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Abstract. We propose an overlapping community model based on the
Affiliation Graph Model (AGM), that exhibits the pluralistic homophily
property that the probability of a link between nodes increases with in-
creasing number of shared communities. We take inspiration from the
Mixed Membership Stochastic Blockmodel (MMSB), in proposing an
edgewise community affiliation. This allows decoupling of community af-
filiations between nodes, opening the way to scalable inference. We show
that our model corresponds to an AGM with soft community affiliations
and develop a scalable algorithm based on a Stochastic Gradient Rie-
mannian Langevin Dynamics (SGRLD) sampler. Empirical results show
that the model can scale to network sizes that are beyond the capabilities
of MCMC samplers of the standard AGM. We achieve comparable per-
formance in terms of accuracy and run-time efficiency to scalable MMSB
samplers.

1 Introduction

Designing a scalable Markov Chain Monte Carlo (MCMC) inference for a Bayesian
model is challenging due to the sequential nature of the mechanism, especially
when the model parameters are huge in number and the dataset is large. Prob-
abilistic graphical models define how the observed data is generated and often
involve a large number of random variables. A case in point is the modelling of
network data, where the datasets of interest nowadays scale to millions of nodes
and a typical problem of interest is the extraction of community structure from
the network. Many heuristic methods and probabilistic models have been pro-
posed for this problem. In this paper, we focus on the extraction of overlapping
community structure. Considering that any subset of the nodes could constitute
such an overlapping community, we have a-priori, 2N candidate communities,
where N is the number of nodes in the network.

The Affiliation graph model (AGM) [22] is a probabilistic graphical model
of overlapping community structures in networks. It proposes a likelihood that
exhibits the pluralistic homophily property, meaning that the probability of a
link between nodes increases with increasing number of shared communities.
This property has been observed in the ground truth communities of real world
data [22]. The heuristic algorithm proposed in [23] maximises the likelihood
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through a Non-negative Matrix Factorization (NMF) step and is a good bench-
mark for community-finding at scale. However, we are interested in developing
MCMC algorithms that can sample from the true posterior distribution of the
communities. A number of works have examined MCMC inference on models
based on the AGM likelihood. For instance, using a Gamma process prior, [25]
develop a non-parametric model which is sampled through Gibbs sampling and
apply it to networks with the number of nodes and the number of edges below
104. The Infinite Multiple Membership Relational model (IMRM) [15] finds gen-
eral overlapping block structure and reduces to the AGM likelihood when con-
strained to only within-block interactions. IMRM scales to networks of around
105 edges, on which it takes around 70 hours for 2, 500 iterations.

Another network model of block structure in networks is the Mixed Member-
ship Stochastic Blockmodel (MMSB) [2] and its variant, the assortative-Mixed
Membership Stochastic Blockmodel (a-MMSB), that models overlapping com-
munities in the sense that nodes have mixed affiliations to multiple communities.
However, the a-MMSB does not exhibit pluralistic homophily because the prob-
ability of an edge between two nodes does not increase with the total number of
communities that they share. In contrast to the AGM, scalable inference tech-
niques for the MMSB have been proposed in the state-of-the-art, for example,
through the use of Stochastic Variational Inference (SVI) [9] and Stochastic
Gradient-MCMC (SG-MCMC) [13], that achieve scalability by considering only
a mini-batch of the dataset in each update step. Our contribution in this paper,
is to propose a new variant of the AGM, which we call the Soft AGM (S-AGM),
that is inspired by the a-MMSB but maintains the pluralistic homophily prop-
erty of the AGM. Our model is amenable to the same inference strategies that
have proven capable of scaling the MMSB to big network problems. In partic-
ular, in this paper, we will discuss how we have developed a SG-MCMC for
the Soft AGM. Along with the advantage of using a mini-batch in each itera-
tion, the SG-MCMC algorithm is highly parallelizable. We have developed it on
Tensorflow and achieved tractable inference, beyond the capabilities of other
MCMC samplers of the AGM, with networks of 105 edges converging within 2
hours on a 2.2 GHz Intel Core i7 processor.

The paper is structured as follows. In Section 2, we present the generative
model of the S-AGM and show how, by collapsing the edge-wise community
affiliation parameters, it may be interpreted as an AGM model with soft com-
munity affiliations. In Section 4, we discuss how to apply a Stochastic Gradient
Riemannian Langevin Dynamics sampler to the model parameters, and derive
the required gradients. In Section 5, we present some experimental results. Fi-
nally, we discuss the comparison of the resultant communities with ground truth
communities and the merits of our model in comparison to the AGM.

2 Model

Consider an unweighted graph of N > 0 nodes, with adjacency matrix A =
{aij}. Let the training set node pairs, E, be partitioned into the non-link pairs,
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ENL = {(i, j)|aij = 0} and the link pairs EL = {(i, j)|aij = 1}, such that E =
ENL ∪ EL. We seek overlapping community structure with K > 0 communities.
The Affiliation Graph Model (AGM) provides a generative model for networks
with latent overlapping community structure, where the likelihood of the network
is given by

p(A|Θ) =

N∏
i=1

N∏
j>i

p
aij
ij (1− pij)1−aij (1)

with Θ = {Z = {zik}, π} and pij = 1 − (1 − πε)
∏K
k=1(1 − πk)zikzjk , such that

zik = 1 whenever node i is a member of community k, p(zik|wk) ∼ Bernoulli(wk).
The community edge density parameters are πk ∼ Beta(ηk0, ηk1) and πε is a
fixed background edge density. That the model exhibits pluralistic homophily,
can most easily be observed by noting that, if all the community densities π were
equal, then the probability that an edge (i, j) does not exist is proportional to
(1−π)

∑
k zikzjk i.e. (1−π)s(i,j), where s(i, j) =

∑
k zikzjk is the number of shared

communities. One challenge for Bayesian inference from this model is that the
conditional probabilities of the communities assignments Z = {zik} given the
network are all inter-dependent and thus require sequential Gibbs sampler.

Motivated to develop a more scalable model that maintains pluralistic ho-
mophily, we take inspiration from the assortative Mixed Membership Stochastic
Blockmodel (a-MMSB) and propose the Soft AGM (S-AGM) as follows: consider
that, associated with each node i of the network and each community k, there is
a soft community affiliation value, wik ∈ [0, 1]. Now, for all possible interactions
between nodes, i and j, each node draws a set of community membership as-
signments, zijk ∼ Bernoulli(wik) and zjik ∼ Bernoulli(wjk), and the interaction
occurs with probability depending on the number of shared communities that
are drawn:

pij = 1− (1− πε)
K∏
k=1

(1− πk)zijkzjik . (2)

Note that in the S-AGM, each community affiliation is drawn independently
from a Bernoulli distribution, so that multiple simultaneous affiliations are al-
lowed and the existence of an edge depends on the overlap of the multiple affili-
ations between node pairs. In contrast, in the a-MMSB, for each interaction, a
single community affiliation zijk is drawn from Cat(wi), where

∑
k wik = 1 and

hence
∑
k zijk = 1. The existence of an edge is dependent on whether the single

community drawn by node i coincides with that drawn by node j i.e. whether
or not zijkzjik = 1 is true. There is therefore no notion of multiple affiliations
contributing to an interaction and hence the a-MMSB fails to model pluralistic
affiliation.

From a scalability point-of-view, drawing the set of community affiliations
independently for each interaction, has the effect of de-coupling the Z = {zijk},
so that their conditional probabilities given the network (given in Section 3),
can be updated in parallel.
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The generative process model of S-AGM is given in algorithm 1. Note that
a separate parameter αk is drawn for each community, modelling that each
community may have a different node density.

Algorithm 1 Generative process model

1: for k = 1 : K do
2: πk ∼ Beta(ηk0, ηk1)

3: for k = 1 : K do
4: αk ∼ Gamma(β0, β1)
5: for i = 1 : N do
6: wik ∼ Beta(αk, 1)

7: for i = 1 : (N − 1) do
8: for j = (i+ 1) : N do
9: for k = 1 : K do

10: zijk ∼ Bernoulli(wik)
11: zjik ∼ Bernoulli(wjk)

12: pij = 1− (1− πε)
K∏
k=1

(1− πk)zijkzjik

13: aij ∼ Bernoulli(pij)

In fact it is possible to marginalise p(A,Z,W, α, π|η, β), with respect to Z.
In Supplementary Material, we show the following lemma,

Lemma 1. Collapsing Z: P (A|W, π) =
∑

Z P (A,Z|W, π) is given by Equa-

tion (1) with Θ = {W = {wik}, π} and pij = ρij(W, π) , 1− (1− πε)
∏K
k=1(1−

πkwikwjk) .

In this form, we explicitly observe that the S-AGM corresponds to the AGM
when wik are restricted to {0, 1}. The model may also be compared with the
Gamma Process Edge Partition Model (GP-EPM), proposed in [25], in which wik
are drawn from a Gamma distribution and pij = 1−(1−πε)

∏K
k=1(1−πk)wikwjk .

Note that aside from the difference in the form of the edge-connection probability,
in the S-AGM, the wik are restricted to the probability simplex [0, 1], while any
positive affiliation weight is allowed in the GP-EPM.

3 MCMC on the non-collapsed Model

We firstly consider a simple inference strategy on the non-collapsed model and
compare the results obtained from S-AGM with those obtained from AGM and
a-MMSB. It may be verified that the posterior distribution of α is a Gamma
distribution. A Gibbs sampling of the components of α can be carried out inde-
pendently in parallel. In particular,

αk|w·k ∼ Gamma

(
N + β0, β1 −

∑
i

log(wik)

)
. (3)
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Similarly, we use Gibbs sampling of W with

wik|αk, Z ∼ Beta(αk +
∑
j 6=i

zijk, 1 +
∑
j 6=i

(1− zijk)) .

The community assignment for each training pair (i, j), i.e. zij. and zji. can be
sampled in parallel. In particular for each community k, Gibbs sampling is used
with

zijk, zjik|Z \ {zijk, zjik},A,W, π

∝ wzijkik w
zjik
jk (1− wik)1−zijk(1− wjk)1−zjikp

aij
ij (1− pij)1−aij ,

where pij , is given by Equation (2). As the posterior distribution of π is not in
the form of a standard distribution, we use Hamiltonian Monte Carlo (HMC)
MCMC to sample from π.

4 Scalable MCMC for the model

The soft community assignments, W, are the output of most interest from the
model. We consider ways to obtain scalable inference with Z collapsed i.e. we
seek the posterior distribution, p(W, π, α|A, η, β). The MCMC algorithm iterates
updating local parameters (W) and global parameters (π and α). In the case of
W and π, we consider sampling strategies that can efficiently explore the sample
space.

The Metropolis Adjusted Langevin Algorithm (MALA) [19] is a Metropolis
Hastings algorithm with a proposal distribution q(θ∗|θ) of the form

θ∗ = θ +
ε

2

(
∇θ log p(θ) +

N∑
i=1

∇θp(xi|θ)

)
+ ξ

where ε is a fixed step size and ξ ∼ N(0, εI). In [8], it is suggested that MALA can
be improved for ill-conditioned problems by introducing an appropriate Riemann
manifold pre-conditioner G(θ), so that the proposal distribution becomes

θ∗ = θ +
ε

2
µ(θ) +G−1/2ξ ,

where, for an M -dimensional θ, the jth component of µ(θ) is given by,

µ(θ)j =
(
G−1∇θ log p(θ|X)

)
j
−2

M∑
k=1

(
G−1

dG

dθk
G−1

)
jk

+

M∑
k=1

G−1jk Tr

(
G−1

dG

dθk

)
.

In [21], the expensive Metropolis correction step is not adopted. Instead, a mini-
batch of the dataset Dt is sampled from X for each iteration and an unbiased but
noisy estimate of the gradient is used:

∑N
i=1∇θp(xi|θ) ≈

N
|Dt|

∑
xi∈Dt

∇θp(xi|θ)
with a variable step-size εt. Convergence to the true posterior is guaranteed
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as long as decaying step sizes satisfy
∑∞
t=1 εt = ∞ and

∑∞
t=1 ε

2
t < ∞. When

applied with a Riemann manifold pre-conditioner, this method is referred to as
Stochastic Gradient Riemannian Langevin Dynamics (SGRLD).

We follow [18] to develop an SGRLD algorithm for sampling π and W for
the S-AGM. In particular, as these parameters are restricted to [0, 1], it is nec-
essary to re-parameterize so that the update step yields valid proposals in the
parameter range. We adopt the expanded mean re-parameterization with mir-
roring strategy for Dirichlet parameters which is recommended in [18]. In this
case, the preconditioner is chosen as G−1 = diag(θ), and the last two terms of
µ(θ)j evaluate to 2 and -1 respectively.

4.1 Sampling π and W

We re-parameterize πk =
π′
k0

π′
k0+π

′
k1

, where for m ∈ {0, 1}, π′km ∼ Gamma(ηkm, 1).

The SGRLD update equations for π′, taking absolute value to maintain the
proposal in the range π

′∗
km > 0, becomes

π
′∗
km =

∣∣∣π′km +
εt
2
µ(π′km) + (π′km)1/2ξkm

∣∣∣ , (4)

with ξkm ∼ N(0, εt). Then, for a mini-batch of node pairs Et, we obtain

µ(π′km) = ηkm − π′km + s(Et)
∑

(i,j)∈Et
gaij(π

′
km) , (5)

where gaij(π
′
km) , ∂

∂π′
km

log p(aij |π′, wi., wj.) and s(.), discussed below, appropri-

ately scales the mini-batch gradient estimate.

For each node i, we re-parameterize wik =
w′

ik0

w′
ik0+w

′
ik1

where for m ∈ {0, 1},
w′ikm ∼ Gamma(γkm, 1), γk0 = αk and γk1 = 1. We perform an SGRLD update
for w′ik as follows:

w
′∗
ikm =

∣∣∣w′ikm +
ε

2
µ(w′ikm) + (w′ikm)1/2ξikm

∣∣∣ , (6)

where ξikm ∼ N(0, εt) and for a mini-batch of nodes Vti ,

µ(w′ikm) = γkm − w′ikm +
N

|Vti |
∑
j∈Vt

i

gaij(w
′
ikm) , (7)

where gaij(w
′
ikm) , ∂

∂w′
ikm

log p(aij |π,w′i., w′j.). Full expressions for gaij(π
′
km) and

gaij(w
′
ikm) are given in the Supplementary Material.

4.2 Mini-batch Selection

We follow the stratified random node sampling strategy which is shown to give
the best gains in convergence speed for variational inference on an MMSB model
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in [9]. All the node pairs incident with each node i are partitioned into u sets,
Nil ⊂ ENL, l = 1, . . . , u of non-link pairs and one set, Li ⊆ EL, of the link
pairs. Note that each node pair occurs within these sets exactly c = 2 times. To
select the mini-batch Et, firstly a node i is selected at random, and then with
probability 1/2, either the link set is chosen or, otherwise, one of the non-link
sets is chosen with probability 1/u. Let s(Et) = Nu if Et = Nil for some l and
s(Et) = N if Et = Li. In the Supplementary Material, we show that this choice
of scaling results in an unbiased estimate of the true gradient. To update w′ikm,
for each node i in mini-batch Et we sample a fixed number of nodes at random
to form the mini-batch Vti .

The pseudo-code for the full MCMC algorithm is given in Algorithm 2. All
the for loops in Algorithm 2 are parallelizable.

Algorithm 2 MCMC for the S-AGM using SGRLD

1: Sample a mini-batch Et of node pairs.
2: for Each node i in Et do
3: Sample a mini-batch of nodes Vti .
4: for k = 1 : K do . utilizing the sampled Vti
5: Update wik according to Equations (6) and (7).

6: for k = 1 : K do . utilizing the sampled Et
7: Update πk according to Equations (4) and (5).

8: for k = 1 : K do
9: Update αk according to Equation (3).

5 Experimental Results

We initially developed a proof-of-concept Matlab code1 both for the uncollapsed
S-AGM model and for the SG-MCMC algorithm. To take advantage of the par-
allelizability of the collapsed model, we then implemented the SG-MCMC algo-
rithm using Tensorflow [1] and ran it on a GPU.

Throughout the experiments we have chosen ηk0 = 5, ηk1 = 1 as the hyperpa-
rameters for the community edge probability incorporating the prior information
that a community consists of strongly connected nodes. For the hyperparame-
ters of αk, we have chosen β0 = β1 = 1. We have initialized the probability of
a node belonging to a community for S-AGM and a-MMSB to be 1/K which
also satisfies the condition that

∑
k 1/K = 1 for the membership vector of the

a-MMSB. The edge probabilities for each community are initialized by drawing
from the prior, Beta(ηk0, ηk1) for all models.

To compare different community assignments we use the overlapping Nor-
malised Mutual Information (NMI) [11]. To compare the convergence of the

1 https://github.com/nishma-laitonjam/S-AGM
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MCMC chain, we use area under the Receiver Operating Characteristics curve
(AUC-ROC) to predict missing links of hold-out test set, T. We also use perplex-
ity defined as the exponential of the negative average predictive log likelihood on

the hold-out test set [9], i.e. perp(T|π,W) = exp

(
−

∑
(i,j)∈T log p(aij |π,wi.,wj.)

|T|

)
.

For small datasets, the change in log likelihood of the training dataset is also
used to check for convergence.

5.1 Networks generated by AGM

To observe whether S-AGM can recover the network structure of the AGM,
we compare the two models applied to networks generated from the AGM. For
this experiment, we run the SGRLD batch algorithm for S-AGM in Matlab and
compare it to a Matlab implementation for AGM that uses Gibbs sampling along
with HMC. We use these implementations to examine the run-time advantages
of the batch SGRLD algorithm over Gibbs and HMC.

Specifically, networks with two communities are generated using the gen-
erative process of AGM, i.e set K = 2 and edges between nodes i and j are
generated with probability pij = 1 − (1 − πε)

∏
k(1 − πk)zikzjk . A community

assignment Z is chosen such that in each network, 20% of the nodes belong to
the overlapping region of the two communities and 40% of the nodes belong to
each community only. The network size is n = 100. For Fig. 1, we fix πk = 0.8 ∀k
and vary the background edge probability πε. For Fig. 2, we fix πε = 0.00005 and
vary πk. When fitting the models, we fix πε = 0.00005 in all cases, so that the
first experiment tests the ability of the algorithm to recover the network with
different levels of background noise.

The similarity of the resultant communities with the ground truth commu-
nities is reported as NMI. The step size of SGRLD is decreased using, εt =

a
(
1 + t

b

)−c
where a is the initial value, t is the iteration number, and c ∈ (0.5, 1]

is the learning rate. Following [18], we have chosen b = 1, 000 and c = 0.55. For
these networks, we find a = 0.01 performs well for sampling both π and wi·.
Since S-AGM reports the community assignment of a node as a soft assignment,
we use a threshold to convert to a hard assignment before computing NMI. Af-
ter burn-in of 500 iterations, 500 samples are collected, and the average result
of 5 random runs is reported. From Fig. 1, we can see that S-AGM with 0.5
as threshold is more tolerant to background noise than AGM. When there is
no noise i.e. when πε = 0.00005, both S-AGM and AGM are able to recover the
ground truth network. As noise increases, S-AGM performs better to recover the
ground truth communities as the noise is reflected in the inferred model only as
a small positive probability of belonging to the other community. Thus S-AGM
has higher NMI compared to AGM. From Fig. 2, when we change the within-
community edge probability with fixed πε = 0.00005, both S-AGM with 0.3 as
threshold and AGM, gives similar NMI recovering the ground truth community
well when the within-community edge probability is greater than or equal to 0.4.

To compare the runtime between AGM and S-AGM, we generate networks
with k = 2, πk = 0.8 ∀k and πε = 0.00005 but of different sizes n ranging from
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100 to 1,000 in a step-size of 100. After burn in of 500 iterations, 500 samples
are collected, and the average AUC-ROC score of 5 random runs on Intel core
i5, 4 cores is reported in Fig. 4.
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From Fig. 3, we can see that the batch SGRLD for S-AGM performs better
than MCMC for AGM, while both give a similar AUC-ROC score. The scalability
of the SGLRD for large n, using mini-batch and GPU, is explored in Section 5.3.

5.2 Comparing S-AGM with AGM and a-MMSB

In this section, first we show that both AGM and S-AGM exhibit pluralistic
homophily. We then compare the performance of S-AGM with AGM and a-
MMSB in terms of convergence of the log likelihood on the training dataset and
predicting missing links on the hold-out dataset which is comprised of 20% of the
node pairs in the dataset, chosen at random. For these experiments we use 3 small
networks i.e. Football [17], NIPS234 [14] and Protein230 [3]. We use uncollapsed
MCMC for all models with the Matlab code. We set the number of communities
as K = 5, 10, 15, 20, and plot number of shared communities per node pair, i.e.∑
k zijkzjik for S-AGM and

∑
k zikzjk for AGM, against edge probability. (As

noted in Section 2, in the case of a-MMSB, as
∑
k zijkzjik ∈ {0, 1} always, there

is no direct notion of pluralstic homophily in that model).
Fig. 5 shows a clear increase in edge probability with increasing number

of shared communities in both the AGM and S-AGM models. These plots are
obtained from a single run, for various K.
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Fig. 5: Pluralistic Homophily by AGM and S-AGM

Table 1 shows the average AUC under ROC curve for predicting missing
links, taken over 5 random runs where, in each run, 2, 500 samples are collected
after burn-in of 2, 500 iterations. We can see that the AUC-ROC score is very
similar for the 3 models with AGM performing best for NIPS234. It may be
observed from Fig. 6, that the log likelihood for AGM is highest compared to
the other two models. The perplexity is computed after every 100 iterations
and the trace plots from a single run are shown in Fig. 7. Again, there is little
difference between the three models, even though from Fig. 6 the convergence
is slower for non-collapsed S-AGM due to the larger number of parameters to
learn.

Table 1: AUC-ROC

Network Football NIPS234 Protein230

K 5 10 15 20 5 10 15 20 5 10 15 20

AUC-
ROC

AGM
0.7097
±0.028

0.8055
±0.043

0.8316
±0.016

0.8240
±0.015

0.8280
±0.019

0.9266
±0.009

0.9481
±0.008

0.9511
±0.008

0.9088
±0.017

0.9237
±0.015

0.9236
±0.015

0.9290
±0.013

a-MMSB
0.8242
±0.020

0.8637
±0.015

0.8587
±0.016

0.8615
±0.015

0.8855
±0.011

0.9121
±0.011

0.9274
±0.021

0.9359
±0.012

0.8867
±0.022

0.8872
±0.015

0.8875
±0.019

0.8850
±0.019

S-AGM
0.7889
±0.017

0.8426
±0.021

0.8403
±0.017

0.8430
±0.017

0.8654
±0.028

0.9039
±0.016

0.9080
±0.021

0.9039
±0.0215

0.9236
±0.014

0.9296
±0.009

0.9305
±0.010

0.9287
±0.010
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Fig. 6: Trace plot of log likelihood of training data
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Fig. 7: Trace plot of perplexity of test data

Comparison with ground truth communities With the availability of
ground truth communities for the Football network, we are able to compare
the communities generated by S-AGM with these communities. The Football
network contains the network of American football games between Division IA
colleges during regular season, Fall 2000. There are 115 teams that are grouped
into 11 conferences along with 8 independent teams that are not required to
schedule each other for competition, like colleges within conferences must do [6].
We have used the Fruchterman-Reingold algorithm [20, 7] to plot the community
structure found by S-AGM alongside the ground truth communities in Fig. 8.
The 8 independent teams are the black nodes in the ground truth. For the S-
AGM plot, the pie-chart at each node indicates its relative membership of each
found community.
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Western Michigan Buffalo Louisiana Tech

Fig. 8: Communities for Football network.

Conferences teams play more intra-conference games than inter-conference
games, thus forming a clear community structure, while the 8 independent teams
play with other teams as frequently as among themselves. The S-AGM recov-
ers the 11 conferences well when K = 15. Three out of 15 found communities
are empty. Games between teams from different conferences are not uniform.
Rather, geographically close teams tend to play each other more often [10]. This
pattern is captured in the overlapping structure identified by S-AGM, where each
conference team belongs to a single dominant community, but has some small
probability of belonging to another conference, proportional to its distance to
teams within that conference.

In Fig. 8, we focus on Western Michigan and Buffalo, two Mid American con-
ference teams, as well as Louisiana Tech, an independent team. Clearly, Louisiana
Tech has no clear community assignment, rather, it can be considered as a part of
multiple conferences. It plays more games with teams in the West Atlantic con-
ference (dark yellow) and the Southeastern conference (maroon). While Western
Michigan and Buffalo have very strong affiliation to their own conference, due
to the geographical proximity, Western Michigan plays more with teams in the
Big Ten conference (Iowa and Wisconsin) while Buffallo plays more games with
teams in the Big East conference (Syracuse and Rutgers).

Such overlapping structure where a node belongs to multiple communities
with a different degree of overlap cannot be captured by the AGM model.
In AGM a node either belongs fully to the community or not. For the Foot-
ball network, with K = 15, AGM generates one community that contains all
nodes to capture the inter-community edges and other communities as the sub-
communities to capture the intra-community edges corresponding to the ground
truth communities. Thus the community structure generated by the AGM doesn’t
provide the information that even though a team belongs to a conference, the
team also plays with other teams of different conferences with different frequen-
cies.
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Fig. 9: Trace plot of perplexity of test data for various K

5.3 Larger Problems

For experiments on larger problems, we use the FreeAssoc network [16] (10,468
nodes and 61,677 edges), the Reuters network [4] (13,314 nodes and 148,038
edges) and the ca-HepPh network [12] (12,008 nodes and 118,489 edges) and
run the mini-batch SGRLD algorithm for these networks. Taking advantage of
the parallelizability of the algorithm, it is implemented on Tensorflow and run
on a 2.2 GHz Intel Core i7 processor. To overcome the memory problem for larger
networks, especially to run with GPUs, we store the network outside the limited
GPU memory. Mini-batch samples are stored in the tf.records Tensorflow

binary storage format. This speeds up the process of passing the mini-batch for
each iteration to the GPUs. Thus, first the mini-batch of every 100 iterations is
sampled and stored in a tf.records structure and one tf.records is read in
every 100 iterations using an initializable iterator. For gradient computation, we
implemented the analytical form directly, rather than using Tensorflow’s gradient
function. We take K = 50, L = N/u = 1, 000 and |Vt| = 1, 000.

The step size of SGRLD is decreased similar to Section 5.1 and for these
networks, we find a = 0.001 performs well for sampling both π and wi· for these
networks. To check the performance for these experiments, a test set consisting
of 50% edges and 50% non-edges is chosen at random. The size of the test set is
taken as 10% of the edges in the graph. The convergence of the perplexity for the
test set is given in Fig. 9. Table 2 shows the runtime in hours for 5, 000 iterations
and average AUC-ROC scores for 2, 500 samples collected after a burn-in of 2, 500
iterations. Along with Fig. 9, we can see that the performance of S-AGM does
not decrease as K grows, which is also observed in SG-MCMC of a-MMSB [13].

Table 2: AUC-ROC scores of test data and runtime (hrs) for various K

AUC-ROC runtime (hrs)

K 50 100 150 200 50 100 150 200

FreeAssoc 0.8989 0.9064 0.9041 0.9086 0.6434 1.0844 1.4563 1.8031
Reuters 0.9441 0.9455 0.9472 0.9472 0.6646 1.0725 1.5141 1.8709

ca-HepPh 0.9346 0.9480 0.9503 0.9470 0.6582 1.0815 1.4886 1.8637
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Fig. 10: Trace plot of AUC-ROC score and perplexity of test data for ca-HepPh
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Fig. 11: Trace plot of AUC-ROC score and perplexity of test data for com-dblp

Effect of mini-batch size For this experiment, we vary the mini-batch size for
the ca-HepPh network with L = |Vt| ∈ {1000, 500, 100, 5} respectively and study
the effect of change in mini-batch size with K = 50. In SGRLD, the mini-batch
size is a hyperparameter. The convergence speed greatly depends on the mini-
batch size though the process with any mini-batch size will finally converge when
the MCMC chain is run infinitely. With larger mini batch size, per iteration time
is comparatively longer and hence the convergence runtime is also slow. Whereas
with very small mini-batch size, only very few w will be updated per iteration
and the process will achieve poor predictive performance for missing links due to
the larger variance of the stochastic gradient. Shown in Fig. 10, the mini-batch
size L = |Vt| = 500 for ca-HepPh obtains the best predictive performance of
missing links within 30 minutes. Although SGRLD with large mini-batch size is
faster with no metropolis acceptance step, a better choice of mini-batch size with
low variance in stochastic gradient also helps in speeding up the convergence.

Tensorflow on GPU To demonstrate the scalability of the inference algorithm,
we run the Tensorflow code using the com-dblp network [24] which has more
than 1 million edges. The experiment is carried out on a machine equipping with
an AMD Ryzen 7 Eight-Core Processor at 2.2 GHz, Nvidia GTX TitanX with
12GB memory, and 64GB RAM. For this experiment, we consider K = 2048,
L = 4096 and |Vt| = 32. With the same initialization as the above experiments,
except for a which is taken as a = 0.0001 here, the algorithm is run for 50, 000
iterations and takes 11.5 hours. The convergence of perplexity and AUC-ROC
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score on the test set is given in Fig. 11. From the experiment we can see that
S-AGM achieves similar runtime scalability as a-MMSB when implemented with
GPU [5].

6 Conclusion and Future Work

In this paper we have developed a new overlapping community model (Soft-
AGM) that exhibits pluralistic homophily. Overlapping communities are mod-
elled as soft node to community assignments, which, if constrained to be hard,
would result in the Soft AGM likelihood reducing to the standard AGM likeli-
hood. A highly parallelizable and scalable MCMC algorithm for inference based
on a stochastic gradient sampler is developed for the model, allowing the in-
ference to be carried out on networks that are well beyond the size of net-
works tackled by previous MCMC samplers applied to the AGM. In particular,
a Tensorflow implementation has been used to run the model on a network
with 106 edges. As future work, we would like to implement the algorithm on a
HPC infrastructure to find community structure on very large networks, such as
“Friendster”, “LiveJournal” and so on. We will also consider to make the model
non-parametric, allowing the number of non-empty communities to be learned.
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