fast when communication
is the main bottleneck; they are easy to implement with off-the-shelf statistics
packages; and they are robust to privacy considerations. The downside is worse
statistical performance. The popular naive averaging estimator has worst case
performance O(

√
d/n) completely independent of the number of machines m. A

growing body of work improves the analysis of the averaging estimator under
special conditions [17, 25, 26, 22, 24], and develops more robust non-interactive
estimators [28, 15, 12, 2, 6, 9]. All of these estimators either work on only a
limited class of models or have computationally intractable merge procedures.

In this paper, we propose a novel non-interactive estimator called the op-
timal weighted average (OWA). OWA’s merge procedure uses a second round
of optimization over the data. (All previous merge procedures do not depend
on the data.) This data dependent merge procedure has four advantages: (i)
OWA achieves the optimal error of O(

√
d/mn) in a general setting and with a

simple analysis. In particular, we do not require a convex loss function. (ii) This
second optimization uses a small number of data points projected onto a small
dimensional space. It therefore has negligible computational and communication
overhead. (iii) OWA is easily implemented on most distributed architectures with
standard packages. Our implementation uses only a few dozen lines of Python
and scikit-learn [21]. (iv) OWA is robust to the regularization strength used in the
first round of optimization. In practice, this means that OWA does not require
communication between nodes even in the model selection step of learning.

We also show a simple extension to the OWA algorithm that uses two rounds of
communication to compute a cross validation estimate of the model’s performance.
The standard version of cross validation is too slow for large scale data, and
therefore not widely used in the distributed setting. This procedure is the first fast
cross validation method designed for the distributed setting, and is an additional
advantage OWA has over interactive distributed learning algorithms.

Section 2 formally describes our problem setting, and Section 3 describes the
OWA algorithm and its fast cross validation procedure. We take special care
to show how OWA can be implemented with off-the-shelf optimizers. Section 4
provides a simple proof that OWA achieves the optimal O(

√
d/mn) error. Our

main condition is that the single machine parameter vectors have a “sufficiently
Gaussian” distribution. We show that this is a mild condition known to hold
in many situations of interest. Section 5 compares OWA to existing distributed
algorithms. We highlight how the analysis of existing algorithms requires more
limiting assumptions than OWA’s. Section 6 shows empirically that OWA per-
forms well on synthetic and real world advertising data. We demonstrate that
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OWA is robust to the strength of regularization, which is one of the reasons it
performs well in practice.

2 Problem Setting

Let Y ⊆ R be the space of response variables, X ⊆ Rd be the space of covariates,
and W ⊆ Rd be the parameter space. We assume a linear model where the loss of
data point (x, y) ∈ X × Y given the parameter w ∈ W is denoted by `(y,xTw).
We define the true loss of parameter vector w to be L∗(w) = E`(y; xTw), and the
optimal parameter vector w∗ = arg minw∈W L∗(w). We do not require that the
model be correctly specified, nor do we require that ` be convex with respect to
w. Let Z ⊂ X × Y be a dataset of mn i.i.d. observations. Finally, let r :W → R
be a regularization function (typically the L1 or L2 norm) and λ ∈ R be the
regularization strength. Then the regularized empirical risk minimizer (ERM) is

ŵerm = arg min
w∈W

∑
(x,y)∈Z

`(y,xTw) + λr(w). (1)

Assume that the dataset Z has been partitioned onto m machines so that each
machine i has dataset Zi of size n, and all the Zi are disjoint. Then each machine
calculates the local ERM

ŵerm
i = arg min

w∈W

∑
(x,y)∈Zi

`(y,xTw) + λr(w). (2)

Notice that computing ŵerm
i requires no communication with other machines.

Our goal is to merge the ŵerm
i s into a single improved estimate.

To motivate our OWA merge procedure, we briefly describe a baseline proce-
dure called naive averaging :

ŵave =
1

m

m∑
i=1

ŵerm
i . (3)

Naive averaging is simple to compute but has only limited theoretical guarantees.
Recall that the quality of an estimator ŵ can be measured by the estimation
error ‖ŵ −w∗‖, and we can use the triangle inequality to decompose this error
as

‖ŵ −w∗‖ ≤ ‖ŵ − Eŵ‖+ ‖Eŵ −w∗‖. (4)

We refer to ‖ŵ − Eŵ‖ as the variance of the estimator and ‖Eŵ −w∗‖ as the
bias. McDonald et al. [17] show that the ŵave estimator has lower variance than
the estimator ŵerm

i trained on a single machine, but the same bias. Zhang et al.
[25] extend this analysis to show that if ŵerm

i is a “nearly unbiased estimator,”
then naive averaging is optimal. But Rosenblatt and Nadler [22] show that in
high dimensional regimes, all models are heavily biased, and so naive averaging is
suboptimal. All three results require ` to be convex in addition to other technical
assumptions. Our goal is to design a merging procedure that has good error
bounds in a more general setting.
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3 The OWA Estimator

The optimal weighted average (OWA) estimator uses a second round of opti-
mization to calculate the optimal linear combination of the ŵerm

i s. This second
optimization reduces the bias at the optimal rate. Furthermore, this second
optimization occurs over a small fraction of the dataset, so its computational
and communication cost is negligible.

3.1 Warmup: The Full OWA

To motivate the OWA estimator, we first present a less efficient estimator that
uses the full dataset for the second round of optimization. Define the matrix
Ŵ : Rd×m to have its ith column equal to ŵerm

i . Now consider the estimator

ŵowa,full = Ŵ v̂owa,full, (5)

where
v̂owa,full = arg min

v∈Rm

∑
(x,y)∈Z

`
(
y,xTŴv

)
+ λr(Ŵv). (6)

Notice that ŵowa,full is just the empirical risk minimizer when the parameter
space W is restricted to the subspace Ŵowa = span{ŵerm

i }mi=1. In other words,
the v̂owa,full vector contains the optimal weights to apply to each ŵerm

i when

averaging. Figure 1 shows graphically that no other estimator in Ŵowa can have
lower regularized empirical loss than ŵowa,full.

ŵerm

ŵaveŵerm
1 ŵerm

2

ŵowa,full
ŵowa

`(y,xTw) + λr(w)

Ŵowa

Fig. 1. ŵowa,full is the estimator with best loss in Ŵowa, and ŵowa is close with high
probability.

3.2 The OWA Estimator

The OWA estimator uses fewer data points in the second round of optimization.
Recall that in a linear model, the amount of data needed is proportional to the
problem’s dimension. Since the dimension of the second round is a fraction m/d
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Algorithm 1 Calculating ŵowa only

Preconditions:
each machine i already has dataset Zi

the master machine additionally has dataset Zowa

Each machine i independently:
calculates ŵerm

i using Equation (2)
transmits ŵerm

i to the master
The master calculates ŵowa using Equation (7)

(optionally) master uses approximation Equation (9)

smaller than the first round, only an m/d fraction of data is needed for the same
accuracy. To simplify OWA’s analysis in Section 4, we will assume here that
this data is independent of the data used in the first round. This assumption,
however, is an artifact of Section 4’s simple analysis, and all our experiments in
Section 6 reuse the same data for both optimizations.

Formally, let Zowa be a set of m2n/d additional data points sampled i.i.d.
from the original data distribution. Thus the total amount of data the OWA
estimator requires is mn+m2n/d. Whenever m/d ≤ 1, this expression simplifies
to O(mn), which is the same order of magnitude of data in the original problem.
The OWA estimator is then defined as

ŵowa = Ŵ v̂owa, (7)

where

v̂owa = arg min
v∈Rm

∑
(x,y)∈Zowa

`
(
y,xTŴv

)
+ λr(Ŵv). (8)

Algorithm 1 shows the procedure for calculating ŵowa in a distributed setting.
Notice that we assume that a predesignated master machine already has access to
the full Zowa dataset.3 Because this data is pre-assigned to the master machine,
each machine i only needs to transmit the local parameter vector ŵerm

i to the
master. Thus, the total number of bits communicated is O(dm), which is the same
as the naive averaging estimator. OWA’s merge procedure is more complicated
than the naive averaging merge procedure, but still very fast. Notice that the
projected data points xTŴ have dimensionality m << d, and there are only
m2n/d of them. Because the optimization uses a smaller dimension and fewer
data points, it takes a negligible amount of time. In Section 6, we show an
experiment where the first round of optimizations takes about a day, and the
second optimization takes about a minute.

3 Other non-interactive estimators have made similar assumptions [e.g. 28]. If this
assumption is too limiting, however, Appendix A shows how to transfer these data
points to the master machine after optimizing the local models. The idea is to first
project the data onto the subspace Ŵowa before transfer, reducing the dimensionality
of the data. The communication complexity of this alternate procedure is O(dm2).



6 M. Izbicki, C. Shelton

3.3 Implementing OWA with Existing Optimizers

In theory, standard optimization algorithms can be used to directly solve the
second round of optimization in Equation (8). In practice, however, standard
tools such as scikit-learn [21] do not support the regularization term r(Ŵv),
where the parameter vector is projected onto an alternative coordinate system
before regularization. To make OWA easy to implement, we show in this section
how to approximately solve (8) using these optimizers.

We suggest approximating the regularization term by L2 regularization directly
on the v vector:

λr(Ŵv) ≈ λ2‖v‖2, (9)

where λ2 is a new hyperparameter. We provide two justifications for this approx-
imation:

1. When we want the parameter vector w to be sparse (and so the regularizer
r is the L1 norm), we have no reason to believe that the v vector should be
sparse. The desired sparsity is induced by the regularization when solving for
ŵerm

i s on the local machines, and it is maintained in any linear combination
of the ŵerm

i s.
2. As the size of the dataset increases, the importance of the regularizer decreases.

In this second optimization, the dimensionality of the problem is small and
the theory requires few data points, guaranteeing the optimization runs fast.
If we can increase the number of data points by several orders of magnitude
(say from m2n/d to 100m2n/d), the optimization will remain fast in practice
and the influence of the regularization term becomes negligible.

The new λ2 regularization parameter should be set by cross validation. This
is a fast procedure, however, because the second optimization has so little
data. Furthermore, this cross validation can be computed locally on the master
machine without any communication. We again emphasize that Section 6 contains
experiments where the first round of optimization took about a day, and the
second round (including the selection of λ2) took only about a minute.

3.4 Fast Cross Validation for OWA

We now introduce a novel fast cross validation algorithm for estimating the
predictive performance of OWA. The standard method for k-fold cross validation
takes linear time in the number of folds k. For large scale problems, this is
too computationally expensive, and so cross validation is typically not used
in this regime. Our fast cross validation procedure can estimate the predictive
performance of OWA in constant time (relative to k). This makes our procedure
suitable for large scale problems. Our method has two restrictions. First, we
require the number of folds k must be equal to the number of machines m. Second,
we require each machine already have access to the full Zowa dataset.

Our procedure uses two rounds of computation and is shown in Algorithm
2. The first round trains the local estimators ŵerm

i as in Algorithm 1, but then
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Algorithm 2 Calculating ŵowa with fast cross validation

Preconditions:
each machine i already has dataset Zi

each machine (not just the master) also has dataset Zowa

Each machine i independently:
calculates ŵerm

i using Equation (2)
broadcasts ŵerm

i to all other machines
Each machine i independently:

calculates ŵowa
−i using Equation (10)

(optionally) ŵowa
−i calculated with approx. Eq. (9)

computes êrri using Equation (12)
transmits êrri to the master

The master
computes ŵowa using Equation (7)
computes 1

m

∑m
i=1 êrri

broadcasts these parameter vectors to all machines (rather than just the master).
In the second round, each machine i calculates ŵowa

−i , which is a version of the
OWA estimator trained on the data from all the machines except machine i.
More formally, we define the matrix Ŵ−i : Rd×(m−1) to be the matrix Ŵ with
ith column removed. That is, Ŵ−i is the concatenation of the ŵerm

j vectors for
all j 6= i. Then let Zowa

−i = {Zj}j 6=i be the data set used in the second round of
optimization without the data points from machine i. Finally, define the estimator

ŵowa
−i = Ŵ−iv̂

owa
−i , (10)

where
v̂owa
−i = arg min

v∈Rm−1

∑
(x,y)∈Zowa

−i

`
(
y,xTŴ−iv

)
+ λr(Ŵ−iv). (11)

Notice that ŵowa
−i does not depend on the local data set Zi. So

êrri =
1

n

∑
(x,y)∈Zi

`(y,xTŵowa
−i ) (12)

is an unbiased estimate of the true error L∗(ŵowa
−i ). The algorithm then transmits

the êrri values to the master machine, which computes ŵowa as normal and
computes the average of the error estimates. In total, O(dm2) bits are transmitted
in the first round, and O(dm) bits in the second round. When compared with
Algorithm 1, the fast cross validation method requires a factor of m times more
communication, and approximately twice as much computation.

This fast cross validation procedure critically used the fact that the OWA
estimator is non-interactive. Similar procedures can be developed for other non-
interactive distributed learning algorithms, but this technique cannot be used
to develop fast cross validation methods for interactive algorithms. OWA’s fast
cross validation procedure is closely related to the out-of-bag method [5], monoid
fast cross validation [7], and incremental fast cross validation [10], but none of
these previous methods was developed specifically for the distributed setting.
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4 Analysis

A major advantage of OWA’s analysis is that it requires only simple and general
conditions. Essentially, we will prove that whenever ERM is an optimal estimator,
then OWA is also optimal. In Section 5 below, we will see that previous methods
require more complicated and less general conditions. In this section, we first
describe our main condition in detail. Then we outline the argument that OWA’s
estimation error ‖ŵowa −w∗‖ and generalization error L∗(ŵowa)−L∗(w∗) both
decay as O(

√
d/mn). Full proofs of all theorems are provided in Appendix B.

4.1 The Sub-Gaussian Tail (SGT) Condition

Recall that each estimator is a random vector that is a function of the data.
Informally, our main condition is that these vectors follow an approximately
Gaussian distribution. This is a mild condition that many statistical models are
known to satisfy. For example, the estimated parameters for all generalized linear
models (such as logistic regression and ordinary least squares regression) are
known to be approximately Gaussian. We now formally define our criterion and
describe in detail how to establish that it holds.

Definition 1 We say that a statistical model satisfies the sub-Gaussian tail
(SGT) condition if the emperical risk minimizer ŵ trained on n i.i.d. data points
of dimension d has the sub-Gaussian estimation error

Pr
[
‖ŵ −w∗‖ ≤ O(

√
dt/n)

]
≥ 1− exp(−t). (13)

Remark 1. Notice that if ŵ has a Gaussian distribution it will satisfy the SGT
condition, even if ŵ has arbitrary non-zero mean. (This is a standard property
of sub-Gaussian distributions.) Thus, the SGT condition makes no assumptions
about the model’s bias.

A large body of statistical literature establishes the SGT condition for many
models. Chapter 7 of Lehmann [13] provides an elementary introduction to results
in the asymptotic regime as n→∞. Lehman requires only that the loss ` be three
times differentiable, that the data points be i.i.d., and that w∗ be identifiable. For
example, models using the non-convex sigmoid loss satisfy these conditions, and
thus can be used with the OWA estimator. Lehmann [13] also contains references
to stronger asymptotic results that relax these already mild conditions.

Other work establishes the SGT condition in the non-asymptotic regime
n < ∞. Panov et al. [20] provides a particularly strong example. Their only
condition is that the empirical loss admit a local approximation via the so-called
bracketing device, which can be thought of as a generalization of the Taylor
expansion. The full explanation of this condition is rather technical, but we
highlight that this result does not require a convex loss or even that the data be
i.i.d.

The proofs of theorems establishing the SGT condition are typically long
and technical. In our view, a limitation of previous non-interactive estimators is
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that their analysis proves limited forms of the SGT condition from scratch. This
makes their proofs long and technical as well. It also limits the applicability of
their results, because they do not prove the more general versions of the SGT
condition cited above. Our work improves on this practice by “factoring out”
these technical details. By relying on this established body of literature to prove
the SGT condition for us, we get simpler proofs that apply more generally. In
particular, we essentially conclude that whenever the ERM estimator successfully
learns on a single machine (i.e. the SGT condition holds), then the OWA estimator
successfully learns in a distributed environment. No other distributed estimator
(interactive or non-interactive) can make such a strong claim.

4.2 The Main Idea: Ŵowa Contains Good Solutions

The most important idea of OWA’s analysis is to show that when the local ŵerm
i

estimators satisfy the SGT condition, then Ŵowa is a good subspace to optimize
over. In particular, if we let πŴowaw∗ denote the projection of w∗ onto Ŵowa,
then we have that πŴowaw∗ ≈ w∗. This idea is formalized in the following lemma.

Lemma 2. Assume the model satisfies the SGT condition. Let t > 0. Then with
probability at least 1− exp(−t),

‖πŴowaw
∗ −w∗‖ ≤ O(

√
dt/mn). (14)

The proof of Lemma 2 is a direct consequence of the SGT condition.

4.3 Bounding the Generalization Error

In order to connect the result of Lemma 1 to OWA’s generalization error, we
need to introduce a smoothness condition on the true loss function L∗. Lipschitz
continuity is a widely used technique in both convex and non-convex analysis.

Definition 2 We say that L∗ is β-Lipschitz continuous if for all w1 and w2,

|L∗(w1)− L∗(w2)| ≤ β‖w1 −w2‖. (15)

We now state our first main result, which guarantees that OWA will generalize
well.

Theorem 3. Assume the model satisfies the SGT condition, and that L∗ is
β-Lipschitz continuous. Let t > 0. Then with probability at least 1− exp(−t),

L∗(ŵowa)− L∗(w∗) ≤ O(β
√
dt/mn). (16)

4.4 Bounding the Estimation Error

To bound the estimation error, we introduce a quadratic restriction on the growth
of the true loss L∗.



10 M. Izbicki, C. Shelton

Definition 3 We say the true loss L∗ satisfies the lower quadratic growth (lower
QG) condition if for all points w ∈ W,

αlo‖w −w∗‖2 ≤ L∗(w)− L∗(w∗). (17)

We say that L∗ satisfies the upper quadratic growth (upper QG) condition if it
satisfies

L∗(w)− L∗(w∗) ≤ αhi‖w −w∗‖2. (18)

The lower QG condition has previously been used to study the convergence
of non-convex optimization [e.g. 3, 1]. This condition is a generalization of strong
convexity that needs to hold only at the optimum w∗ rather than all points in
the domain. In particular, functions satisfying the lower QG condition may have
many local minima with different objective values. Karimi et al. [11] compares
the lower QG condition to six related generalizations of convexity, and shows
that the QG condition is the weakest of these conditions in the sense that it is
implied by all other conditions.

The intuitive meaning of the lower and upper QG conditions is that a quadratic
function can be used to lower and upper bound L∗. As the domain W shrinks
to include only the optimal point w∗, these lower and upper bounds converge
to the Taylor expansion of L∗. In this limit, the constant αlo is the minimum
eigenvalue of the Hessian at w∗, and αhi is the maximum eigenvalue. The ratio
αhi/αlo can then be thought of as a generalized condition number.

Our main result is:

Theorem 4. Assume the SGT condition and that that L∗ satisfies the lower
and upper QG conditions. Let t > 0. Then with probability at least 1− exp(−t),

‖ŵowa −w∗‖ ≤ O
(√

(αhi/αlo)(dt/mn)
)
. (19)

Note that up to the constant factor
√
αhi/αlo, OWA’s estimation error matches

that of the oracle ERM.

5 Other Non-Interactive Estimators

Compared with similar non-interactive distributed estimators, OWA either has
stronger statistical guarantees, is applicable to more models, or has a more
computationally efficient merging procedure.

Lee et al. [12] and Battey et al. [2] independently develop closed form formulas
for debiasing L1 regularized least squares regressions. They combine these debiased
estimators with the averaging estimator to create a non-interactive estimator that
reduces both bias and variance at the optimal rate. OWA’s advantage over these
methods is that it is that it can be applied to a much larger class of problems.

Jordan et al. [9] develop a more general approach that uses a single approxi-
mate Newton step in the merge procedure. As long as the initial starting point
(they suggest using ŵave) is within O(

√
1/n) of the true parameter vector, then
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this approach converges at the optimal rate. When implementing Jordan et al.’s
approach, we found it suffered from two practical difficulties. First, Newton steps
can diverge if the starting point is not close enough. We found in our experiments
that ŵave was not always close enough. Second, Newton steps require inverting a
Hessian matrix. In Section 6, we consider a problem with dimension d ≈ 7× 105;
the corresponding Hessian is too large to practically invert. For these reasons, we
do not compare against Jordan et al. [9] in our experiments.

Zhang et al. [25] provide a debiasing technique that works for any estimator.
Let s ∈ (0, 1), and Zs

i be a bootstrap sample of Zi of size sn. Then the bootstrap
average estimator is

ŵboot =
ŵave − sŵave,s

1− s
, (20)

where

ŵave,s =
1

m

m∑
i=1

arg min
w

∑
(x,y)∈Zs

i

`(y,xTw) + λr(w).

The intuition behind this estimator is to use the bootstrap sample to directly
estimate and correct for the bias. When the loss function is convex, ŵboot enjoys
a mean squared error (MSE) that decays as O((mn)−1 + n−3). Theorem 2
directly implies that the MSE of ŵowa decays as O((mn)−1) under more general
conditions. There are two additional limitations to ŵboot. First, the optimal value
of s is not obvious and setting the parameter requires cross validation on the
entire data set. Our proposed ŵowa estimator has a similar parameter λ2 that
needs tuning, but this tuning happens on a small fraction of the data and always
with the L2 regularizer. So properly tuning λ2 is more efficient than s. Second,
performing a bootstrap on an unbiased estimator increases the variance. This
means that ŵboot could perform worse than ŵave on unbiased estimators. Our
ŵowa estimator, in contrast, will perform at least as well as ŵave with high
probability even for highly biased estimators (see Figure 1). The next section
shows that ŵowa has better empirical performance than ŵboot.

Liu and Ihler [15] propose a more Bayesian approach. Instead of averaging
the model’s parameters, they directly “average the models” with the following
KL-average estimator:

ŵkl = arg min
w∈W

m∑
i=1

KL

(
p(·; ŵerm

i )

∥∥∥∥ p(·; w)

)
. (21)

Liu and Ihler show theoretically that this is the best merge function in the class
of functions that do not depend on the data. Since OWA’s merge depends on the
data, however, this bound does not apply. The main disadvantage of KL-averaging
is computational. The minimization in (21) is performed via a bootstrap sample
from the local models, which is computationally expensive. Let k be the size of
the bootstrap sample. Then Liu and Ihler’s method has MSE that shrinks as
O((mn)−1 + k−1). This implies that the bootstrap procedure requires as many
samples as the original problem to get a MSE that shrinks at the same rate
as the averaging estimator. Han and Liu [6] provide a method to reduce the
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d = 100, n = 1000 d = 1000, n = 1000 d = 10000, n = 1000
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ŵ
‖
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iŵave
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ŵerm
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Fig. 2. The left figure shows scalability in the low dimension regime, the middle figure
in a medium dimension regime, and the right figure in a high dimension regime. ŵowa

scales well with the number of machines in all cases. Surprisingly, ŵowa outperforms
the oracle estimator trained on all of the data ŵerm in some situations.

MSE to O((mn)−1 + (n2k)−1) using control variates, but the procedure remains
prohibitively expensive. Their experiments show the procedure scaling only to
datasets of size mn ≈ 104, whereas our experiments involve a dataset of size
mn ≈ 108.

6 Experiments

We evaluate OWA on synthetic and real-world logistic regression tasks. In each
experiment, we compare ŵowa with four baseline estimators: the naive estimator
using the data from only a single machine ŵerm

i ; the averaging estimator ŵave; the
bootstrap estimator ŵboot; and the oracle estimator of all data trained on a single
machine ŵerm. The ŵboot estimator has a parameter s that needs to be tuned.
In all experiments we evaluate ŵboot with s ∈ {0.005, 0.01, 0.02, 0.04, 0.1, 0.2},
which is a set recommended in the original paper [25], and then report only the
value of s with highest true likelihood. Thus we are reporting an overly optimistic
estimate of the performance of ŵboot, and as we shall see ŵowa still tends to
perform better. OWA is always trained using the regularization approximation
of Section 3.3, and Zowa is always resampled from the original dataset.

In all experiments, we use the scikit-learn machine learning library [21] to
perform the optimizations. We made no special efforts to tune parameters of
the optimization routines. For example, all optimizations are performed with
the default target accuracy of 1 × 10−3. Additionally, when performing the
hyperparameter optimization for λ2 in (9), we use the default hyperparameter
selection procedure.
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Fig. 3. OWA is robust to the regularization strength used to solve ŵerm
i . Our theory

states that as m → d, we have that Ŵowa → W, and so ŵowa → ŵerm. This is
confirmed in the middle experiment. In the left experiment, m < d, but ŵowa still
behaves similarly to ŵerm. In the right experiment, ŵowa has similar performance as
ŵave and ŵboot but over a wider range of λ values.

6.1 Synthetic Data

We generate the data according to a sparse logistic regression model. Each
component of w∗ is sampled i.i.d. from a spike and slab distribution. With
probability 0.9, it is 0; with probability 0.1, it is sampled from a standard normal
distribution. The data points are then sampled as

xi ∼ N (0, I) (22)

yi ∼ Bernoulli
(
1/
(
1 + exp(−xT

i w∗)
))
. (23)

The primary advantage of synthetic data is that we know the model’s true
parameter vector. So for each estimator ŵ that we evaluate, we can directly
calculate the error ‖ŵ −w∗‖. We run two experiments on the synthetic data. In
both experiments, we use the L1 regularizer to induce sparsity in our estimates of
w∗. Results are qualitatively similar when using a Laplace, Gaussian, or uniform
prior on w∗, and with L2 regularization.

Our first experiment shows how the estimators scale as the number of machines
m increases. We fix n = 1000 data points per machine, so the size of the dataset
mn grows as we add more machines. This simulates the typical “big data” regime
where data is abundant, but processing resources are scarce. For each value of m,
we generate 50 datasets and report the average of the results. The results are
shown in Figure 2. As the analysis predicted, the performance of ŵowa scales
much better than ŵave and ŵboot. Surprisingly, in the low dimensional regimes,
ŵowa outperforms the single machine oracle ŵerm.

Our second experiment shows the importance of proper λ selection. We
evaluate the performance of the estimators with λ varying from 10−4 to 104 on a
grid of 80 points. Figure 3 shows the results. The ŵowa estimator is more robust
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ŵave

20 25 210 215 220
0.137

0.138

0.139

0.140

0.141

0.142

data points used in second round
of optimization (|Zowa|)

lo
g
-l

o
ss
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ŵowa

21 22 23 24 25 26 27
0.137

0.138

0.139

0.140

0.141

0.142

number of machines (m)

Fig. 4. (left) Relatively few data points are needed in the second round of optimization
for ŵowa to converge. On this dataset, only 2.7× 10−6 percent of the data is needed.
(right) Performance of the parallel estimators on advertising data as the number of
machines m increases.

to the choice of λ than the other distributed estimators. We suspect that slight
misspecification of λ in the first round of optimization is compensated for in the
second round of optimization.

6.2 Real World Advertising Data

We evaluate the estimators on real world data from the KDD 2012 Cup [19]. The
goal is to predict whether a user will click on an ad from the Tencent internet
search engine. This dataset was previously used to evaluate the performance of
ŵboot [25]. This dataset is too large to fit on a single machine, so we must use
distributed estimators, and we do not provide results of the oracle estimator
ŵerm in our figures. There are 235,582,879 distinct data points, each of dimension
741,725. The data points are sparse, so we use the L1 norm to encourage sparsity
in our final solution. The regularization strength was set using cross validation in
the same manner as for the synthetic data. For each test, we split the data into
80 percent training data and 20 percent test data. The training data is further
subdivided into 128 partitions, one for each of the machines used. It took about
1 day to train the local model on each machine in our cluster.

Our first experiment measures the importance of the number of data points
used in the second optimization (i.e. |Zowa|). We fix m = 128, and allow |Zowa|
to vary from 20 to 220. When |Zowa| = 220, almost the entire dataset is used in
the second optimization. We repeated the experiment 50 times, each time using
a different randomly selected set Zowa for the second optimization. Figure 4
(left) shows the results. Our ŵowa estimator has lower loss than ŵave using only
|Zowa| = 215 data points (approximately 4× 10−8 percent of the full training set)
and ŵowa has converged to its final loss value with only |Zowa| = 217 data points
(approximately 2.7 × 10−6 percent of the full training set). This justifies our
claim that only a small number of data points are needed for the second round of
optimization. The computation is also very fast due to the lower dimensionality
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and L2 regularization in the second round of optimization. When |Zowa| = 217,
computing the merged model took about a minute (including the cross validation
time to select λ2). This time is negligible compared to the approximately 1 day
it took to train the models on the individual machines.

Our last experiment shows the performance as we scale the number of machines
m. The results are shown in Figure 4 (right). Here, ŵowa performs especially well
with low m. For large m, ŵowa continues to slightly outperform ŵboot without the
need for an expensive model selection procedure to determine the s parameter.

7 Conclusion

We introduced OWA, a non-interactive distributed estimator for linear models.
OWA is easy to implement and has optimal statistical guarantees that hold
under general conditions. We showed experimentally that OWA outperforms
other non-interactive estimators, and in particular that OWA exhibits a weaker
dependence on the regularization strength.
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