
Synthetic Oversampling of Multi-Label Data
based on Local Label Distribution

Bin Liu � and Grigorios Tsoumakas

School of Informatics
Aristotle University of Thessaloniki

Thessaloniki 54124, Greece
{binliu,greg}@csd.auth.gr

Abstract. Class-imbalance is an inherent characteristic of multi-label
data which affects the prediction accuracy of most multi-label learn-
ing methods. One efficient strategy to deal with this problem is to em-
ploy resampling techniques before training the classifier. Existing multi-
label sampling methods alleviate the (global) imbalance of multi-label
datasets. However, performance degradation is mainly due to rare sub-
concepts and overlapping of classes that could be analysed by looking at
the local characteristics of the minority examples, rather than the imbal-
ance of the whole dataset. We propose a new method for synthetic over-
sampling of multi-label data that focuses on local label distribution to
generate more diverse and better labeled instances. Experimental results
on 13 multi-label datasets demonstrate the effectiveness of the proposed
approach in a variety of evaluation measures, particularly in the case
of an ensemble of classifiers trained on repeated samples of the original
data.

Keywords: Multi-label learning · Class-imbalance · Synthetic oversam-
pling · Local label distribution · Ensemble methods

1 Introduction

In multi-label data, each example is typically associated with a small number
of labels, much smaller than the total number of labels. This results in a sparse
label matrix, where a small total number of positive class values is shared by a
much larger number of example-label pairs. From the viewpoint of each separate
label, this gives rise to class imbalance, which has been recently recognized as a
key challenge in multi-label learning [6, 7, 11, 18, 31].

Approaches for handling class imbalance in multi-label data can be divided
into two categories: a) reducing the imbalance level of multi-label data via re-
sampling techniques, including synthetic data generation [5, 6, 7, 8], and b)
making multi-label learning methods resilient to class imbalance [11, 18, 31].
This work focuses on the first category, whose approaches can be coupled with
any multi-label learning method and are therefore more flexible.

Existing resampling approaches for multi-label data focus on class imbal-
ance at the global scale of the whole dataset. However, previous studies of class
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imbalance in binary and multi-class classification [19, 20] have found that the
distribution of class values in the local neighbourhood of minority examples,
rather than the global imbalance level, is the main reason for the difficulty of
a classifier to recognize the minority class. We hypothesize that this finding is
also true, and even more important to consider, in the more complex setting of
multi-label data, where it has not been examined yet.

Consider for example the 2-dimensional multi-label datasets (a) and (b) in
Fig.1 concerning points in a plane. The points are characterized by three labels,
concerning the shape of the points (triangles, circles), the border of the points
(solid, none) and the color of the points (green, red). These datasets have the
same level of label imbalance. Yet (b) appears much more challenging due to
the presence of sub-concepts for the triangles and the points without border and
the overlap of the green and red points as well as the points with solid and no
border.

Fig. 1. Two 2-dimensional multi-label datasets (a) and (b) concerning points in a plane
characterized by three labels. On the right we see the five different label combinations
that exist in the datasets.

This work proposes a novel multi-label synthetic oversampling method, named
MLSOL, whose seed instance selection and synthetic instance generation pro-
cesses depend on the local distribution of the labels. This allows MLSOL to create
more diverse and better labelled synthetic instances. Furthermore, we consider
the coupling of MLSOL and other resampling methods with a simple but flexible
ensemble framework to further improve its performance and robustness. Exper-
imental results on 13 multi-label datasets demonstrate the effectiveness of the
proposed sampling approach, especially its ensemble version, for three different
imbalance-aware evaluation metrics and six different multi-label methods.

The remainder of this paper is organized as follows. Section 2 offers a brief
review of methods for addressing class imbalance in multi-label data. Then,
our approach is introduced in Section 3. Section 4 presents and discusses the
experimental results. Finally, Section 5 summarizes the main contributions of
this work.
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2 Related Work

A first approach to dealing with class imbalance in the context of multi-label
data is to utilize the resampling technique, which is applied in a pre-processing
step and is independent of the particular multi-label learning algorithm that
will be subsequently applied to the data. LP-RUS and LP-ROS are two twin
sampling methods, of which the former removes instances assigned with the
most frequent labelset (i.e. particular combination of label values) and the latter
replicates instances whose labelset appears the fewest times [4].

Instead of considering whole labelset, several sampling methods alleviate the
imbalance of the dataset in the individual label aspect, i.e. increasing the fre-
quency of minority labels and reducing the number of appearances of major-
ity labels. ML-RUS and ML-ROS simply delete instances with majority labels
and clone examples with minority labels, respectively [7]. MLeNN eliminates
instances only with majority labels and similar labelset of its neighbors in a
heuristic way based on the Edited Nearest Neighbor (ENN) rule [5]. To make a
multi-label dataset more balanced, MLSMOTE randomly selects instance con-
taining minority labels and its neighbors to generate synthetic instances which
are associated with labels that appear more that half times of the seed instance
and its neighbors according to Ranking strategy [6].

REMEDIAL tackles the concurrence of labels with different imbalance level
in one instance, of which the level is assessed by SCUMBLE, by decompos-
ing the sophisticated instance of into two simpler examples, but may introduce
extra confusions into the learning task, i.e. there are several pairs of instances
with same features and disparate labels [8]. The REMEDIAL could be either a
standalone sampling method or the prior part of other sampling techniques, i.e.
RHwRSMT combines REMEDIAL with MLSMOTE [9].

Apart from resampling methods, another group of approaches focuses on
multi-label learning method handling the class-imbalance problem directly. Some
methods deal with the imbalance issue of multi-label learning via transforming
the multi-label dataset to several binary/multi-class classification problems. CO-
COA converts the original multi-label dataset to one binary dataset and several
multi-class datasets for each label, and builds imbalance classifiers with the assis-
tance of sampling for each dataset [31]. SOSHF transforms the multi-label learn-
ing task to an imbalanced single label classification assignment via cost-sensitive
clustering, and the new task is addressed by oblique structured Hellinger decision
trees [11]. Besides, many approaches aims to modify current multi-label learning
methods to handle class-imbalance problem. ECCRU3 extends the ECC resilient
to class imbalance by coupling undersampling and improving of the exploitation
of majority examples[18]. Apart from ECCRU3, the modified models based on
neural network [26, 16, 23], SVM [3], hypernetwork [24] and BR [10, 12, 25, 28]
have been proposed as well. Furthermore, other strategies, such as representation
learning [17], constrained submodular minimization [29] and balanced pseudo-
label [30], have been utilized to address the imbalance obstacle of multi-label
learning as well.
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3 Our Approach

We start by introducing our mathematical notation. Let X = Rd be a d-
dimensional input feature space, L = {l1, l2, ..., lq} a label set containing q labels
and Y = {0, 1}q a q-dimensional label space. D = {(xi,yi)|1 6 i 6 n} is a
multi-label training data set containing n instances. Each instance (xi,yi) con-
sists of a feature vector xi ∈ X and a label vector yi ∈ Y, where yij is the
j-th element of yi and yij = 1(0) denotes that lj is (not) associated with i-th
instance. A multi-label method learns the mapping function h : X → {0, 1}q and
(or) f : X → Rq from D that given an unseen instance x, outputs a label vec-

tor ŷ with the predicted labels of and (or) real-valued vector f̂y corresponding
relevance degrees to x respectively.

We propose a novel Multi-Label Synthetic Oversampling approach based
on the Local distribution of labels (MLSOL). The pseudo-code of MLSOL is
shown in Algorithm 1. Firstly, some auxiliary variables, as the weight vector
w and type matrix T used for seed instance selection and synthetic examples
generation respectively, are calculated based on the local label distribution of
instances (line 3-6 in Algorithm 1). Then in each iteration, the seed and reference
instances are selected, upon which a synthetic example is generated and added
into the dataset. The loop (line 7-12 in Algorithm 1) would terminate when
expected number of new examples are created. The following subsections detail
the definition of auxiliaries as well as strategies to pick seed instances and create
synthetic examples.

Algorithm 1: MLSOL

input : multi-label data set: D, percentage of instances to generated: P ,
number of nearest neighbour: k

output: new data set D′

1 GenNum← |D| ∗ P ; /* number of instances to generate */

2 D′ ← D ;
3 Find the kNN of each instance ;
4 Calculate C according to Eq.(1) ;
5 Compute w according to Eq.(3) ;
6 T ← InitTypes(C, k) ; /* Initialize the type of instances */

7 while GenNum > 0 do
8 Select a seed instance (xs,ys) from D based on the w;
9 Randomly choose a reference instance (xr,yr) from kNN(xs) ;

10 (xc,yc)← GenerateInstance ((xs,ys), Ts, (xr,yr), Tr);
11 D′ ← D′ ∪ (xc,yc) ;
12 GenNum← GenNum− 1 ;

13 return D′ ;



Title Suppressed Due to Excessive Length 5

3.1 Selection of Seed Instances

We sample seed instances with replacement, with the probability of selection
being proportional to the minority class values it is associated with, weighted
by the difficulty of correctly classifying these values based on the proportion of
opposite (majority) class values in the local neighborhood of the instance.

For each instance xi we first retrieve its k nearest neighbours, kNN(xi).
Then for each label lj we compute the proportion of neighbours having opposite
class with respect to the class of the instance and store the result in the matrix
C ∈ Rn×q according to the following equation, where JπK is the indicator function
that returns 1 if π is true and 0 otherwise:

Cij =
1

k

∑
xm∈kNN(xi)

Jymj 6= yijK (1)

The values in C range from 0 to 1, with values close to 0 (1) indicating a
safe (hostile) neighborhood of similarly (oppositely) labelled examples. A value of
Cij = 1 can further be viewed as a hint that xi is an outlier in this neighborhood
with respect to lj .

The next step is to aggregate the values in C per training example, xi, in
order to arrive at a single sampling weight, wi, characterizing the difficulty in
correctly predicting the minority class values of this example. A straightforward
way to do this is to simply sum these values for the labels where the instance
contains the minority class. Assuming for simplicity of presentation that the
value 1 corresponds to the minority class, we arrive at this aggregation as follows:

wi =

q∑
j=1

CijJyij = 1K (2)

There are two issues with this. The first one is that we have also taken into
account the outliers. We will omit them by adding a second indicator function
requesting Cij to be less than 1. The second issue is that this aggregation does
not take into account the global level of class imbalance of each of the labels.
The fewer the number of minority samples, the higher the difficulty of correctly
classifying the corresponding minority class. In contrast, Equation 2 treats all
labels equally. To resolve this issue, we can normalize the values of the non-
outlier minority examples in C so that they sum to 1 per label, by dividing with
the sum of the values of all non-outlier minority examples of that label. This
will increase the relative importance of the weights of labels with fewer samples.
Addressing these two issues we arrive at the following proposed aggregation:

wi =

q∑
j=1

CijJyij = 1KJCij < 1K∑n
i=1 CijJyij = 1KJCij < 1K

(3)
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3.2 Synthetic Instance Generation

The definition of the type of each instance-label pair is indispensable for the
assignment of appropriate labels to the new instances that we shall create. In-
spired by [19], we distinguish minority class instances into four types, namely safe
(SF ), borderline (BD), rare (RR) and outlier (OT ), according to the proportion
of neighbours from the same (minority) class:

– SF : 0 6 Cij < 0.3. The safe instance is located in the region overwhelmed
by minority examples.

– BD : 0.3 6 Cij < 0.7. The borderline instance is placed in the decision
boundary between minority and majority classes.

– RR : 0.7 6 Cij < 1, and only if the type of its neighbours from the minority
class are RR or OT . Otherwise there are some SF or BD examples in the
proximity, which suggests that it could be rather a BD. The rare instance,
accompanied with isolated pairs or triples of minority class examples, is
located in the majority class area and distant from the decision boundary.

– OT : Cij = 1. The outlier is surrounded by majority examples.

For the sake of uniform representation, the type of majority class instance
is defined as majority (MJ). Let T ∈ {SF,BD,RR,OT,MJ}n×q be the type
matrix and Tij be the type of yij . The detailed steps of obtaining T are illustrated
in Algorithm 2.

Once the seed instance (xs,ys) has been decided, the reference instance
(xr,yr) is randomly chosen from the k nearest neighbours of the seed instance.
Using the selected seed and reference instance, a new synthetic instance is gen-
erated according to Algorithm 3. The feature values of the synthetic instance
(xc,yc) are interpolated along the line which connects the two input samples
(line 1-2 in Algorithm 3). Once xc is confirmed, we compute cd ∈ [0, 1], which
indicates whether the synthetic instance is closer to the seed (cd < 0.5) or closer
to the reference instance (cd > 0.5) (line 3-4 in Algorithm 3).

With respect to label assignment, we employ a scheme considering the labels
and types of the seed and reference instances as well as the location of the
synthetic instance, which is able to create informative instances for difficult
minority class labels without bringing in noise for majority labels. For each label
lj , ycj is set as ysj (line 6-7 in Algorithm 3) if ysj and yrj belong to the same
class. In the case where ysj is majority class, the seed instance and the reference
example should be exchanged to guarantee that ysj is always the minority class
(line 9-11 in Algorithm 3). Then, θ, a threshold for cd is specified based on the
type of the seed label, Tsj (line 12-16 in Algorithm 3), which is used to determine
the instance (seed or reference) whose labels will be copied to the synthetic
example. For SF , BD and RR, where the minority (seed) example is surrounded
by several majority instances and suffers more risk to be classified wrongly,
the cut-point of label assignment is closer to the majority (reference) instance.
Specifically, θ = 0.5 for SF represents that the frontier of label assignment is in
the midpoint between seed and reference instance, θ = 0.75 for BD denotes that
the range of minority class extends as three times as large than the majority
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Algorithm 2: InitTypes

input : The matrix storing proportion of kNNs with opposite class for each
instance and each label: C, number of nearest neighbour: k

output: types of instances T
1 for i← 1 to n do /* n is the number of instances */

2 for j ← 1 to q do /* q is the number of labels */

3 if yij = majority class then
4 Tij ←MJ ;
5 else /* yij is the minority class */

6 if Cij < 0.3 then Tij ← SA ;
7 else if Cij < 0.7 then Tij ← BD ;
8 else if Cij < 1 then Tij ← RR ;
9 else Tij ← OT ;

10 repeat/* re-examine RR type */

11 for i← 1 to n do
12 for j ← 1 to q do
13 if Tij = RR then
14 foreach xm in kNN(xi) do
15 if Tmj = SF or Tmj = BD then
16 Tij ← BD;
17 break ;

18 until no change in T ;
19 return T ;

class, and θ > 1 > cd for RR ensures that the generated instance is always set as
minority class regardless of its location. With respect to OT as a singular point
placed at majority class region, all possible synthetic instances are assigned the
majority class due to the inability of an outlier to cover the input space. Finally,
ycj is set as ysj if cd is not larger than θ, otherwise ycj is equal to yrj (line 17-20
in Algorithm 3).

Compared with MLSMOTE, MLSOL is able to generate more diverse and
well-labeled synthetic instances. As the example in Figure 2 shows, given a seed
instance, the labels of the synthetic instance are fixed in MLSMOTE, while the
labels of the new instance change according to its location in MLSOL, which
avoids the introduction of noise as well.

3.3 Ensemble of Multi-Label Sampling (EMLS)

Ensemble is a effective strategy to increase overall accuracy and overcome over-
fitting problem, but has not been leveraged to multi-label sampling approaches.
To improve the robustness of MLSOL and current multi-label sampling meth-
ods, we propose the ensemble framework called EMLS where any multi-label
sampling approach and classifier could be embedded. In EMLS, M multi-label
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Algorithm 3: GenerateInstance

input : seed instance: (xs,ys), types of seed instance: Ts, reference instance:
(xr,yr), types of reference instance: Tr

output: synthetic instance: (xc,yc)
1 for j ← 1 to d do
2 xcj ← xsj + Random(0, 1) ∗ (xrj − xsj) ; /* Random(0,1) generates a

random value between 0 and 1 */

3 ds ← dist(xc, xs), dr ← dist(xc, xr) ; /* dist return the distance between

2 instances */

4 cd← ds/(ds + dr) ;
5 for j ← 1 to q do
6 if ysj = yrj then
7 ycj ← ysj ;
8 else
9 if Tsj = MJ then /* ensure ysj being minority class */

10 s←→ r ; /* swap indices of seed and reference instance */

11 cd← 1− cd ;

12 switch Tsj do
13 case SF do θ ← 0.5 ; break ;
14 case BD do θ ← 0.75 ; break ;
15 case RR do θ ← 1 + 1e− 5 ; break ;
16 case OL do θ ← 0− 1e− 5 ; break ;

17 if cd 6 θ then
18 ycj ← ysj ;
19 else
20 ycj ← yrj ;

21 return (xt,yt) ;

learning models are trained and each model is built upon a re-sampled dataset
generated by a multi-label sampling method with various random seed. There
are many random operations in existing and proposed multi-label learning sam-
pling methods [7, 6], which guarantees the diversity of training set for each
model in the ensemble framework via employing different random seed. Then
the bipartition threshold of each label is decided by maximizing F-measure on
training set, as COCOA [31] and ECCRU3 [18] do. Given the test example, the
predicting relevant scores is calculated as the average output relevant degrees
obtained from M models, and the labels whose relevance degree is larger than
the corresponding bipartition threshold are predicted as ”1”, and ”0” otherwise.

3.4 Complexity Analysis

The complexity of searching kNN of input instances is O(n2d+ n2k). The com-
plexity of computing C, w and T is O(knq), O(nq) and O(nq), respectively. The
complexity of creating instances is O(nP (n + d)) where nP is the number of
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Fig. 2. An example of MLSOL excelling MLSMOTE. s is the seed instance, r∗ are
candidate reference instances (kNNs of s), and c∗ are possible synthetic examples.
The synthetic instances created by MLSMOTE are associated with unique label vector
([1,0,0]) decided by predominant kNNs, while MLSOL assigns labels to new examples
according to its location. The two sampling approaches are identical if the synthetic
instance (c1 and c4) is near the instance whose labels are same with majority kNNs
or seed instance, otherwise (c2 and c3) the MLSMOTE introduces noise while MLSOL
could tackle it by copying the labels of nearest instance to the new example.

generated examples. The overall complexity of MLSOL is O(n2d+ n2k + nkq),
of which the kNN searching is the most time-consuming part.

Let’s define Θt(n, d, q) and Θp(d, q) the complexity of training and prediction
of multi-label learning method respectively, and Θs(n, d, q) the complexity of a
multi-label sampling approach. The complexity of EMLS is O(MΘp(d, q)) for
prediction and O (M (Θs(n, d, q) +Θt(n, d, q) + nΘp(d, q))) for training.

4 Empirical Analysis

4.1 Setup

Table 1 shows detailed information for the 13 benchmark multi-label datasets,
obtained from Mulan’s repository1, that are used in this study. Besides, in tex-
tual data sets with more than 1000 features we applied a simple dimensionality
reduction approach that retains the top 10% (bibtex, enron, medical) or top
1% (rcv1subset1, rcv1subset2, yahoo-Arts1, yahoo-Business1) of the features or-
dered by number of non-zero values (i.e. frequency of appearance). Besides, we
remove labels only containing one minority class instance, because when split-
ting the dataset into training and test sets, there may be only majority class
instances of those extremely imbalanced labels in training set.

Four multi-label sampling methods are used for comparison, namely the
state-of-the-art MLSMOTE [6] and RHwRSMT [9] that integrates REMEDIAL [8]
and MLSMOTE, as well as their ensemble versions, called EMLSMOTE and
ERHwRSMT respectively. Furthermore, the base learning approach without em-
ploying any sampling approach, denoted as Default, is also used for comparing.
For all sampling methods, the number of nearest neighbours is set to 5 and
the Euclidean distance is used to measure the distance between the examples.
In MLSOL, the sampling ratio is set to 0.3. In RHwRSMT, the threshold for

1 http://mulan.sourceforge.net/datasets-mlc.html

http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. The 16 multi-label datasets used in this study. Columns n, d, q denote
the number of instances, features and labels respectively, LC the label cardinality,
MeanImR the average imbalance ratio of labels, where imbalance ratio of a label is
computed as the number of majority instances divided by the number of minority
instance of the label.

Dataset Domain n d q LC MeanImR

bibtex text 7395 183 159 2.402 87.7
cal500 music 502 68 174 26 22.3
corel5k image 5000 499 347 3.517 522
enron text 1702 100 52 3.378 107
flags image 194 19 7 3.392 2.753

genbase biology 662 1186 24 1.248 78.8
medical text 978 144 35 1.245 143

rcv1subset1 text 6000 472 101 2.88 236
rcv1subset2 text 6000 472 101 2.634 191

scene image 2407 294 6 1.074 4.662
yahoo-Arts1 text 7484 231 25 1.654 101

yahoo-Business1 text 11214 219 28 1.599 286
yeast biology 2417 103 14 4.237 8.954

decoupling instance is set to SCUMBLE. For MLSMOTE and RHwRSMT,
the label generation strategy is Ranking. The ensemble size is set to 5 for
all ensemble methods. In addition, six multi-label learning methods are em-
ployed as base learning methods, comprising four standard multi-label learning
methods (BR [2], MLkNN [32], CLR [13], RAkEL [27]), as well as two state-
of-the-art methods addressing the class imbalance problem (COCOA [31] and
ECCRU3 [18]).

Three widely used imbalance aware evaluation metrics are leveraged to mea-
sure the performance of methods, namely macro-averaged F-measure, macro-
averaged AUC-ROC (area under the receiver operating characteristic curve) and
macro-averaged AUCPR (area under the precision recall curve). For simplicity,
we omit the “macro-averaged” in further references to these metrics within the
rest of this paper.

The experiments were conducted on a machine with 4×10-core CPUs run-
ning at 2.27 GHz. We apply 5×2-fold cross validation with multi-label stratifica-
tion [22] to each dataset and the average results are reported. The implementa-
tion of our approach and the scripts of our experiments are publicly available at
Mulan’s GitHub repository2. The default parameters are used for base learners.

4.2 Results and Analysis

Detailed experimental results are listed in the supplementary material3 of this
paper. The statistical significance of the differences among the methods par-

2 https://github.com/tsoumakas/mulan/tree/master/mulan
3 https://intelligence.csd.auth.gr/publications/ecml-pkdd-2019-supplementary.pdf

https://github.com/tsoumakas/mulan/tree/master/mulan
https://intelligence.csd.auth.gr/publications/ecml-pkdd-2019-supplementary.pdf


Title Suppressed Due to Excessive Length 11

ticipating in our empirical study is examined by employing the Friedman test,
followed by the Wilcoxon signed rank test with Bergman-Hommel’s correction
at the 5% level, following literature guidelines [14, 1]. Table 2 shows the average
rank of each method as well as its significant wins/losses versus each one of the
rest of the methods for each of the three evaluation metrics and each of the six
base multi-label methods. The best results are highlighted with bold typeface.

We start our discussion by looking at the single model version of the three
resampling methods. We first notice that RHwRSMT achieves the worst results
and that it is even worse than no resampling at all (default), which is mainly
due to the additional bewilderment yielded by REMEDIAL, i.e. there are sev-
eral pairs of instances with same features and disparate labels. MLSOL and
MLSMOTE exhibit similar total wins and losses, especially in AUCPR, which
is considered as the most appropriate measure in the context of class imbalance
[21]. Moreover, the wins and losses of MLSOL and MLSMOTE are not that
different from no resampling at all. This is particularly true when using a multi-
label learning method that already handles class imbalance, such as COCOA
and ECCRU3, which is not surprising.

We then notice that the ensemble versions of the three multi-label resampling
methods outperform their corresponding single model versions in all cases. This
verifies the known effectiveness of resampling apporaches in reducing the error,
in particular via reducing the variance component of the expected error [15].
Ensembling enables MLSMOTE and MLSOL to achieve much better results
compared to no resampling and it even helps RHwRSMT to do slightly better
than no resampling.

Focusing on the ensemble versions of the three resampling methods we notice
that EMLSOL achieves the best average rank and the most significant wins with-
out suffering any significant loss in all 18 different pairs of the 6 base multi-label
methods and the 3 evaluation measures, with the exception that MLSMOTE
with MLkNN as base learner achieves best average rank in terms of F-measure.
EMLSMOTE comes second in total wins and losses in most cases, while ER-
HwRSMT does much worse than EMLSMOTE.

An interesting observation here is that while MLSOL and MLSMOTE have
similar performance, MLSOL benefitted much more than MLSMOTE from the
ensemble approach. This happens because randomization plays a more important
role in MLSOL than in MLSMOTE. MLSOL uses weighted sampling for seed
instance selection, while MLSMOTE takes all minority samples into account
instead. This allows EMLSOL to create more diverse models, which achieve
greater error correction when aggregated.

5 Conclusion

We proposed MLSOL, a new synthetic oversampling approach for tackling the
class-imbalance problem in multi-label data. Based on the local distribution of
labels, MLSOL selects more important and informative seed instances and gener-
ates more diverse and well-labeled synthetic instances. In addition, we employed



12 B. Liu and G. Tsoumakas

Table 2. Average rank of the compared methods using 6 base learners in terms of
three evaluation metrics. A1, A2, EA1 and, EA2 stands for MLSMOTE, RHwRSMT,
EMLSMOTE and ERHwRSMT, respectively. The parenthesis (n1/n2) indicates the
corresponding method is significantly superior to n1 methods and inferior to n2 meth-
ods based on the Wilcoxon signed rank test with Bergman-Hommel’s correction at the
5% level.

F-measure

Base Method Default A1 A2 MLSOL EA1 EA2 EMLSOL
BR 5.19(1/4) 3.73(2/2) 7.00(0/6) 4.23(2/2) 2.08(5/1) 4.38(1/2) 1.38(6/0)

MLkNN 5.81(1/5) 4.92(2/4) 7.00(0/6) 4.27(3/3) 1.62(5/0) 2.69(4/2) 1.69(5/0)
CLR 5.04(1/3) 4.5(1/3) 7.00(0/6) 4.15(1/3) 2.58(4/0) 2.62(4/0) 2.12(4/0)

RAkEL 5.04(1/4) 3.88(2/2) 7.00(0/6) 3.5(2/2) 2.46(5/1) 4.69(1/2) 1.42(6/0)
COCOA 3.58(1/0) 4.42(1/1) 6.35(0/5) 5.23(0/1) 3.27(1/0) 3.31(1/0) 1.85(3/0)
ECCRU3 3(2/0) 4.58(1/1) 6.31(0/5) 5.46(0/2) 3.35(1/0) 3.46(1/1) 1.85(4/0)

Total 7/16 9/13 0/34 8/13 21/2 12/7 28/0

AUC-ROC

Base Method Default A1 A2 MLSOL EA1 EA2 EMLSOL
BR 5.23(1/3) 4.65(1/3) 6.27(0/6) 3.46(3/1) 2.81(4/1) 4.58(1/2) 1.00(6/0)

MLkNN 4.69(1/1) 3.73(2/2) 6.35(0/6) 4.23(2/1) 2.58(3/1) 5.35(1/4) 1.08(6/0)
CLR 4.35(0/1) 4.77(0/2) 5.58(0/3) 5.00(0/2) 2.85(4/1) 4.08(1/2) 1.38(6/0)

RAkEL 4.38(2/4) 3.73(3/2) 6.77(0/6) 3.54(3/2) 2.54(5/1) 6.00(1/5) 1.04(6/0)
COCOA 5.23(0/1) 4.73(0/1) 5.42(0/1) 4.54(0/1) 3.42(0/1) 3.65(0/1) 1.00(6/0)
ECCRU3 4.73(0/1) 4.23(0/2) 5.73(0/3) 5.46(0/1) 2.65(3/1) 4.12(1/2) 1.08(6/0)

Total 4/11 6/12 0/25 8/8 19/6 5/16 36/0

AUCPR

Base Method Default A1 A2 MLSOL EA1 EA2 EMLSOL
BR 4.81(1/2) 3.85(1/2) 6.46(0/6) 4.15(1/2) 2.46(5/1) 5.19(1/2) 1.08(6/0)

MLkNN 5.04(0/2) 4.5(1/2) 5.92(0/5) 4.08(1/1) 3.04(4/1) 4.42(1/2) 1.00(6/0)
CLR 4.15(1/1) 4.88(0/2) 5.92(0/4) 5.00(0/3) 3.00(3/1) 3.81(2/1) 1.23(6/0)

RAkEL 4.42(1/2) 3.92(1/2) 6.77(0/6) 3.92(1/2) 2.5(5/1) 5.46(1/2) 1.00(6/0)
COCOA 5.31(0/1) 4.85(0/1) 5.31(0/1) 4.62(0/1) 3.15(0/1) 3.77(0/1) 1.00(6/0)
ECCRU3 4.96(0/2) 4.5(0/2) 5.50(0/3) 5.04(0/2) 2.88(5/1) 4.12(1/2) 1.00(6/0)

Total 3/10 3/11 0/25 3/11 22/6 6/10 36/0
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MLSOL within a simple ensemble framework, which exploits the random aspects
of our approach during sampling training examples to use as seeds and during
the generation of synthetic training examples.

We experimentally compared the proposed approach against two state-of-the
art resampling methods on 13 benchmark multi-label datasets. The results offer
strong evidence on the superiority of MLSOL, especially of its ensemble ver-
sion, in three different imbalance-aware evaluation measures using six different
underlying base multi-label methods.

Acknowledgements Bin Liu is supported from the China Scholarship Council
(CSC) under the Grant CSC No.201708500095.
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