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Abstract. A gradient boosting decision tree model is a powerful machine
learning method that iteratively constructs decision trees to form an
additive ensemble model. The method uses the gradient of the loss
function to improve the model at each iteration step. Inspired by the
database literature, we exploit bitset and bitslice data structures in order
to improve the run time efficiency of learning the trees. We can use these
structures in two ways. First, they can represent the input data itself.
Second, they can store the discretized gradient values used by the learning
algorithm to construct the trees in the boosting model. Using these bit-
level data structures reduces the problem of finding the best split, which
involves counting of instances and summing gradient values, to counting
one-bits in bit strings. Modern CPUs can efficiently count one-bits using
AVX2 SIMD instructions. Empirically, our proposed improvements can
result in speed-ups of 2 to up to 10 times on datasets with a large number
of categorical feature without sacrificing predictive performance.
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1 Introduction

Gradient boosting decision trees (GBDTSs) are a powerful and theoretically elegant
machine learning method that constructs an additive ensemble of trees. GBDT
methods employ an iterative procedure, where the gradient of the loss function
guides learning a new tree such that adding the new tree to the model improves
its predictive performance. GBDTs are widely used in practice due the availability
of high quality and performant systems such as XGBoost [3], Light GBM [7] and
CatBoost [10]. These have been successfully applied to many real-world datasets,
and cope particularly well with heterogeneous and noisy data.

This paper explores how to more efficiently learn gradient boosting decision
tree models without sacrificing accuracy. When learning a GBDT model, the
vast majority of time is spent evaluating candidate splits when learning a single
tree. This involves counting instances and summing gradients. State-of-the-art
GBDT implementations use full 32- or 64-bit integers or floats to represent the
data and the gradients. We propose the BitBoost algorithm which represents the
data and gradients using bitsets and bitslices, two data structures originating
from database literature. This allows BitBoost to exploit the bit-level parallelism
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enabled by modern CPUs. However, these data structures impose strict limita-
tions on how and which numbers can be expressed. This necessitates adapting
three operations in the standard GBDT learning algorithm: summing gradients,
performing (in)equality checks, and counting. Empirically, BitBoost achieves
competitive predictive performance while reducing the runtime by a large margin.
Moreover, BitBoost is a publicly available package.’

2 Background and Related Work

2.1 Gradient Boosting

Schapire [12] proposed the theoretical idea of boosting, which was implemented
in practice by AdaBoost [5,13]. This idea was generalized by the generic gradient
boosting algorithm, which works with any differentiable loss function [6,9]. Given
N input instances {(x“yl)}fil and a differentiable loss function £, gradient
boosting models iteratively improve the predictions of y from x with respect to
L by adding new weak learners that improve upon the previous ones, forming an
additive ensemble model. The additive nature of the model can be expressed by:

FO(X) =, Fm(x) = mel(x) + h(),m(x)a (1)

where m is the iteration count, c¢ is an initial guess that minimizes £, and hg ,, (x)
is some weak learner parametrized by 6 such as a linear model or a decision tree.

In this paper, we focus on gradient boosting decision trees or GBDTs, which are
summarized in Algorithm 1. Gradient boosting systems minimize £ by gradually
taking steps in the direction of the negative gradient, just as numerical gradient-
descent methods do. In GBDTs, such a step is a single tree constructed to fit
the negative gradients. One can use a least-squares approach to find a tree hg= p,
that tries to achieve this goal:

N
0" = arggrninz [=9m (%> yi) = hom(x:)]7, (2)
=1

where g,,,(x,y) = 05L(y, J)|g=r,,_, (x) is the gradient of the loss function L.

Fy(x) = argmin, > | L(yi, )
for m < 1 to M do
Gm,i = 05 LY, 9) lg=Fp_1(x:)
he,m = a tree that optimizes Equation 2
Fun(%) = Frue1(X) + pon o ()
end
Alg. 1: The gradient boosting algorithm.

! BitBoost is hosted on GitHub: https://github.com/laudv/bitboost
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In practice, each individual tree is typically built in a greedy top-down manner:
the tree learning algorithm loops over all internal nodes in a depth-first order
starting at the root, and splits each node according to the best split condition.
The best split condition is found by identifying the feature with the best split
candidate. For example, the best split candidate for a numerical feature is a value
s that partitions the instance set — the data instances that sort to the current
node — into a left and right subset according to the condition z < s with maximal
gain, with = the feature value. Gain is defined as the difference in the model’s
loss before and after the split.

Competitive gradient boosting systems use a histogram-based approach to
generate a limited number of split candidates (e.g., 256). This means that for
each feature, the learner iterates over all remaining instances in the instance set
of the node to be split, and fills a histogram by collecting statistics about the
instances that go left given a split condition. The statistics include, depending
on the system, the sums of the first and optionally the second gradient, and
usually also an instance count. The aggregated statistics contain all the necessary
information to calculate the best split out of the (limited number of) candidate
splits. The complexity of this approach is O(F - (n + S)), with n the instance set
size, S the histogram size, and F' the feature count.

We will compare our finding with three such competitive systems. XGBoost [3]
was introduced in 2016 and improved the scalability of learning by introducing
sparsity-aware split finding, a novel parallel architecture, and the ability to take
on out-of-core learning. LightGBM [7] was presented one year later and proposed
a new gradient weighted sampling technique (GOSS), and a technique to reduce
the number features by combining features that have no non-zero values for the
same instance (EFB). Lastly, CatBoost [10] improved the accuracy of learning
from high-cardinality categorical data by identifying the problem of prediction
shift and resolving it with a new method called ordered boosting. All these systems
are efficient, complete, and open-source libraries.

2.2 Bitsets and Bitslices

Bitsets and bitslices are two data structures that originated in the database
literature [11,2]. We wish to utilize these structures in the gradient boosting
algorithm with the goal of improving learning times.

A bitset is a simple yet effective bit-level data structure used to represent a
set of items. A bitset is a string of bits of length N. The i** bit is 1 if the i**
item is present in the set and 0 if it is not.

A bitslice is a data structure used to represent a sequence of unsigned inte-
gers. In a typical array of integers, all bits of an individual number are stored
consecutively: 1, s, ..., 2y, where each z; is made up of B bits 22 .- 22z},
with 2P the most significant bit (MSB) and z} is the least significant bit (LSB).
A bitslice transposes this structure; instead of consecutively storing all bits of a

single number, it groups bits with the same significance:

B.B B 2.2 2 1.1 1
Ly Ty = TNy +evy TyTg Ty, L1Tg- TN,
—————— —_——

MSBs LSBs



4 L. Devos et al.

There are two main advantages of using bitslices for small integers. First, bitslices
can efficiently store integers smaller than the minimally addressable unit — a
single byte or 8 bits on modern systems — because of its transposed storage format.
For example, naively storing 1000 3-bit integers requires 1000 bytes of storage.
A bitslice only needs 3 x 125 = 375 bytes. Second, elements in a bitslice can be
efficiently summed. To sum up values in a bitslice, one adds up the contributions
of each bit group, optionally masking values with a bitset:

B

b—1 : b.b b
Z 27" x CountOnebits(zjas - a2y A S182+--SN) (3)
b=1 bitset mask
The CountOneBits operation, also known as the population count or popcount
operation, counts the number of one-bits in a bit string. This can be done very
efficiently using the vectorized Harley Seal algorithm [8], taking advantage of
AVX2 SIMD instructions operating on 32-byte wide registers.

3 BitBoost Algorithm

When learning a decision tree, the central subroutine is selecting which feature to
split on in a node. This entails evaluating the gain of all potential variable-value
splits and selecting the one with the highest gain. As in Equation 2, a single tree
fits the negative gradients g; of £ using least-squares. A split’s gain is defined
as the difference in the tree’s squared loss before and after the split. Splitting a
parent node p into a left and a right child ! and r results in the following gain:

gain(p,1,v) = 3 (=gi + Sp/ILD? = 3 (=gi + S/ = 3 (—gi + 5 /1L )

icl, i€l icl,

=S5 /M| + ZE /10| + 22 /1L, (4)

where I, gives the set of instances that are sorted by the tree to node % and
Y« =) icr. 9i is the sum of the gradients for node *. In other words, computing
the gain of a split requires three operations:

1. summing the gradients in both leaves;

2. performing (in)equality checks to partition the node’s instance sets based on
the split condition being evaluated; and

3. counting the number of examples in each node’s instance set.

Current implementations use 32- or 64-bit integers or floats to represent the
gradients, data, and example IDs in instance sets. Hence, the relevant quantities
in Equation 4 are all computed using standard mathematical or logical operations.

Our hypothesis is that employing native data types uses more precision than
is necessary to represent each of these quantities. That is, by possibly making
some approximations, we can much more compactly represent the gradients,
data, and instance sets using bitslice and bitset data structures. The primary
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advantage of the bit-level representations is speed: we can train a tree much
faster by exploiting systems-level optimizations. First, we exploit instruction-level
parallelism to very efficiently compute the relevant statistics used in Equation 4.
Second, by representing the data and instance sets using bitsets, important
operations such as partitioning the data at a node can be translated to vectorized
bitwise logical operations, which are much faster to perform than comparison
operators on floats or integers.

3.1 Representing the Gradients using Bitslices

When learning a GBDT model, each instance is associated with a real-valued
gradient value, which is updated after each iteration in the boosting process.
Existing gradient boosting systems typically use 32-bit, or even 64-bit floats
to represent these gradients. However, the individual trees tend to be shallow
to combat over-fitting. Consequently, rather than precisely partitioning data
instances into fine-grained subsets, a tree loosely groups instances with similar
gradient values. Intuitively, a gradient value represents an instance’s optimization
need, which is a measure of how much an instance requires a prediction update,
and the trees categorize instances according to this need.

Based on this observation, our insight is that storing the precise gradient
values may be superfluous, and it may be possible to represent these values using
fewer bits without affecting the categorization of the data instances. Therefore,
we explore discretizing the gradient values and storing the values in a bitslice. A
bitslice of width k can represent values 0, ...,2*¥ — 1. To map the gradient values
to the values that can be represented by the bitslice, the outer bounds b,,;, and
buax, corresponding to the bitslice values 0 and 2 — 1 respectively, need to be
chosen first. Then, gradient values g can be mapped to bitslice values using a
simple linear transformation:

()

g “ round <min(bmaX7 max(bminyg)) - bmin) )

bmax - bmin

The gradient values are thus mapped to a set of 2* linearly spaced points. An
example of this can be seen in Fig. 1.

Density (left axis) — -—-+--- Relative frequency (right axis)
] S 0.5
10 | 0.5 57 ,
OiT_IJ‘{I\I UL |/|\T| === 0.0 0 == |’| ==t 0.0
-1  Gradient values 1 -1  Gradient values 1

Fig. 1. Gradient value densities and the relative frequency of the 4-bit discretized values
of the first and the last iterations. The values were produced by an unbalanced (1/5
positive) binary classification problem using binary log-loss. The gray vertical dotted
lines indicate which 16 values can be represented with the 4-bit discretization.
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Hence, the key question is how to select the boundaries for the discretization.
This is loss-function dependent, and we consider five of the most commonly used
loss functions:

— Least absolute deviation (LAD): This loss function is widely used in practice
due its better handling of outliers compared to least-squares. The LAD is:

EI(F(X)’y) = |y - F(X>|7 (6)

and its gradients are either -1, indicating that an estimation for a particular
instance should increase, or 1, indicating that an estimation should decrease.
This information can be expressed with a single bit in a bitslice of width 1,
yet existing systems use a full float to represent this.

— Least-squared loss: The gradient values do not have naturally defined bound-
aries, and the magnitude of the extreme values depends on the targets of the
regression problem. Interestingly, choosing boundary values on the gradients
of the least-squared loss makes it equivalent to Huber loss. For that reason,
we look at Huber loss for inspiration when choosing boundaries.

— Huber loss: Huber loss is often used instead of squared-loss to combine the
faster convergence of least-squared loss with the resilience to outliers of LAD.
It has a single parameter §:

F(x)| — £6) otherwise.

Lus(F(x),y) = {g((f;:

The boundaries of the gradient values are naturally defined by the parameter
0: bmin = —0, the most negative gradient values, and byax = 6, the most
positive gradient value. The value of ¢ is often taken to be the @ quantile of
the residuals at iteration m, i.e., §,, = quantile_{|y; — Fin—1(x:)|} [6].

— Binary log-loss: Given labels y; in {—1,1}, binary log-loss is used for binary
classification problems and is defined as:

Liog(F(x),y) = log(1 + exp(—2yF(x))). (8)

This function’s gradient values are naturally confined to [—2, 2], so we choose
the boundary values accordingly. However, we have found that choosing more
aggressive boundaries (e.g., -1.25, 1.25) can speed up convergence.

— Hinge loss: Like binary log-loss, hinge loss is used for binary classification
problems. It is defined as:

Lhinge(F'(x),y) = max(0,1 — y F(x)). 9)

The possible (sub-)gradient values are -1, 0, and 1.

3.2 Representing the Data using Bitsets

The standard way to represent the data in GBDT implementations is to use
arrays of integers or floats. In contrast, we propose encoding the data using bitsets.
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How this is done depends on the feature. We distinguish among three feature
types: low-cardinality categorical, high-cardinality categorical, and numerical
features. To differentiate between low-cardinality and high-cardinality categorical
features, we define an upper limit K on a feature’s cardinality. A good value of
K is dataset specific, but we typically choose K between 8 and 32.

Low-cardinality categorical features. We use a one-hot encoding scheme:
given a feature f with r possible values vy, ..., v., we create r length-N bitsets.
The i** position of the k** bitset is set to one if the i** value of f equals vy.
The resulting bitsets can be used to evaluate all possible equality splits: for any
equality split f = v;, we compute the instance set of the left subtree by applying
the logical AND to the current instance set and bitset j (see Fig. 2, right).

High-cardinality features. This requires more work as considering all
possible equality splits has two main downsides. First, creating a bitset for each
value would negate both the space and computational efficiency of using this
representation. Second, because we consider binary trees, splitting based on an
equality against a single attribute-value would tend to result in an unbalanced
partition of the instance set, which may reduce the quality of the trees. Therefore,
we pre-process these features and group together feature values with similar
mean gradient statistics and construct one bitset per group. The mean gradient
statistic s; of a categorical value v; is defined as the summed gradient values g;
for all instances ¢ that have value v;. Then, we compute K quantiles g of s;
and use these to partition the categorical feature values. A bitset is generated for
each quantile g,. The k™ bitset has a one for each instance i that has value vj
and s; < qi. Because the gradient values change at every iteration, we repeat
this grouping procedure every t iterations of the boosting procedure, where ¢ is a
user-defined parameter. We refer to this parameter ¢ as the pre-processing rate.
We found that a value of 20 is a reasonable default.

Numerical features. We treat these in an analogous manner as the high-
cardinality categorical features. We estimate K weighted quantiles g using
the absolute gradient values as weights. We use the quantiles as ordered split
candidates, and generate K bitsets such that bitset k has a one in the i*” position
if instance 4’s value is less than ¢i. Like in the high-cardinality case, we perform
this transformation and reconstruct the bitsets every t iterations of the boosting
procedure, where ¢ is the pre-processing rate.

3.3 Representing an Instance Set using a Bitset

The instance set I, of a node p in a tree contains the training data instances
that satisfy the split conditions on the path to node p from the root. In existing
systems, these instance sets are stored as an array of indexes into the input
data, i.e., they are instance lists. We introduce the use of instance bitsets for
this purpose. An instance bitset represents the instance set by having a 1 for
instances that are in the instance set, and a zero for others. Fig. 2 illustrates the
difference on the left.

We have to contend with one subtlety when using a bitset to represent the
instance set: the length of the bitset is always IV, which is the number of training
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3,4] 8,9] AND ANDNOT

Fig. 2. An illustration of instance lists versus instance bitsets. The dataset comprises
10 instances indexed by 0,1,...,9. Values of feature f are 2,8,5,4,3,6,1,2,6,8. The
bitset representations of the instance sets are indicated below the node boxes, dark
squares are 1s, others are 0s. The instance list [3,4, 8, 9] using 64-bit integers requires
256 bits, whereas the bitset representation uses only 10 bits.

examples. This is problematic when partitioning the data at each node. Assuming
a perfectly balanced tree, the size of an instance set halves at each level of the tree.
The length of the bitset remains fixed, but the number of zeros, which represent
examples not filtered to the node in question, in the bitset increases. Constructing
all nodes of a tree at depth d requires passing over 2¢ length-N bitsets, for a total
cost of O(2%N). In contrast, when using a list-based representation of the instance
set, the length of the list halves at each level of the tree. Hence, constructing all
nodes at depth d has a total cost of O(N). Computationally, it is much faster to
process a bitset than the list-based representation, even if the list is much shorter
than the bitset. The trade-off is that we have to process more bitsets. As the tree
gets deeper, the number of bitsets and the fact that each one’s length is equal to
the number of training examples will eventually make this representation slower
than using a list-based representation.

Fortunately, we can exploit the fact that as the depth of the tree increases,
the bitsets become progressively sparser by applying a compression scheme to
the bitsets. Many compression schemes exist for bitsets, such as CONCISE [4] and
Roaring Bitmaps [1], but most of these schemes are optimized for the general
use-case. We have a specific use case and wish to optimize for speed more than for
storage efficiency. Therefore, we apply the following simple compression scheme.

We view each bitset as a series of 32-bit blocks. An uncompressed bitset
consists of a single array of 32-bit blocks which explicitly stores all blocks in
the bitset. A compressed bitset comprises two arrays: IDENTIFIERS, which stores
sorted 32-bit identifiers of the non-zero blocks, and BLOCKS, which stores the
bit-values of the non-zero 32-bit blocks. For any block i in the bitset, either
there exists a j such that IDENTIFIERS(j) = ¢ and the bits of the ith block are
BLOCKS(j), or the ith block consists of zero-bits. There are two main reasons
why we choose 32-bit blocks: (1) 64-bit blocks are too unlikely to be all-zero,
and (2) it is hard to efficiently integrate smaller 8- or 16-bit blocks into the
CountOneBits routine, which heavily relies on SIMD vectorization.

When constructing a tree, after having split a node, we compare the ratio
of the number of zero blocks and total number of blocks with a configurable
threshold. If the threshold is exceeded, the instance set of the child node is
compressed. The threshold determines how aggressively compression is applied.
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3.4 Finding the Best Split

Algorithm 2 shows our split finding algorithm based on bitsets and bitslices.
As is also the case in XGBoost, Light GBM, and CatBoost, it only considers
binary splits. Analogous to the classical histogram-based version, it loops over
all features f and initializes a new histogram H with bins for each candidate
split. The main difference is the inner for-loop. The classical algorithm loops
over all instances in the instance set individually, and accumulates the gradient
values and instance counts in the histogram bins. In contrast, our algorithm loops
over the split candidates which are the bitset representations we generated (see
Subsection 3.2). In the body of the loop, the statistics required to evaluate the
gain are computed: the sum of the discretized gradients X of the instances going
left is computed using Equation 3, and the number of instances |I;| going left is
computed using the fast CountOneBits procedure.

Input: Instance set I, and gradient sum X, of node p, and gradient bitslice G.
for all features f do
H; = InitializeNewHist (f)
for all candidate splits s of f with accompanying bitset Bs do
X, = BitsliceSum(G, Bs A Ip) /* Equation 3 */
|I;] = CountOneBits(Bs A I,,)
Hyls] = (X, |1Ii]) /* Store relevant statistics of s in Hjy */
end
end

2 2 2
Find split s* with maximum gain in all Hy by evaluating % 4+ EpmZ” 2—"‘

[Ip|—111] [Tp
return (S*7 B+ s Xx N Zp — Zl*)
Alg. 2: Bit-level split finding.

The nested loops fill the histogram H; for each feature f. Once all histograms
are constructed, the best split s* is determined by comparing the gain of each
split. Because we only consider binary splits, we use the property that I, = I, — I,
and thus |I.| = |I,| — |j], and X, = X, — X.

For each feature and each feature split candidate, we perform the BitsliceSum
and CountOneBits operations which are linear in the number of instances. The
complexity of the classical algorithm does not include the number of split can-
didates. This discrepancy is mitigated in two ways. First, the CountOneBits
operation, which also forms the basis for BitsliceSum, is much faster than iter-
ating over the instances individually. Second, we only consider a small number of
candidate splits by pre-processing the numerical and high-cardinality categorical
features. Note that the classical algorithm does not benefit from a small number
of candidate splits, as it can fill the histograms from Algorithm 2 in a single pass
over the data.
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3.5 Overview of the BitBoost algorithm

Algorithm 1 gave an overview of the generic boosting algorithm. It minimizes
the loss function £ by iteratively constructing trees that update the predictions
in the direction of the negative gradient. Bitboost adds three additional steps to
this algorithm. First, the bitsets for the low-cardinality categorical features are
generated once at the start of the learning process and reused thereafter. Second,
at the beginning of each iteration the gradients are discretized using a certain
number of discretization bits and stored in a bitslice. Third, every ¢ iterations,
the data bitsets of the high-cardinality categorical and numerical features are
regenerated. The parameter ¢ expresses the pre-processing rate.

Input: Gradient bitslice G
stack = {(1'1,211-\7:1 gi)} /* Root node; [; is all-ones instance bitset
*/
while popping (I,, Xp) from stack succeeds do
if p is at maximum depth then
‘ ChooseLeafValue(p)
else
(s*, Bs*, X1, Xr) = FindBestSplit ([, Xp, G) /* Algorithm 2 */
I} =I, AN Bs+ and I, = I, AN—~Bg« /* Instance sets of children */
Apply compression to I; and/or I, if threshold exceeded.
Push(stack, (I, X)) and Push(stack, (I, X))
endif
end

Alg. 3: BitBoost tree construction algorithm.

The individual trees are built in a standard, greedy, top-down manner, as
shown in Algorithm 3. The algorithm maintains a stack of nodes to split, which
initially only contains the root node. These nodes are split by the best split
condition, which is found using Algorithm 2, and the instance sets of the children
are generated using simple logical operations. Compression is applied before child
nodes are pushed onto the stack when the ratio of zero blocks over the total
number of blocks exceeds the configurable threshold.

Leaf nodes hold the final prediction values. To pick the best leaf values, as
ChooseLeafValue does in Algorithm 3, we use the same strategy as Friedman [6].
For LAD, we use the median gradient value of the instances in the instance
set. For least-squares, the values X, /|I,| would be optimal if the gradient values
gi were exact. This is not the case, so we recompute the mean using the exact
gradients. We refer to Friedman’s work for the Huber loss and binary log-loss.

4 Experiments

First, we empirically benchmark BitBoost against state-of-the-art systems. Second,
we analyze the effect of the four BitBoost-specific parameters on performance.
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4.1 Comparison with State-of-the-Art Systems

In this first experiment we compare our system, BitBoost, to three state-of-the-art
systems: XGBoost, CatBoost and Light GBM.

Datasets and tasks. We show results for four benchmark datasets that have
different characteristics: (1) Allstate,® an insurance dataset containing 188k
instances, each with 116 categorical and 14 continuous features. (2) Bin-MNIST,?,
a binary derivative of the famous MNIST dataset of 70k handwritten digits. We
converted its 784 features into black and white pixels and predict if a number is
less than 5. This dataset represents BitBoost’s best case scenario, as all features
are binary. (3) Covertype,* a forestry dataset with 581k instances, each with 44
categorical and 10 continuous features. We consider two classification tasks: for
CovType;, we predict lodgepole-pine versus all (balanced, 48.8% positive); for
CovTypesq, we predict broadleaf trees versus rest (unbalanced, 2.1% positive). (4)
YouTube,® a dataset with YouTube videos that are trending over a period of time.
Numerical features are log-transformed, date and time features are converted
into numerical features, and textual features are converted into 373 bag-of-word
features (e.g. title and description). This results in a dataset with 121k instances,
each with 399 features. We predict the 10-log-transformed view count, i.e., we
predict whether a video gets thousands, millions, or billions of views. We use
5-fold cross validation, and average times and accuracies over all folds.

Settings. Most of the parameters are shared across the four systems and only
a few of them are system-specific: (1) Loss function, we use binary log-loss and
hinge loss for classification, and least-squares, Huber loss and LAD for regression.
Not all systems support all loss functions: XGBoost does not support Huber
loss or LAD. CatBoost does not support Huber loss or hinge loss. Light GBM
does not support hinge loss. (2) Learning rate is a constant factor that scales
the predictions of individual trees to distribute learning over multiple trees. We
choose a single learning rate per problem and use the same value for all systems.
(3) Mazimum tree depth limits the depth of the individual trees. We use depth 5
for Allstate, 6 for Covertype and Bin-MNIST, and 9 for YouTube. (4) Bagging
fraction defines the fraction of instances we use for individual trees. By applying
bagging, better generalizing models are build faster. (5) Feature fraction defines
the fraction of features we use per tree. CatBoost only supports feature selection
per tree level. (6) Minimum split gain reduces over-fitting by avoiding splits
that are not promising. We use a value of 107> for all systems. (7) Mazimum
cardinality K sets the maximum cardinality of low-cardinality categorical features
(BitBoost only). (8) Pre-processing rate t sets the rate at which we execute the
pre-processing procedure. This is used to avoid pre-processing numerical and
high-cardinality features at each iteration (BitBoost only).

2 https://www.kaggle.com/c/allstate-claims-severity
3 http://yann.lecun.com/exdb/mnist

4 https://archive.ics.uci.edu/ml/datasets/covertype
® https://www.kaggle.com/datasnaek/youtube-new
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For XGBoost, we use the histogram tree method since it is faster; for Light-
GBM, we use the GBDT boosting type; and for CatBoost we use the plain
boosting type. We disable XGBoost’s and Light GBM’s support for sparse fea-
tures to avoid unrelated differences between the systems. To measure the efficiency
of the tree learning algorithms rather than the multi-threading capabilities of
the systems, we disable multi-threading and run all experiments on a single core.

Parameter sets were chosen per dataset based on the performance on a
validation set and the reported accuracies were evaluated on a separate test set.
We provide results for two different parameter sets for BitBoost. BitBoosta aims
to achieve the best possible accuracies, whereas BitBoostg prioritizes speed. The
number of discretization bits, i.e., the precision with which we discretize the
gradients, is chosen depending on the problem. Binary log-loss tends to require
at least 4 or 8 bits. Hinge loss requires only 2 bits, but is less accurate. We use 4
or 8 bits for least-squares, 2 or 4 for Huber loss. Both least-squares and Huber
behave like LAD when using a single bit, the only difference being the lack of
resilience to outliers for least-squares. More extensive results and the specific
parameter values can be found in the BitBoost repository.

Table 1. Comparison of BitBoost with three state-of-the-art systems. Time is in seconds.
Loss is expressed in binary error for classification and mean absolute error (MAE) for
regression. The BitBoosta row shows the results when choosing accuracy over speed.
The BitBoosts row shows the results when choosing speed over accuracy, staying within
reasonable accuracy boundaries.

Allstate Covtype:r Covtypez Bin-MNIST YouTube
Time Loss Time Loss Time Loss Time Loss Time Loss

BitBoosta 4.8 1159 17.1 12.0 10.7 0.79 4.5 278 143 0.07
BitBoostg 1.0 1194 54 14.9 7.2 1.02 1.9 3.52 25 012

LightGBM 12.3 1156 24.1 11.9 21.0 0.71 248 286 350 0.07
XGBoost 11.5 1157 37.0 10.8 353 0.63 247 266 249 0.07
CatBoost 82.6 1167 58.1 13.1 529 091 16,5 3.23 336 0.11

Results. Table 1 shows a comparison of the training times and accuracies. On the
Allstate dataset, we perform two to over ten times faster than Light GBM and
XGBoost, while still achieving accuracies that are comparable to the state of the
art. The results for the Covertype dataset show that BitBoost can also handle
numerical and high-cardinality features effectively. The Bin-MNIST dataset
illustrates that BitBoost is able to construct competitively accurate models using
only 20% of the time, and, when giving up some accuracy, can achieve speed-ups
of a factor 10. The YouTube dataset requires deeper trees because of its sparse
bag-of-word features only splitting off small chunks of instances. The results show
that BitBoost also performs well in this case.
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In general, BitBoost is able to effectively explore the trade-off between accu-
racy and speed. Besides the usual parameters like bagging fraction and feature
sampling fraction, BitBoost provides one main additional parameter unavailable
in other systems: the number of discretization bits. This parameter controls the
precision at which BitBoost operates, and together with a suitable loss function
like LAD or hinge loss, enables trading accuracy for speed in a novel way.

4.2 Effect of the Number of Bits Used to Discretize the Gradient

Time relative to 1 bit Test metric rel. to 8 bits
2.5% — 2.5% — BE= Allstate
2.0x E 2x E zza Covertype
1.5% 7 1.5x 9 =z B-MNIST
ﬁ I Eﬂ a E BN YouTube
{aggn Bl A0 L+ Sl ol ol e
1 2 4 8 1 2 4 8

Num. of discretization bits Num. of discretization bits

Fig. 3. The effect of the width of bitslice used to discretize the gradient on the model
construction time (left) and the performance metric (right). The run times are relative to
the fastest option (i.e., one-bit discretization), meaning higher is slower. The performance
metric values are relative to the best performing option (i.e., eight-bit discretization),
meaning higher is less accurate.

The number of discretization bits used in the bitslice that stores the gradient
values will affect BitBoost’s performance. Fig. 3 shows the effect of using 1, 2,
4 and 8 bits on run time and predictive performance. The trade-off is clear:
using fewer bits decreases the training time, but using more bits improves the
predictive performance. Bin-MNIST has the largest effect in terms of run time
because it only contains binary features. Hence, there is no work associated
with repeatedly converting high-cardinality or real-valued features into bitsets,
meaning that the extra computational demand arising from the bigger bitslice
has a larger percentage effect on the run time. Note that Allstate’s accuracy
is unaffected. This is due to the use of LAD loss whose gradient values can be
stored with a single bit. We used Huber loss for YouTube, which was able to
guide the optimization process effectively using only 2 bits.

4.3 Effect of the Low-Cardinality Boundary K

The parameter K determines which categorical features are considered to be
low-cardinality. It will affect run time as higher values of K require considering
more split candidates. However, smaller values of K also introduce overhead
in terms of the pre-processing needed to cope with high-cardinality attributes,
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Time relative to K = 32 Test metric rel. to K = 32
1.5 E 1.2x 7 == Allstate
: ] zza Covertype
1] 11x 4 =2 B-MNIST
] ‘ ‘ E a == YouTube
Fil o ol i 1
0.5><—IHI ‘ ‘ ‘ ‘ II II I‘ilﬁ‘iiﬂl‘i
8 16 32 64 128 8§ 16 32 64 128

Maximum cardinality K Maximum cardinality K

Fig. 4. The effect of K on the run time times relative to K = 32 (left); and the
accuracies, also relative to K = 32 (right).

that is, grouping together similar values for an attribute and generating the
associated bitsets. K may also affect predictive performance in two ways: (1)
some high-categorical features may have more natural groupings of values than
others, and (2) it controls the number of split candidates considered for numerical
features.

Fig. 4 shows the effect of varying K on the run time and predictive performance.
As K increases, so does the run time, indicating that the extra effort associated
with considering more split candidates is more costly than the additional pre-
processing necessary to group together similar feature values. Interestingly, the
value of K seems to have little effect on the predictive performance for the
Allstate dataset, meaning that considering more fine-grained splits does not
produce better results. The Covertype and YouTube datasets seem to benefit
from a higher K value, but the increase in accuracy diminishes for values larger
than 32. As the Bin-MNIST dataset only has binary features and does not require
any pre-processing, the run time and predictive performance is unaffected by K.
In terms of accuracy, a good value of K is likely to be problem specific.

4.4 Effect of Compressing the Instance Bitset on Run Time

Compressing the instance bitset affects run time and involves a trade-off. Always
compressing will introduce unnecessary overhead at shallow levels of the tree
where there is little sparsity in the instance bitsets. Conversely, never compressing
will adversely affect run time when the tree is deeper. To quantify its effect, we
measure model construction time as a function of the compression threshold.
Fig. 5 plots the run times for compression thresholds ranging from 0.0 (always
apply compression) to 1.0 (never apply compression). The trade-off is clearly
visible for Covertype and Bin-MNIST (left). Allstate only considers trees of depth
5, which causes instance sets to be more dense on average, making compression
less effective. This is confirmed by the results for YouTube that are plotted for
different tree depths (right). Shallower trees do not benefit from compression,
whereas deeper trees with sparser instance sets do.
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Time relative to 0.50

Time relative to 0.50
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Fig. 5. The model construction time as a function of the compression threshold, which
varies from 0.0 (always apply compression) to 1.0 (never apply compression). The time
is relative to a threshold of 0.5, which was used in all experiments.

4.5 Effect of Pre-Processing Rate

BitBoost reconverts high-cardinality and continuous features into bitmaps every
t iterations. Fig. 6 shows how the model construction time and predictive perfor-
mance vary as a function of ¢ on the Covertype, Allstate and YouTube datasets.
Bin-MNIST is not included as it has neither high-cardinality nor continuous
features and thus requires no pre-processing. As expected, run time drops as t
increases. Interestingly, it plateaus for values of ¢ > 10. For Allstate and YouTube,
predictive performance is unaffected by this parameter. However, performance
slightly degrades for the Covertype dataset for higher values of t.

Time relative to 1 Test metric rel. to 1

1.0 E ;\\‘---!------\ L1x - —I— Allstate
0.8x 7\ g | X Covertype
0.6 1\ i --F-- YouTube

OX 7] F‘l‘l—u——s\

] I 10+
1T T T T

0.4x

1510 20 30 40 5

Pre-processing rate

T
1510 20 30 40 50

Pre-processing rate

Fig. 6. The effect of the pre-processing rate ¢ on model construction time (left) and
predictive performance (right). The results are shown relative to ¢ = 1.

5 Conclusion

We have introduced BitBoost, a novel way of integrating the bitset and bitslice
data structures into the gradient boosting decision tree algorithm. These data
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structure can benefit from bit-level optimizations in modern CPUs to speed up
the computation. However, bitslices cannot be used as is in existing gradient
boosting decision trees. BitBoost discretizes the gradients such that it has only a
limited effect on the predictive performance. The combination of using a bitslice
to store the gradient values and representing the data and the instance sets as
bitsets reduces the core problem of learning a single tree to summing masked
gradients, which can be solved very efficiently. We have empirically shown that
this approach can speed up model construction 2 to 10 times compared to
state-of-the-art systems without harming predictive performance.
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