NODE2BITS: Compact Time- and Attribute-aware
Node Representations for User Stitching

Di Jin! (X}), Mark Heimann!, Ryan A. Rossi?, and Danai Koutra'

! University of Michigan, Ann Arbor
2 Adobe Research

Abstract. Identity stitching, the task of identifying and matching vari-
ous online references (e.g., sessions over different devices and timespans)
to the same user in real-world web services, is crucial for personalization
and recommendations. However, traditional user stitching approaches,
such as grouping or blocking, require quadratic pairwise comparisons be-
tween a massive number of user activities, thus posing both computational
and storage challenges. Recent works, which are often application-specific,
heuristically seek to reduce the amount of comparisons, but they suffer
from low precision and recall. To solve the problem in an application-
independent way, we take a heterogeneous network-based approach in
which users (nodes) interact with content (e.g., sessions, websites), and
may have attributes (e.g., location). We propose NODE2BITS, an efficient
framework that represents multi-dimensional features of node contexts
with binary hashcodes. NODE2BITS leverages feature-based temporal walks
to encapsulate short- and long-term interactions between nodes in hetero-
geneous web networks, and adopts SimHash to obtain compact, binary
representations and avoid the quadratic complexity for similarity search.
Extensive experiments on large-scale real networks show that NODE2BITS
outperforms traditional techniques and existing works that generate real-
valued embeddings by up to 5.16% in F'1 score on user stitching, while
taking only up to 1.56% as much storage.

1 Introduction

Personalization and recommendations increase user satisfaction by providing
relevant experiences and handling the online information overload in news, web
search, entertainment, and more [13,25]. Accurately modeling user behavior and
preferences over time are at the core of personalization. However, tracking user
activity online is challenging as users interact with tens of internet-enabled devices
from different locations daily, leading to fragmented user profiles. Without unified
profiles, the observed user data are sparse, non-representative of the population,
and insufficient for accurate predictions that drive business success.

In this work, we tackle the problem of identity or user stitching, which aims
to identify and group together logged-in and anonymous sessions that correspond
to the same user despite taking place across different channels, platforms, devices
and browsers [28]. This problem is a form of entity or identity resolution [14,2],

2 D. Jin et al.

also known as entity linking, record linkage, and duplicate detection [6,20,2].
Uunlike entity resolution where textual information per user (e.g., name, address)
is available, identity stitching relies solely on user interactions with online content
and web metadata. Although cookies can help stitch several different sessions of
the same user, many users have multiple cookies (e.g., a cookie for each device
or web browser) [8], most cookies expire after a short time, and therefore cannot
help to stitch users over time. Similarly, IP addresses change across locations
resulting in fragmentation or even erroneous stitching between users who have
the same IP address at different times (e.g., airports). Meanwhile, fingerprinting
approaches [12] capture user similarity based on device or browser configurations,
not on behavioral patterns that remain consistent across devices or browsers.
On the other hand, exhaustive solutions for entity resolution require quadratic
number of comparisons between all pairs of entities, which is computationally
intractable for large-scale web services. This can be partially handled via the
heuristic of blocking [22], which groups similar entity descriptions into blocks,
and only compares entities within the same block.

To overcome these challenges and better tailor to the user stitching setup, our
solution is based on the idea that the same user accesses similar content across
platforms and has similar behavior over time. We model the user interactions
with different content and platforms over time in a dynamic heterogeneous
network, where user stitching maps to the identification of nodes that correspond
to the same real-world entity. Motivated by the success of node representation
learning, we aim to find embeddings of time-evolving ‘user profiles’ over this
rich network of interactions. For large-scale graphs, however, the customary
dense node representations for each node can often impose a formidable memory
requirement, on par with that of the original (sparse) adjacency matrices [1].
Thus, to efficiently find sparse binary representations and link entities based on
similar activity while avoiding the pairwise comparison of all user profiles, we
solve the following problem:

Problem 1 (Temporal, Hash-based Node Embeddings). Given a graph G(V, E),
the goal of hash-based network embedding is to learn a function x : V — {0,1}¢
such that the derived binary d-dimensional embeddings (1) preserve similarities
in interactions in G, (2) are space-efficient, and (3) accurately capture temporal
information and the heterogeneity of the underlying network.

We introduce a gen- IPs (SessiOHS) Sites Hashcode
cookie ids;
eral framework called i—n']—t i, O*) 2 EJ- A) 00011000 111
NODE2BITS that cap- :

8, v ...
/ Node2bits ./ *
tures temporally-valid Clﬁj BE. s [E] — 6 [1 1010 0101 0101
i i - r — : :
interactions between nodes) \ 'c] ‘1010 0101 0100
in a network, and con- C_u_;_j o D 2 @ e
structs the contexts .
based on topological __2__:Timestamp when the connection establishes
features and (optional)

CO \ Fig. 1: NODE2BITS overview. NODE2BITS encodes the tem-
side information of en- poral, heterogeneous information into binary hashcode for
tities involved in the in- efficient user St]tch]ng

Compact Time- and Attribute-aware Node Representation Learning 3

teraction. These feature-based contexts are then turned into histograms that
incorporate node type information at different temporal distances, and are mapped
to binary hashcodes through SimHash [5]. Thanks to locality sensitive hashing [32],
the hashcodes, which are time-, attribute- and structure-aware, preserve the sim-
ilarities in temporal interaction patterns in the network, and achieve both space
and computational efficiency for similarity search. Given these sparse, hash-based
embeddings of all entities, we then cast user stitching as a supervised binary
classification task or a hashing-based unsupervised task. As an example shown in
Fig. 1, devices B and C' are associated with identical IPs and similar online sales
websites visited afterwards, thus they are encoded similarly and could correspond
to the same user. Our contributions are:

— Embedding-based Formulation: Going beyond traditional blocking tech-
niques, we formulate the problem of user stitching as the problem of finding
temporal, hash-based embeddings in heterogeneous networks such that they
maintain similarities between user interactions over time.

— Space-efficient Embeddings: We propose NODE2BITS, a practical, intu-
itive, and fast framework that generates compact, binary embeddings suitable
for user stitching. Our method combines random walk-based sampling of
contexts, their feature-based histogram representations, and locality sensitive
hashing to preserve the heterogeneous equivalency of contexts over time.

— Extensive Empirical Analysis: Our experiments on real-world networks
show that NODE2BITS outputs a space-efficient binary representation which
uses between 63x and 339x less space than the baselines while achieving com-
parable or better performance in user stitching tasks. Moreover, NODE2BITS
is scalable for large real-world temporal and heterogeneous networks.

2 Preliminaries and Definitions

Before we introduce NODE2BITS, we discuss two key concepts that our method is
based on: dynamic heterogeneous network model, and temporal random walks.
We give the main symbols and their definitions in Table 1.

2.1 Dynamic Heterogeneous Network Model

As we mentioned above, we model the user interactions with content, websites,
devices etc. as a heterogeneous network, which is formally defined as:

Definition 1 (HETEROGENEOUS NEWORK). A heterogeneous network G =
(V,E,,€&) is comprised of (i) a nodeset V and edgeset E, (ii) a mapping ¢ :
V — Ty of nodes to their types, and (iii) a mapping & : E — Tg to edge types.

Many graph types are special cases of heterogeneous networks: (1) homoge-
neous graphs have |Ty| = |Tg| = 1 type; (2) k-partite graphs consist of [Ty | =k
and |Tg| = k — 1 types; (3) signed networks have |Ty/| =1 and |Tg| = 2 types;
and (4) labeled graphs have a single label per node/edge.

4 D. Jin et al.

Table 1: Summary of major symbols and their definitions.

Symbol Definition

G(V, E, &, 1) (un)directed and (un)weighted heterogeneous network with
nodeset V', edgeset F, a mapping £ from nodes to node types,
and an edge mapping 1, resp.

|V| = N, |E| = M number of nodes and edges in G
Tv,|Tv|; Te, | Te| set of node/edge types in the heterogeneous graph and its size,
resp.
F N x |F| feature matrix including node attributes and derived
features
fij» figy (i,7)™ element of F and index of its j' feature, resp.
W set of random walks
(Wr)Len, Wi [u] sequence of nodes in a random walk of length L, and the index
of node u, resp.
L the maximum length of a random walk
At ‘temporal distance’ in W based on temporally ordered edge

transitions
CAt CAt| f context of node u at distance At, and feature-based context,
resp.
gi : C — {0,1} i*" LSH function that hashes a node context into a binary
value

K4t K embedding dimension at distance At, and output dimension
K =Y 3o K2
h(S),h(S|') unconditional and conditional b-bin histogram of values in
enclosed set S, resp.
Z N x K output binary embeddings or hashcodes

Most real networks capture evolving processes (e.g., communication, browsing
activity) and thus change over time. Instead of approximating a dynamic network
as a sequence of lossy discrete static snapshots Gy, ..., G, we model the temporal
interactions in a lossless fashion as a continuous-time dynamic network [21].

Definition 2 (CONTINUOUS-TIME DYNAMIC NETWORK). A continuous-time
dynamic, heterogeneous network G = (V, E-,v,&,7) is a heterogeneous network
with E, temporal edges between vertices V, where T : E — R is a function that
maps each edge to a corresponding timestamp.

2.2 Temporal Random Walks

A walk on a graph is a sequence of nodes where each pair of successive nodes
are connected by an edge. Popular network embedding methods generate walks
using randomized procedures [23,15] to construct a corpus of node IDs or node
context. In continuous-time dynamic networks, a temporally valid walk is defined

Compact Time- and Attribute-aware Node Representation Learning 5

—L sept }— — Step2 }— — Ster3 |—

Sample R temporal random || Create temporal context via | |Aggregate the feature-based

walks per edge & define multi-dimensional features context and hash it into
node context (e.g., for a) binary representations

At=1 At=2
At=1 At=2 firp At=1 At=2

n-ofmo || B 1o J|°
B ﬁ,oeeuo: o} -
———————————————— Q| ° ',"' f] f}'\
""" u Q e e u 0 ; Create feature histograms per
.... | temporal distance At

] ' SimHash
i The node-ids in the contexts of

A l each node (e.g., a, b) are m - -
b Feature S”uc‘ura‘ replaced w. their featu"re values

Attribute matrix) U matrix Attributes P L in the “tensor) 1 G

Fig.2: NODE2BITS workflow. Given a graph and its attribute matrix (optional),
NODE2BITS (1) samples temporal random walks to obtain sequences that respect time;
derives contexts at different temporal distances, as well as the feature matrix F (tempo-
ral contexts of a and b are derived from the walk {b, a, b, c} (2) creates temporal contexts
based on multi-dimensional features in F, and (3) aggregates them into feature-based
histograms to obtain sparse, binary, similarity-preserving embeddings via SimHash.

as a sequence of nodes connected by edges with non-decreasing timestamps (e.g.,
representing the order that user-content interactions occurred) and they were
first used for embeddings in [21].

Definition 3 (TEMPORAL WALK). A temporal walk of length L from vy to
vy, in graph G = (V, E ¢, §) is a sequence of vertices (v1,va, - ,vr) such that
(vi,vi+1) € E; for 1 < i < L, and the timestamps are in valid temporal order:
T(’Ui,’l)l'+1) < T(Ui+171)i+2) fOT 1<1< (L —].)

3 NODE2BITS: Hash-based Emdedding Framework

Motivated by the task of user stitching, we aim to develop NODE2BITS to com-
pactly describe each node/entity in the context of realistic interactions (Prob-
lem 1). The requirements for NODE2BITS naturally follow from the user stitching
application. It should (R1) support heterogeneous networks where the nodes and
edges can be of any arbitrary type (e.g., a user, web page, IP, tag, spatial location);
(R2) preserve the temporal validity of the events and interactions in the data;
(R3) scale in runtime to large networks with millions of nodes/edges; and (R4)
scale in memory requirements with space-efficient yet powerful binary embeddings
that capture ID-independent similarities. Next we detail the three main steps
of NODE2BITS: (§ 3.1) Sampling temporal random walks and defining temporal
contexts; (§ 3.2) Constructing temporal contexts based on multi-dimensional
features; (§ 3.3) Aggregating and hashing contexts into sparse embeddings. We
give the overview of NODE2BITS in Figure 2 and Algorithm 1. For reproducibility,
the code is available at https://github.com/GemsLab/node2bits.

https://github.com/GemsLab/node2bits

6 D. Jin et al.

3.1 Temporal Random Walk Sampling

The first step of NODE2BITS is to captures node interactions in its context, which is
important for the user stitching task: instead of simple interactions corresponding
to pairwise edges, it samples more complex interaction sequences via random
walks. But unlike many existing representation learning approaches [23,15], our
method samples realistic interactions in the order that they happen via L-step
temporal random walks (Definition 3 [21]), thus satisfying requirement R2.

NODE2BITS defines the temporal context C2t of node u at temporal distance
At as the collection of entities that are at At-hops away from node u in the
sampled random walks. Formally:

CAY = {v : |wpv] — wi[u]| = At, Yw € W}, (1)

where w,[-] is the index of the corresponding node in the random walk (Wr)ren.
For example, in Figure 2 (Step 1) the context of node a at temporal distance 2 is
CA%=2 = {c} (highlighted in red). Depending on the temporal context that we
want to capture, the At can vary up to a M AX distance. Intuitively, small values
of temporal distance capture more direct interactions and similarities between
entities. In static graphs, At simply corresponds to the distance between nodes
in the sampled sequences, without capturing any temporal information.

Temporal locality. The context that is defined above does not explicitly incor-
porate the time elapsed between consecutively sampled interactions. However,
when modeling temporal user interactions, it is important to distinguish between
short-term and long-term transitions. Inspired by [21], NODE2BITS accounts for
the closeness or locality between consecutive contexts (i.e., C2* and CAtF1)
through different biased temporal walk policies. For example, in the short-term
policy, the transition probability from node w to v is given as the softmax function:

exp (—7(u,v)/d)
>ier, () XP (=7 (u,1)/d)

where 7() maps an edge to its timestamp, d = max.cg_7(e) — min.cp,_ 7(e) is
the total duration of all timestamps, and I';(u) is the set of temporal neighbors
reached from node u through temporally valid edges. Similarly, in the long-term
policy, the transition probability from node u to v is given as in Equation (2)
but with positive signs in the numerator and denominator.

Pllu] = (2)

3.2 Temporal Context based on Multi-dimensional Features

The context in Eq. (1) depends on the node identities (IDs). However, in a
multi-platform environment, a single entity may have multiple node IDs, thus
contributing to seemingly different contexts. To generate ID-independent contexts
that are appropriate for user stitching, we make the temporal contexts attribute-
or feature-aware (R1), by building on the assumption that corresponding or
similar entities have similar features. Formally, we assume that a network may
have a set of input node attributes (e.g., IP address, device type), as well as

Compact Time- and Attribute-aware Node Representation Learning 7

a set of derived topological features (e.g., degree, PageRank), all of which are
stored in a N x |F| feature matrix F (Figure 2, Step 1). We then generalize our
random walks to not only respect time (R2) [21], but also capture this feature
information using the notion of attributed/feature-based walks proposed in [1]:

Definition 4 (FEATURE-BASED TEMPORAL WALK). A feature-based temporal
walk of length L from node vy to vy in graph G is defined as a sequence of feature
values corresponding to the sequence of vertices in a valid temporal walk (Dfn. 3).
For the jt" feature [y, the corresponding feature-based temporal walk is

<wL,f(j)>LEN = <fv1,jafvg,ja-~-afv1,,j>7 (3)

where fo, ; is the value of the j'" feature for node v;, stored in matriz F.

Our definition is general as it allows walks to obey time while allowing each node
to have a d-dimensional vector of input attribute values and/or derived structural
features, which can be discrete or real-valued [1].

Temporally-valid, multi-dimensional feature contexts. NODE2BITS ex-
tends the previously generated temporal contexts to incorporate node features
and remove the dependency on node IDs. Following the definition of feature-
based temporal walks, given |F| features, our method generates |F|-dimensional
contexts per node u and temporal distance At by replacing the node IDs in
Equation (1) with their corresponding feature values (Figure 2, Step 2). Formally,
the temporally-valid, multi-dimensional feature contexts are defined as:

CuAt|f(j) ={fu; : Yve CuAt} V feature f(;) € F, (4)

where f, ; is the value of the 4t feature for node v.

3.3 Feature-based Context Aggregation and Hashing

The key insight in user stitching is that each user interacts with similarly ‘typed’
entities through similar relations over time: for example, in online-sales logs, a user
likely browses similar types of goods in logged-in and anonymous sessions; and in
online social networks, accounts sharing near-identical interaction patterns, such
as replies or shares, are potentially from the same person. Based on this insight,
NODE2BITS augments the previously generated temporal, multi-dimensional
feature contexts with node types (and implicitly the corresponding relations
or edge types), which is a key property of heterogeneous networks (R1). It
subsequently aggregates them and derives similarity-preserving and space-efficient,
binary entity representations (R4) via locality sensitive hashing.

Context Aggregation. Unlike existing works that aggregate contextual features
into a single value such as mean or maximum [16,27], NODE2BITS aggregates them
into less lossy representations: histograms tailored to heterogeneous networks by

8 D. Jin et al.

distinguishing between node types (R1). Specifically, it models the transitional
dependency across node and relation types by further conditioning the derived
contexts in Equation (4) on the node types p; € Ty (i.e., each temporal context
consists of the features of only one node type). We denote the temporal contexts
conditioned on both features and node types as C2*|f,p. The final histogram
representation of node u at temporal distance At consists of the concatenation
of the histograms over the conditional contexts at At (Figure 2, Step 3):

h(C2) = (CI | fay,p1), h(C | foy,p1)s- - h(CE | fumpspim)] (B)

In this representation, the features are binned logarithmically to account for the
often skewed distributions of structural features. We note that the histograms
can be further extended to edge types as well, for example by distinguishing
nodes that are connected by different types of edges.

Similarity-preserving Representations via Hashing. Locality sensitive
hashing (LSH) has been widely used for searching nearest neighbors in large-scale
data mining [32]. In this work, we adopt SimHash [5] to obtain similarity-
preserving and space-efficient representations (R4) for all the entities in the
heterogeneous network based on their aggregated time-, attribute-, and node
type-aware contexts (Equation 5).

Given a node-specific histogram h(C2*) € R? (with dimensionality d =
|F||Tv |- b, and b being the number of logarithmic bins for the features), SimHash
generates a K “*-dimensional® binary hashcode or sketch z4* by projecting the
histogram to K 4! random hyperplanes r; € R? as follows:

gi(h(C*)) = sign (h(C7") - 1) (6)

In practice, the hyperplanes do not need to be chosen uniformly at random from
a multivariate normal distribution, but it suffices to choose them uniformly from
{—1,1}?. The important property of locality sensitive hashing that guarantees
that the similarities in the histogram space (which captures the temporal inter-
actions between entities in G) are maintained is the following: for the SimHash
family, the probability that a hash function agrees for two different vectors is
equal to their cosine similarity. More formally, for two nodes u and v:
-1 h(CZAt)h(CUAAt)
[h(CZDh(CFH)]
180 (™)
In other words, the cosine similarity between nodes u and v in the context-space is
projected to the sketch-space and can be measured by the cardinality of matching
between z2 and z5, where z2* = [g1(h(CAY)), g2(h(CAY), ..., gra: (h(CAY)].
For each node u in G, the final binary representation is obtained by concate-
nating the hashcodes for contexts at different temporal distances At, resulting in

. . . MAX
a K-dimensional vector (since K =)i K4):

COS

P(gi(h(Cy")) = g:(h(C))) =1~

Zy = [thzl th:Q th:MAX] (8)

K

3 We assume that the length of each sketch at distance At is given as K4t = VA

Compact Time- and Attribute-aware Node Representation Learning 9

Algorithm 1 NODE2BITS Framework

Require: (un)directed heterogeneous graph G(V, E, v, §), # random walks R
per edge, max walk length L, max temporal distance MAX, embedding
dimensionality K4t at dist. At

1: For each edge e, perform R temporal walks based on the short- or long-term
policy (§ 3.1)

2: Obtain temporal contexts C2* for each node u at temporal distances At <
MAX via Eq. (1)

3: Construct feature matrix F with node attributes (if avail.) and topological
features (§ 3.2)

4: Derive feature-based temporal contexts C2'|f;) by replacing v € C2 with
the feature value f, ;, as shown in Eq. (4)

5: for each temporal distance At = 1,... ,MAX and node u € V do

6: Obtain u’s final histogram h(C2*) over its contexts using Eq. (5)

7: Obtain a K4*-dim, sparse, binary hashcode zuAt based on (modified)
SimHash (§ 3.3)

8: Obtain the binary N2B embeddings z,, of all nodes across temporal distances
At via Eq. (8)

9: Perform (un)supervised user stitching via binary classification or hashing
(§ 4.1,4.3)

where we replace the —1 bits with Os to achieve a more space-efficient representa-
tion (R4). An example is shown in the second half of Step 3 in Figure 2, where
the blue shades denote histograms and sketches for contexts in temporal distance
At =1, and red shades correspond to At = 2. Thus, the K-dimensional repre-
sentation for each node, z, € {0,1}¥, captures the similarities between time-,
feature- and node type-aware histograms across multiple temporal distances At.
The similarity between two nodes’ histograms can be quickly estimated as the
proportion of common bits in their binary representations z..

Given these representations, we can perform user stitching by casting the
problem as supervised binary classification or an unsupervised task based on the
output of hashing (Eq. (8)), which we discuss in Section 4.1. Putting everything
together, we give the pseudocode of NODE2BITS in Algorithm 1 and its detailed
version (for reproducibility) in supplementary material A. The runtime com-
putational complexity of NODE2BITS is O(MRL + N K), which is linear to the
number of edges when M > N as K is relatively small (R3). The output space
complexity is O(NK)-bit. NODE2BITS requires even less storage if the binary
vectors are represented in the sparse format (see Section 4.4 for empirical results).
We provide detailed complexity analysis in supplementary material B.

10 D. Jin et al.
4 Experiments

We perform extensive experiments on real-world heterogeneous networks to
answer the following questions: (Q1) Is NODE2BITS effective in the user stitching
task, and how does it compare to traditional stitching and embedding methods?
(§ 4.2-4.3) (Q2) Does NODE2BITS have low space requirements, and is it more
space-efficient than the baselines? (§ 4.4) (Q3) Is NODE2BITS scalable? (§ 4.5)

4.1 Experimental Setup

We ran our analysis on Mac OS platform with 2.5GHz Intel Core i7, 16GB RAM.

Data. We use five real-world
heterogeneous networks from
the Network Repository [26], as
well as a real, proprietary user
stitching dataset, ‘Company X’

Table 2: Network statistics and properties for
our six real-world datasets. ‘D’: directed; ‘W’:
weighted; ‘H’: heterogeneous; ‘T’: temporal net-

web logs. The latter data form a Work.

temporal heterogeneous network

consisting of web sessions of user Pata Nodes Edges|Ty|DWHT

devices and their IP addresses. Citeseer 4460 2892 2 v v

(Our framework is also capable yz.th(.) 100,058 1,057,050 2 v v v

of modeling domain-specific fea- b}tcom 3,783 24,186 1 v vV

tures, such as user-agent strings dlgg 283,183 6,473,708 2 v

and geolocation [19], if this is wiki 1,140,149 7,833,140 1 v v
comp-X 5,500,802 5,291,270 2 Vv vV vV V

available. Even without them,
however, we achieve strong per-
formance.) High degree nodes
representing anomalous behavior (e.g., bots or public WiFi hotspots) are filtered
out. We give the statistics of all the networks in Table 2, and additional details
in Appendix C.

Task Setup. With the exception of Section 4.3, we cast the user stitching task
as a binary classification problem, where for each pair of nodes we aim to predict
whether they correspond to the same entity (i.e., we should stitch them). We use
logistic regression with regularization strength 1.0 and stopping criterion 107%.

For the real user stitching data, we use the held-out, ground-truth information
to evaluate our method. For the five real-world networks without known user
pairs, we introduce user replicas following a similar procedure to [2]: we sample
5% of the nodes with degrees larger than average, introduce a replica v’ for each
sampled node u, and distribute the original edges between v and u'. Specifically,
each edge remains connected to u with probability p;, otherwise it connects to
the replica node u'. Additionally, each edge that is incident to u has probability
po to also connect to u’. Unless otherwise specified, we use p; = 0.6 and ps = 0.3.

Compact Time- and Attribute-aware Node Representation Learning 11

Given the positive replica pairs, we sample an equal number of negative pairs
uniformly at random and include these in the train and test sets. Comp-X, the
dataset with ground-truth replicas, also has pre-defined approximately 50/50
train-test splits that we use. Afterwards, embeddings are derived for each node
pair by concatenation: [z(u),z(u’)]. Using these node pair embeddings, we learn
a logistic regression (LR) model and use it to predict the node pairs that should
be stitched in the held-out test set. These are the nodes that correspond to the
same entity. We measure the predictive performance of all the methods in terms
of AUC, accuracy and F'1 score.

Baselines. We compare to various methods that target different network types:

— Homogeneous networks: Static— (1) Spectral embeddings or SE [31],
(2) LINE [30], (3) DeepWalk or DW [23], (4) node2vec or n2vec [15],
(5) struc2vec or s2vec [24], and (6) DNGR [4]. Temporal- (7) CTDNE [21].

— Heterogeneous networks: (8) Common neighbors (CN) [2], (9) metap-
ath2vec or m2vec [11], and (10) AspEm [29].

The baselines are configured to achieve the optimal performance, for K = 128-
dimensional embeddings, according to the respective papers. For reproducibility,
we describe the settings in Appendix D.

NODE2BITS Setup & Variants. Similar to the baselines, NODE2BITS performs
R = 10 walks per edge, with length up to L = 20, and we set the max temporal
distance MAX = 3. We justify these decisions in Appendix E.2. On the largest
dataset, Comp-X, we use a maximum walk length L. = 5 and temporal distance
MAX = 2. While various node attributes can be given as input to NODE2BITS,
for consistency we derive and use the total, in-/out-degree of each node in F.

We experiment with different variants of NODE2BITS (or N2B for short):
(1) NODE2BITS-0 applies to static networks; (2) NODE2BITS-SH uses the short-
term tactic in the random walks (§ 3.1); (3) NODE2BITS-LN uses the long-term
tactic; and (4) NODE2BITS-U targets unsupervised user stitching, which most
baselines cannot handle (except for CN). To explore our method’s performance
in unsupervised settings (§ 4.3), we directly ‘cluster’ the LSH-based, binary node
representations z, generated by NODE2BITS-0. The idea is that nodes that hash
to the same ‘bucket’ likely map to the same entity and should be stitched. To
map entities to buckets we use the banding technique [32]: per band—one per
representation z2* at temporal distance At—we apply AND-construction on the
output of bit sampling, and then OR-construction across the bands.

4.2 Accuracy in Supervised User Stitching

We start by evaluating the predictive performance of NODE2BITS for supervised
user stitching on both static and temporal networks.

12 D. Jin et al.

Table 3: Entity resolution results for static networks. Our method outperforms all the
baselines. *OOT = Out Of Time (6 hours), OOM = Out Of Memory (16GB).

. As- | N2B-
Metric CN SE LINE DW n2vec s2vec DNGRm2vec pEm 0

AUC
ACC 0.9141 0.4846 0.5481 0.5614 ; ¢1gg 09344 0.5015 0.5546 0.5049|(9450

F1 0.9141 0.5045 0.5372 0.5579 (y 59171 0-8936 0.4688 0.5357 0.5223|(9196

0.9137 0.5028 0.5371 0.5547 0.6159 0.8926 0.4682 0.5348 0.5222 0.9192

citeseer

AUC 0.8088

ACC 0.68510.53780.8050 V740 0.7636 ooT 0om 00T U498 010

F1 0.68510.4760 0.7771 0-7117 7933 05018 g
0.50180:

0.6505 0.4375 0.7764 V- 7117 0 7231

yahoo

Static Networks. In this experiment, we evaluate the effectiveness of intro-
ducing multi-dimensional feature contexts. Since static networks lack temporal
information, NODE2BITS performs random walks similarly to existing works to
collect nodes in structural contexts. The main difference lies in representing
diverse feature histograms. We run NODE2BITS against both homogeneous and
heterogeneous baselines as shown in Table 3, and observe that it achieves the
best performance in all evaluation metrics on both static graphs. NODE2BITS
outperforms existing random-walk based methods as expected: node IDs in the
contexts is distorted by the replicas generated, thus feature-based methods should
prevail. This is also validated by the results for struc2vec, which captures the
equivalency of structural feature sequences in embeddings. LINE achieves promis-
ing result on yahoo but not on citeseer, as the latter undirected bipartite graph,
node distributions of the 2-order contexts explored by LINE are highly correlated
and indistinguishable for stitching. On the contrary, CN (common-neighbors)
yields promising result on citeseer but not yahoo. This is likely due to the graph
structure, which we explain in more detail in Sec.4.3. We encountered out-of-
memory errors for DNGR due to the algorithmic complexity and out-of-time-limit
for m2vec, s2vec. Overall, NODE2BITS achieves comparable and slightly better
performance in both AUC and F'1 scores with 0.60% — 1.46% and 0.60% — 2.87%
improvement, respectively.

CONCLUSION 1. On static graphs, NODE2BITS achieves comparable, and slightly
better, performance in AUC and F'1 score over baselines in the stitching task.

Temporal Networks. Table 4 depicts the stitching performance of NODE2BITS
using both the short- and long-term tactics against the same set of baselines
used in static graphs as well as CTDNE, an embedding framework designed for
temporal graphs. We observe that NODE2BITS-SH outperforms NODE2BITS-LN in
most cases, which is reasonable because NODE2BITS-LN derives shorter contexts

Compact Time- and Attribute-aware Node Representation Learning 13

Table 4: Entity resolution results for temporal networks: strong performance for
NODE2BITS variants. *OOT = Out Of Time (6 hours), OOM = Out Of Memory

(16GB).

Metric CN SE LINE DW n2vec

CTDNEZ'® DNGR

N2B-
LN

N2B- N2B-
0 SH

AUC
ACC 0.74740.5828 0.6071 90396 06462 0.6987 0.8025 -5

F1 0.71740.5842 0.5842 010 0.6158 0.6000 0.7263 2270
0.7001 0.5728 0.5828 *-015% 0.6157 0.5964 0.7263 0-2525

k=
S
Q
=
)

0.75840.76090.7380
0.72110.72680.6737
0.72090.72710.6735

o AUC 0.7398
B AcC 0.62170.51710.7878 97398 0 7445 0.6967 0OT OOM
F1 0.62170.51520.7694 %6971 7013 0.5915
0.5585 0.3770 0.7683 Y6960 (7003 0.5884

0.81850.76110.7587
0.79820.74180.7444
0.79580.74110.7433

_ AUC
% ACC 0.6997 OOT 0.7854 OOM OOM 0.7707 OOT OOM |0.82300.82590.8214
F1 0.6997 0.7132 0.6488 0.71450.75100.7103
0.6699 0.7129 0.6398 0.70880.74760.7067
< AUC
£ ACC 0.5970 OOM 0.5000 0OM OOM OOM OOT OOM |0.80950.74960.7525
S F1 05970 0.6757 0.84140.79590.7975
0.5189 0.4032 0.81540.75810.7606

constrained by temporal-order. We also justify the effectiveness of temporal
random walk by comparing it with both NODE2BITS-0 and static baselines where
we only make use of the graph structures without specifying edge timestamps.
We observe that NODE2BITS-0 is the best-performing method for the digg dataset
and Comp-X over the temporal variants of NODE2BITS. The reason behind is
that there is a tradeoff in constraining temporal walks to respect time: we more
accurately model realistic sequences of events at the cost of restricting the possible
context. On these particular temporal graphs, walks may already be limited in
length by the bipartite structure, so the latter cost becomes more appreciable.
Nevertheless, both static and dynamic versions of NODE2BITS almost always
outperform other baselines. In particular, across all datasets, NODE2BITS-SH
still outperforms the temporal baseline, CTDNE in all cases, which further
demonstrates the effectiveness of multi-feature aggregation.

NODE2BITS variants outperform the static methods in nearly all cases except
the bitcoin dataset where NODE2BITS-SH achieves lower AUC than struc2vec but
higher ACC and F'l-score. This is because NODE2BITS loses some information
when representing the node contexts as binary vectors comparing with real-
value representation. However, we consider this loss mild as NODE2BITS still
outperforms all the other static baselines. In addition, struc2vec ran out of time
on the larger datasets while NODE2BITS achieves promising performance efficiently

14 D. Jin et al.

with 3.90% — 5.16% improvement in AUC and 3.58% — 4.87% improvement in
F'1 score than the best baseline method. At the same time, our approach uses
much less information than the static methods, since the length of the temporal
walks are typically shorter than random walks that do not have to respect time.

CONCLUSION 2. Dynamic and static variants of NODE2BITS outperform the other
baselines by up to 5.2% in AUC and 4.9% in F1 score. Between two dynamic
variants of NODE2BITS, NODE2BITS-SH performs better than NODE2BITS-LN.

Restricting the Output Space Requirements. To evaluate the performance
of stitching with explicit storage requirement, we hash the real-value embeddings
given by baselines into binary and achieve output storage to be consistent with
NODE2BITS. We observe that NODE2BITS still achieves the best performance (refer
to Table 6 of Section E.1 from the supplementary materials for more details).

4.3 Accuracy in Unsupervised User Stitching

As mentioned in Section 4.1, NODE2BITS can naturally perform unsupervised
user stitching by leveraging the generated node representations as hashcodes.
Only nodes mapped to the same ‘buckets’ are candidates for stitching together.
This process allows us to stitch entities without involving quadratic comparisons
between all pairs of nodes in the graph. Similarly, CN outputs a set of nodes
sharing a certain amount of neighbors as the candidates to be stitched together.
We evaluate the quality of hashing given by NODE2BITS-U against CN, and make
use of the candidates to predict the testing set of node pairs given by following
the same setup in Sec. 4.2 in an unsupervised scheme.

Based on the results in Table 5, we observe that NODE2BITS-U outperforms CN
on every dataset other than citeseer. The reason is that in this “author contributes
to paper” dataset, author references appearing in the same set of papers have
high probability to correspond to the same researcher in reality. Therefore the
assumption made by CN suits well this scenario, whereas NODE2BITS hashes
nodes with similar features in the context instead of those with similar neighbor
identities (IDs). For datasets with less strict cross-type relationship, NODE2BITS
achieves 2.81% — 15.12% improvement in accuracy ACC and 4.96% — 26.66%
improvement in F'1 score (including digg, another bipartite graph with inner
connected components of the same node types).

CONCLUSION 3. The unsupervised variant of NODE2BITS, NODE2BITS-U, out-
performs CN on most graphs.

4.4 Output Storage Efficiency

Next we evaluate space efficiency of our proposed method over baselines that
output node embeddings. Instead of real-value matrices, the binary hashcodes
generated by NODE2BITS can be stored in the sparse format so presumably it
should take trivial storage. We visualize the storage requirements in Figure 3
and provide detailed storage usage in Table 7 in the supplementary material.

Compact Time- and Attribute-aware Node Representation Learning 15

Table 5: Unsupervised stitching performance between CN and NODE2BITS

Metric citeseer yahoo bitcoin digg wiki
CN N2B-U CN N2B-U CN N2B-U CN N2B-U CN N2B-U

ACC 0.9141 0.8661 0.6851 0.7553 0.7474 0.7684 0.6217 0.7157 0.6997 0.7350
F1 0.9137 0.8660 0.6505 0.7518 0.7301 0.7663 0.5585 0.7074 0.6699 0.7349

citeseer bitcoin yahoo-msg

— 63x
| less
I
0
[

0

Storage (MB)
N -~ o
e
» I
W I
>
o™
s
0"”‘\0
4=
DO
g%
Storage (MB)
o N »
\
bommmmmml
g -
a2
Storage (MB)
o 3 o
o o o

&b\) ' .

<y 925 0085 O 2 <, o, 2
% 2 %% %% % % * % %R
o, LN o * %
digg wiki Scalability
2000 = 12b-0
—~400 = 3 = n2b-sh
@ . @ 10
= e 2 - 3% 2% T e
© 1 o 1 °
8200 : § 1000 I E 0
2 1) |
n 1 ”n 1
0 o o ‘ 10 e
Q< O 2 O 2 <, Q 2 10* 10° 10° 10"
N 2 D% 4 >, 2
% # /'00 S 43\ o/], s Number of edges

Fig. 3: First 5 plots: output storage in MB for all the methods that completed successfully
in five datasets. The approach is also shown to be scalable for large graphs.

CONCLUSION 4. Compared to the other methods, NODE2BITS uses between 63X

and 339x less space (while always achieving comparable or better stitching per-
formance as shown in Section 4.2).

4.5 Scalability

To evaluate the scalability, we report the runtime of applying NODE2BITS to obtain
node representations for the datasets shown in Table 2 versus their numbers of
edges. We also visualize the runtime of node2vec as reference, as it is designed for
large graphs and is implemented in the same language (Python). Based on the
last subplot in Figure 3, we observe that NODE2BITS scales similarly as node2vec
with less runtime space as node2vec ran out of memory on the largest dataset
(wiki). As shown in Section B, the worst-case time complexity is linear in the
edges. We provide the detailed runtime of all methods in Table 8 in the Appendix.

5 Related Work

Entity Resolution. Entity resolution (the general problem under which user
stitching falls) has been widely studied and applied in different domains such as

16 D. Jin et al.

databases and information retrieval [10,14]. Traditional methods that are based
on distances can be broadly categorized into (1) pairwise-ER [7], which indepen-
dently decide which pairs are same entity based on a distance threshold, and (2)
clustering [8], which links nodes in the same cluster. However, these methods
suffer from high computational cost due to pairwise comparisons, and do not
scale to large datasets. Other techniques range from supervised classification [28]
to probabilistic soft logic [19] or fingerprinting [12] using side information (e.g.,
user-agent strings, other web browser features, geo-location). These methods tend
to be problem- or even data-specific. By modeling the data with a heterogeneous,
dynamic network, we propose a general method that can use both node features
(optional) and graph structure.

Node embeddings. Node embedding or representation learning methods aim
to preserve the notion of node similarity into low-dimensional vector space. Most
methods [15,23,30] and the state-of-the-art methods formulated for heterogeneous
or dynamic networks [11,21], define node similarity based on co-occurrence or
proximity in the original network (Appendix F). However, in the user stitching
problem, it is possible that corresponding entities may not connect to the same
entities, resulting in lower proximity-based similarity. Embeddings preserving
structural iddntity [24,1,17] overcome this drawback even if nodes do not connect
to the same entities. Our method also has this property over a variety of graph
settings (heterogeneous, dynamic), at greater space efficiency thanks to hashing.

Locality sensitivity hashing (LSH). LSH was first introduced as a random-
ized hashing framework for efficient approximate nearest neighbor (ANN) search
in high dimensional space [18]. It specifies a family of hash functions, H, that
maps similar items to the same bucket identified through hash codes with higher
probability than dissimilar items [32]. Variants of LSH families for different dis-
tances have been widely studied, such as SimHash for cosine distance [5], min-hash
for Jaccard similarity [3], p-stable distribution LSH for ¢, distance [9], and more
(Appendix F). In our work, we leverage LSH to construct similarity-preserving
and space-efficient node representations for user stitching.

6 Conclusion

We have proposed a hash-based network representation learning framework for
identity stitching called NODE2BITS. It is both time- and attribute-aware, while
also deriving space-efficient sparse binary embeddings of nodes in large temporal
heterogeneous networks. NODE2BITS uses the notion of feature-based temporal
walks to capture the temporal and feature-based information in the data. Feature-
based temporal walks are a generalization of walks that obey time while also
incorporating features (as opposed to node IDs). Using these walks, NODE2BITS
generates contexts/sequences of temporally valid feature values. Experiments
on real-world networks demonstrate the utility of NODE2BITS as it outputs
space-efficient embeddings that use orders of magnitude less space compared to
the baseline methods while achieving better performance in user stitching. An

Compact Time- and Attribute-aware Node Representation Learning 17

important practical consideration in the application of our work to user stitching
is the balance of greater personalization with user privacy.

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. IIS 1845491, Army Young Investigator Award No. W911NF1810397, an
Adobe Digital Experience research faculty award, and an Amazon faculty award. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation or other funding parties. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
here on.

References

1. Ahmed, N.K., Rossi, R.A., Zhou, R., Lee, J.B., Kong, X., Willke, T.L., Eldardiry,
H.: Learning role-based graph embeddings. In: arXiv:1802.02896 (2018)

2. Bhattacharya, 1., Getoor, L.: Collective entity resolution in relational data. TKDD
1(1), 1-36 (2007)

3. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Computer Networks and ISDN Systems 29(8), 1157-1166 (1997)

4. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: AAAIL pp. 1145-1152 (2016)

5. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC. pp. 380-388 (2002)

6. Christen, P.: Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection. Springer (2012)

7. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: KDD. pp. 475-480 (2002)

8. Dasgupta, A., Gurevich, M., Zhang, L., Tseng, B., Thomas, A.O.: Overcoming
browser cookie churn with clustering. In: WSDM. pp. 83-92 (2012)

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: SCG. pp. 253-262 (2004)

10. Dong, X.L., Naumann, F.: Data fusion: resolving data conflicts for integration.
VLDB 2(2), 1654-1655 (2009)

11. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning
for heterogeneous networks. In: KDD. pp. 135-144 (2017)

12. Eckersley, P.: How unique is your web browser? In: International Symposium on
Privacy Enhancing Technologies Symposium. pp. 1-18. Springer (2010)

13. Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans.
Internet Technol. 3(1), 1-27 (Feb 2003)

14. Getoor, L., Machanavajjhala, A.: Entity resolution for big data. In: KDD. pp.
1527-1527 (2013)

15. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD.
pp. 855-864 (2016)

16. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS. pp. 1024-1034 (2017)

18

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

D. Jin et al.

Heimann, M., Shen, H., Safavi, T., Koutra, D.: Regal: Representation learning-based
graph alignment. In: CIKM. pp. 117-126 (2018)

Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC. pp. 604-613 (1998)

Kim, S., Kini, N., Pujara, J., Koh, E., Getoor, L.: Probabilistic visitor stitching on
cross-device web logs. In: WWW. pp. 1581-1589 (2017)

Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient deduplication with hadoop. VLDB
5(12), 1878-1881 (Aug 2012)

Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: WWW BigNet (2018)

Papadakis, G., Svirsky, J., Gal, A., Palpanas, T.: Comparative analysis of approxi-
mate blocking techniques for entity resolution. VLDB 9(9), 684-695 (2016)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representa-
tions. In: KDD (2014)

Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: Learning node represen-
tations from structural identity. In: KDD. pp. 385-394 (2017)

Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook. Spr. (2011)
Rossi, R.A.; Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAT (2015), http://networkrepository.com
Rossi, R.A., Zhou, R., Ahmed, N.K.: Deep inductive network representation learning.
In: WWW. pp. 953-960 (2018)

Saha Roy, R., Sinha, R., Chhaya, N., Saini, S.: Probabilistic deduplication of
anonymous web traffic. Ini WWW. pp. 103-104 (2015)

Shi, Y., Gui, H., Zhu, Q., Kaplan, L., Han, J.: Aspem: Embedding learning by
aspects in heterogeneous information networks. In: SDM. pp. 144-152. STAM (2018)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale
information network embedding. In: WWW (2015)

Tang, L., Liu, H.: Leveraging social media networks for classification. DMKD 23(3),
447-478 (2011)

Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. arXiv
preprint arXiv:1408.2927 (2014)

Wang, Q., Wang, S., Gong, M., Wu, Y.: Feature hashing for network representation
learning. In: IJCAL pp. 2812-2818 (2018)

http://networkrepository.com

	node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching

