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Abstract. Credit scoring models support loan approval decisions in
the financial services industry. Lenders train these models on data from
previously granted credit applications, where the borrowers’ repayment
behavior has been observed. This approach creates sample bias. The
scoring model is trained on accepted cases only. Applying the model
to screen applications from the population of all borrowers degrades its
performance. Reject inference comprises techniques to overcome sam-
pling bias through assigning labels to rejected cases. This paper makes
two contributions. First, we propose a self-learning framework for re-
ject inference. The framework is geared toward real-world credit scoring
requirements through considering distinct training regimes for labeling
and model training. Second, we introduce a new measure to assess the
effectiveness of reject inference strategies. Our measure leverages domain
knowledge to avoid artificial labeling of rejected cases during evaluation.
We demonstrate this approach to offer a robust and operational assess-
ment of reject inference. Experiments on a real-world credit scoring data
set confirm the superiority of the suggested self-learning framework over
previous reject inference strategies. We also find strong evidence in favor
of the proposed evaluation measure assessing reject inference strategies
more reliably, raising the performance of the eventual scoring model.

Keywords: Credit scoring · Reject inference · Self-learning · Evaluation

1 Introduction

Financial institutions use supervised learning to guide lending decisions. The
resulting credit scoring models, also called scorecards, predict the probability of
default (PD) – an applicant’s willingness and ability to repay debt [31]. Loan
approval decisions are made based on whether the scorecard predicts an applicant
to be a repaying borrower (good risks) or a likely defaulter (bad risks).

Scoring models are trained on data of accepted applicants. Their repayment
behavior has been observed, which provides the labels for supervised learning.
Inevitably, the sample of accepted clients (accepts) differs from the overall pop-
ulation of credit applicants. Accepts have passed the screening of the lender’s
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scorecard, whereas the population also includes clients who have been denied
credit by that scorecard (rejects) as well as customers who have not applied for
credit. As a result, scoring models suffer from sample bias. Training a classifier
only on data from accepts deteriorates the accuracy of PD predictions when the
scorecard is out into production for screening incoming credit applications [28].

Reject inference refers to techniques that remedy sampling bias through infer-
ring labels for rejects. Previous research has suggested several approaches includ-
ing naive strategies (e.g., label all rejects as bad) and model-based techniques
[28]. However, empirical evidence concerning the value of reject inference and
the efficacy of labeling strategies is scarce. Several studies use incomplete data,
which only contain accepted cases (e.g. [5, 11]), do not have a labeled unbiased
sample with both accepts and rejects (e.g., [7]) or use synthetic data (e.g., [16]).
In addition, the data sets employed in prior studies are usually low-dimensional
(e.g., [21]), which is not representative of the real-world credit scoring data used
today [33]. Previous work is also geared toward linear models and support vector
machines (SVM) [1, 19, 21]. Yet, there is much evidence that other algorithms
(e.g., tree-based ensembles) outperform these methods in credit scoring [18, 34].

The contribution of this paper is two-fold. First, we introduce a novel self-
learning framework for reject inference in credit scoring. Our framework includes
two different probabilistic classifiers for the training and labeling stages. The
training stage benefits from using a strong learner such as gradient boosting.
However, we suggest using a shallow (i.e. weaker) learner for the labeling stage
and show that it achieves higher calibration with respect to the true PD [23].
As a result, we maximize the precision of our model on the extreme quantiles of
its output and minimize the noise introduced on newly labeled rejects.

Second, we introduce a novel measure (denoted as kickout) to assess reject in-
ference methods in a reliable and operational manner. Aiming at labeling rejects
to raise the scorecard performance, the acid test of a reject inference strategy in-
volves comparing a scorecard without correction for sample bias to a model that
has undergone reject-inference based correction on data from an unbiased sample
of clients including both accepts and rejects with actual labels for both groups
of clients. Such a sample would represent the operating conditions of a scorecard
and thus uncover the true merit of reject inference [11]. However, obtaining such
a sample is very costly as it requires a financial institution to lend money to
a random sample of applicants including high-risk cases that would normally
be denied credit. Drawing on domain knowledge, the proposed kickout measure
avoids dependence on the actual labels of rejects and, as we establish through
empirical experimentation, assesses the merit of a reject inference method more
accurately than previous evaluation approaches. The data set used in this paper
includes an unbiased sample containing both accepts and rejects, giving us a
unique opportunity to evaluate a scorecard in its operating conditions.

The paper is organized as follows. Section 2 reviews related literature on
reject inference. Section 3 revisits the reject inference problem, presents our self-
learning framework and introduces the kickout measure. Section 4 describes our
experimental setup and reports empirical results. Section 5 concludes the paper.
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2 Literature Review

The credit scoring literature has suggested different model-based and model-free
approaches to infer labels of rejected cases. Some model-free techniques rely on
external information such as expert knowledge to manually label rejects [22].
Another approach is to label all rejected cases as bad risks [28], assuming that
the default ratio among the rejects is sufficiently high. One other strategy is to
obtain labels by relying on external performance indicators such as credit bureau
scores or an applicant’s outcome on a previous loan [2, 28].

Model-based reject inference techniques rely on a scoring model to infer la-
bels for rejects. Table 1 depicts corresponding techniques, where we sketch the
labeling strategy used in a study together with the base classifier that was used
for scorecard development. Table 1 reveals that most reject inference techniques
have been tested with linear models such as logistic and probit regression.

The literature distinguishes several approaches toward model-based reject
inference such as augmentation, extrapolation, bivariate models and others [19].
Extrapolation refers to a set of techniques that use the initial scoring model
trained on the accepts to label the rejected cases. For instance, hard cutoff
augmentation labels rejects by comparing their model-estimated PDs to a pre-
defined threshold [28]. Parceling introduces a random component, separating the
rejected cases into segments based on the range (e.g., percentile) of PDs. Instead
of assigning labels based on the individual scores of rejects, they are labeled ran-
domly within the identified segments based on the expected default rate for each
score range. A drawback of such techniques is their reliance on the performance
of the initial scoring model when applied to rejects.

Augmentation (or re-weighting) is based on the fact that applicants with
a certain distribution of features appear in the training data disproportionately
due to a non-random sample selection [11]. Re-weighting refers to the techniques
that train an additional model that separates accepts and rejects and predicts
the probability of acceptance. These probabilities are then used to compute
sampling weights for a scoring model.

Some scholars suggest using a two-stage bivariate probit model or two-stage
logistic regression to perform reject inference [6]. A bivariate model incorporates
the Heckman’s correction to account for a sample bias within the model, es-
timating both acceptance and default probability. These models assume linear
effects within the logistic or probit regression framework.

Empirical studies have shown little evidence that reject inference techniques
described above improve scorecard’s performance [3, 9, 11, 32]. Recently sug-
gested alternatives rely on semi-supervised learning. For example, Maldonado
et al have shown that self-learning with SVM outperforms well-known reject
inference techniques such as ignoring rejects or labeling all rejects as bad risks
[21]. Their work is continued by [19], who propose a semi-supervised SVM that
uses a non-linear kernel to train a scoring model.

We follow recent studies and cast the reject inference problem in a semi-
supervised learning framework. Our approach to solve the problem is a variation
of self-learning adapted to a credit scoring context by extending the work of [21].
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Table 1. Model-Based Reject Inference Methods

Reference Inference technique Base model

Reichert et al (1983) [24] LDA-based LDA
Joanes (1993) [16] Reclassification LR
Hand et al (1993) [15] Ratio prediction -
Hand et al (1993) [15] Rebalancing model -
Feelders (1999) [12] Mixture modeling LR, QDA
Banasik et al (2003) [6] Augmentation LR, Probit
Smith et al (2004) [29] Bayesian network Bayesian
Crook et al (2004) [11] Reweigthing LR
Verstraeten et al (2005) [32] Augmentation LR
Banasik et al (2005) [3] Augmentation LR
Fogarty (2006) [13] Multiple imputation LR
Montrichard (2007) [22] Fuzzy augmentation LR
Banasik et al (2007) [4] Augmentation LR, Probit
Banasik et al(2007) [4] Bivariate probit Probit
Kim et al (2007) [17] Bivariate probit -
Banasik et al (2010) [5] Augmentation Survival
Maldonado et al (2010) [21] Self-training SVM
Maldonado et al (2010) [21] Co-training SVM
Maldonado et al (2010) [21] Semi-supervised SVM SVM
Chen et al (2012) [10] Bound and collapse Bayesian
Bücker et al (2012) [7] Reweighting LR
Siddiqi (2012) [28] Define as bad -
Siddiqi (2012) [28] Soft cutoff augmentation -
Siddiqi (2012) [28] Hard cutoff augmentation -
Siddiqi (2012) [28] Parceling -
Siddiqi (2012) [28] Nearest neighbors -
Anderson et al (2013) [1] Mixture modeling LR
Li et al (2017) [19] Semi-supervised SVM SVM

3 Methodology

3.1 Self-Learning for Reject Inference

In reject inference, we are given a set of n examples x1, ..., xn ∈ Rk, where k is the
number of features. SetX consists of l accepted clients xa1 , ..., x

a
l ∈ Xa with corre-

sponding labels ya1 , ..., y
a
l ∈ {good , bad} andm rejected examples xr1, ..., x

r
m ∈ Xr,

whose labels are unknown. To overcome sampling bias and eventually raise score-
card accuracy, reject inference aims at assigning labels yr1, ..., y

r
m to the rejected

examples, which allows using the combined data for training a scoring model.
Standard self-learning starts with training a classifier f(x) on the labeled ex-

amples xa1 , ..., x
a
l and using it to predict the unlabeled examples xr1, ..., x

r
m. Next,

the subset of unlabeled examples X∗ ⊂ Xr with the most confident predictions
is selected such that f(x∗i ∈ X∗) > α or f(x∗i ∈ X∗) < 1 − α, where α is a
probability threshold corresponding to a specified percentile of f(x∗i ∈ Xr). The
selected rejects are labeled in accordance with the classifier’s predictions. Cases
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obtained within this process are removed from Xr and appended to Xa to form
a new labeled sample Xa

1 . Finally, the classifier is retrained on Xa
1 and used to

score the remaining cases in Xr. The procedure is repeated until all cases from
Xr are assigned labels or until certain stopping criteria are fulfilled [25].

Self-learning assumes that labeled and unlabeled examples in X follow the
same distribution [25]. In a credit scoring context, Xa and Xr come from two
different distributions because the scoring model employed by the financial in-
stitution separates accepts and rejects based on their feature values. The dif-
ference in distributions has negative consequences for self-learning: since the
initial model is trained on a sample that is not fully representative of the unla-
beled data, predictions of this model for the rejects are less reliable. The error
is propagated through the iterative self-learning framework, which deteriorates
the performance of the final model due to the incorrectly assigned labels.

In this section, we describe a novel shallow self-training framework for reject
inference that is geared toward reducing the negative effects of sample bias.
The proposed framework consists of three stages: filtering, labeling and model
training. We summarize the algorithm steps in Algorithm 2.

Within the proposed framework, we suggest to filter and drop some rejected
cases before assigning them with labels. The goal of the filtering stage is two-fold.
Firstly, we strive to remove rejected cases that come from the most different part
of distribution compared to the accepts. Removing these cases would reduce the
risk of error propagation, since predictions of the model trained on the accepts
become less reliable as the distribution of cases to be predicted becomes more
different from the one observed on the training data. Secondly, we remove rejects
that are most similar to the accepted cases. Labeling such cases would potentially
provide little new information for a scorecard and might even harm performance
due to introducing noise. Therefore, the filtering stage is aimed at removing the
cases that could have a negative impact of the scorecard performance.

The filtering is performed with isolation forest, which is a novelty detection
method that estimates the normality of a specific observation by computing the
number of splits required to isolate it from the rest of the data [20]. We train
isolation forest on all accepts in Xa and use it to evaluate the similarity of
the rejects in Xr. Next, we remove rejects that are found to be the most and
least similar to the accepts by dropping cases within the top βt and bottom βb
percentiles of the similarity scores. Algorithm 1 describes the filtering stage.

After filtering, we use self-learning with distinct labeling and training regimes
to perform reject inference. While the scoring model is based on a tree-based al-
gorithm (gradient boosting), we propose using a weak learner for labeling rejects
because of its ability to produce better-calibrated predictions [23]. In this paper,
we rely on L1-regularized logistic regression (L1) to label rejects.

1 train isolation forest classifier g(x) using all data in Xa;
2 use g(x) to evaluate similarity scores of all unlabeled examples in Xr;
3 select a subset X∗ ⊂ Xr such that g(x∗i ∈ X∗) ∈ [βb, βt], where βb and

βt are values of pre-defined percentiles of g(xrj ∈ Xr), j = 1, ...,m.

Algorithm 1: Isolation Forest for Filtering Rejected Examples
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Logistic regression is a parametric learner which assumes a Gaussian distri-
bution of the data. Because of this assumption, predicted probabilities can be
output directly by the sigmoid function. In contrast, XG is a non-parametric
learner which has more degrees of freedom and a higher potential for inductive
bias reduction. Predicted scores produced by XG are not well calibrated [23].
Consider the example score distributions of L1 and extreme gradient boosting
(XG) depicted in Figure 1. Here, adding regularization to logistic regression is
important as we are dealing with high-dimensional data with noisy features.
Compared to L1, the range of the output probabilities of XG is wider.

Within the proposed framework, we require the labeling model to produce
well-calibrated probabilities as we limit the number of selected rejects based on
the predicted PD values. Furthermore, by using different base models for applica-
tion scoring and reject inference, we strive to reduce bias and error propagation.
Hence, using a weak learner for reject inference is more promising.

An important aspect of our framework is to account for a higher default
rate among the rejects [21]. Recall that X is partitioned into accepts and rejects
based on a scoring model that is currently employed by a financial institution.
Assuming that the scoring model in place performs better than a random loan
allocation, we expect that the default rate among rejects is higher than among
accepts. To address that difference, we introduce the imbalance parameter θ into
our self-learning framework. On each labeling iteration, we only select the top
α% of the good loans and top αθ% of the bad loans among rejects for labeling.
Keeping only the top-ranked instances ensures that we append rejects with high
confidence in the assigned labels, reducing the potential amount of noise. By
setting θ > 1 we append more bad cases to the training data, accounting for the
imbalance. Parameter θ can be optimized at the parameter tuning stage.
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Fig. 1. Score Densities. The figure compares the distributions of the scores predicted
by two scoring models: L1-regularized logistic regression (red) and extreme gradient
boosting (blue). Both models use the same data.
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1 filter rejected cases in Xr with isolation forest (see Algorithm 1);
2 set X∗ = Xr;
3 while X∗ 6= ∅ do
4 train L1 classifier f(x) with penalty parameter λ on all data in Xa;
5 use f(x) to predict PD for all unlabeled examples in X∗;
6 if cb = {} and cg = {} then
7 derive cg: P (f(x∗i ∈ X∗) < cg) = α, α is a percentile threshold;
8 derive cb: P (f(x∗i ∈ X∗) > cb) = αθ, θ is the imbalance

parameter;

9 end
10 select X∗ ⊂ Xr such that f(x∗i ∈ X∗) < cg or f(x∗i ∈ X∗) > cb;
11 remove examples in X∗ from Xr and append them to Xa;

12 end
13 train a scoring model s(x) using XG classifier on all cases in Xa.

Algorithm 2: Shallow Self-Learning for Reject Inference

Different variants of self-learning consider different ways to choose the most
confident cases for labeling: either selecting top and bottom percentiles of the
probability distribution or selecting cases based on a pre-defined probability
threshold [8]. We suggest using the combined approach: on the first iteration, we
compute the corresponding score values cg and cb for the selected α% and αθ%
probability percentiles. Since the labeling model is geared toward providing well-
calibrated probabilities, we fix the absolute values cg and cb as thresholds for the
subsequent iterations. By doing that, we reduce the risk of error propagation on
further iterations. The absence of rejected cases with predicted scores above the
fixed thresholds serves as a stopping criterion.

3.2 Proposed Evaluation Measure

Performance evaluation is an important part of selecting a suitable reject infer-
ence technique. In practice, accurate evaluation of reject inference is challenging.
The true labels of rejects are unknown, which prohibits estimating the accuracy
directly. Therefore, prior research evaluates the performance of a given technique
by comparing the performance of the scorecard before and after appending the
labeled rejects to the training data [3, 6, 19]. The major downside of this approach
is that the performance of a scorecard is not evaluated on a representative sam-
ple, which should include both accepts and rejects. Since labels of rejects are
unknown, the literature suggests to evaluate models on a holdout sample drawn
from the accepts which exhibits sample bias (e.g., [21]). Very few empirical stud-
ies have access to the data on both accepts and rejects for evaluation [11].

Model selection based on the performance on accepts might lead to selecting
a sub-optimal model. Let us illustrate that by comparing the performance of dif-
ferent scoring models validated on the accepts (4-fold stratified cross-validation)
and on the unbiased sample consisting of both accepts and rejects. We train a set
of scoring models with different meta-parameter values and evaluate their per-
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formance in terms of the area under the receiver operating characteristic curve
(AUC) [26]. Here, XG is used as a base classifier. Figure 2 depicts the results.
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Fig. 2. Comparing AUC on the accepted cases (4-fold stratified cross-validation) and
the unbiased sample. The dots indicate scoring models with different meta-parameters.

The rank correlation between AUC values is just 0.0132. Due to the distribution
differences between the accepted and rejected cases, the model’s performance on
the accepted applicants becomes a poor criterion for model selection. This result
suggests that there is a need to develop an alternative measure for comparing
and evaluating the scoring models in the presence of sample bias.

Without access to an unbiased sample that contains data on a representative
set of applicants, the literature suggests performing the evaluation by using
synthetic data [16], emulating rejected cases by artificially moving the acceptance
threshold [21] or using other criteria based on the applicants’ feature values [9].
In this paper, we suggest using kickout – a novel evaluation measure based on the
known data. We argue that developing such a measure is a valuable contribution
since obtaining an unbiased data sample for performance evaluation is costly.

The key idea of kickout is to compare a set of applications accepted by a
scoring model before and after reject inference. Recall that we have data on
the previously accepted Xa and rejected applicants Xr. Here, we partition Xa

into two subsets: Xa
train and Xa

holdout. Let s1(x) be a scoring model trained on
Xa

train. We use s1(x) to score cases from Xa
holdout and select a pool of customers

A1 ⊂ Xa
holdout that would be accepted by the model using the acceptance rate µ.

Thus, A1 contains the (simulated) accepted applications before reject inference.
The rejected cases in Xr are also split into two subsets: Xr

train and Xr
holdout.

The former is labeled with a reject inference technique and appended to the
Xa

train. Rejected cases in Xr
holdout are appended to Xa

holdout, which now contains
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labeled accepts and unlabeled rejects, simulating the production-stage environ-
ment. Next, we train a new scoring model s2(x) on the expanded training sample
Xa

train and use it to score and select customers in Xa
holdout using the same ac-

ceptance rate µ. Since both training and holdout samples have changed, model
s2(x) would accept a different pool of customers A2. Analyzing the differences
between A1 and A2, we can identify the kicked-out cases – applications that
were included in A1 but do not appear in A2.

We define the kickout metric as follows:

kickout =

KB

p(B) −
KG

1−p(B)

SB

p(B)

, kickout ∈ [−1, 1] (1)

where KB is the number of bad cases kicked out from the set of accepted cases
after performing reject inference, KG is the number of kicked-out good cases, SB

is the number of bad cases selected by the original model, and P(B) is the share
of bad cases in A1. The kickout metric ranges from −1 (all good cases and no bad
cases are kicked out) to 1 (all bad cases and no good cases are kicked out). We
normalize the metric by the share of bad cases to reflect the difficulty of kicking
out a bad customer. Positive values of kickout signal a positive impact of reject
inference, with higher values indicating a better performance.

It is important to note that kickout does not require knowing the actual labels
of the rejected cases that replace previously accepted cases. Instead, the metric
focuses on the kicked-out applications. Replacing a bad loan with a rejected case
may have two possible outcomes. If the newly selected rejected case is also bad,
we are indifferent between the old and the new scoring model. If the rejected
case is good, the scoring model improves. Therefore, kicking out a bad case has
a positive expected value. In contrast, kicking out a good case has a negative
expected value: we are indifferent between the old and the new scoring model if
the new rejected case is good, whereas scorecard performance deteriorates if the
rejected case is bad. Hence, a good reject inference technique should change a
scorecard such that it starts to kick out more bad and less good customers.

The proposed measure relies on two assumptions. First, we assume that all
bad loans and all good loans have the same expected value: that is, replacing one
bad case with another bad case does not have any effect on the model’s perfor-
mance. Given the stable interest rates that determine the return on investment
at fixed terms [31] and an uncertain relationship between a loan amount and
its PD, we argue that this assumption is reasonable in a credit scoring context.
Second, we assume that the bad ratio among rejected cases is higher compared
to the accepted applications. As we detailed above, this assumption holds if the
employed scoring model performs better than random.
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4 Experimental Results

4.1 Data Description

The empirical experiments are based on a real-world credit scoring data set on
consumer micro-loans provided by Kreditech, a Germany-based financial insti-
tution. Although the data are not available publicly, it provides a unique oppor-
tunity to study reject inference on a high-dimensional data set which includes an
unbiased sample with customers who have been granted a loan without scoring.

Table 2. Data Summary

Characteristic Accepts Rejects Unbiased

Number of cases 39,579 18,047 1,967
Number of features 2,410 2,410 2,410
Default rate 0.39 unknown 0.66

The data set contains 2,410 features describing the applicants, their behavior
and loan characteristics. The target variable is a binary indicator of whether the
customer has repaid the loan. The data consist of 59,593 loan applications, out of
which 39,579 were accepted and 18,047 were rejected. The target variable is only
observed for the accepts, whereas the repayment status of rejects is unknown.
Table 2 summarizes the main characteristics of the data set.

The unbiased sample contains 1,967 customers accepted without scoring. The
sample, therefore, includes cases that would normally be rejected by a scorecard.
This makes it representative of the through-the-door population of customers
who apply for a loan. As noted in Table 2, the default rate in the unbiased
sample is 1.7 times higher than on the accepted cases. The unbiased sample
allows us to evaluate the performance gains from reject inference on the sample
representative of the production environment.

4.2 Experimental Setup

To evaluate the effectiveness of our propositions, we perform two experiments.
Experiment 1 benchmarks the proposed self-learning framework against con-
ventional reject inference techniques and standard self-learning. In the second
experiment, we illustrate the effectiveness of the new kickout measure for model
selection. Below, we describe the modeling pipeline for these experiments.

We partition the data into three subsets: accepts, rejects and the unbiased
holdout sample. Next, we use 4-fold stratified cross-validation on accepts to
perform reject inference. On each iteration, the training folds are used to develop
a reject inference technique that is used to infer labels of the rejects. Next, labeled
rejects are appended to the training folds, providing a new sample to train a
scoring model. Finally, a scoring model after reject inference is evaluated on the
remaining fold and on the holdout sample. To ensure robustness, we evaluate



Shallow Self-Learning for Reject Inference in Credit Scoring 11

performance on 50 bootstraped samples of the holdout set. Performance metrics
of the reject inference techniques are then averaged over 4× 50 obtained values.

We use XG classifier as a scoring model in both experiments. Meta-parameters
of XG are tuned once on a small subset of training data using grid search. Within
the experiments, we employ early stopping with 100 rounds while setting the
maximum number of trees to 10,000 to fine-tune the model for each fold.

In Experiment I, we compare the suggested self-learning framework to the fol-
lowing benchmarks: ignore rejects, label all rejects as bad risks, hard cutoff aug-
mentation, parceling, cross-validation-based voting and standard self-learning.
Here, cross-validation-based voting is an adaption of a label noise correction
method suggested by [30]. It refers to an extension of hard cutoff augmentation
that employs a homogeneous ensemble of classifiers based on different training
folds instead of a single scoring model to label the rejects. The labels are only
assigned to the cases for which all individual models agree on the label.

We test multiple versions of each reject inference technique with different
meta-parameter values using grid search. For shallow self-learning, penalty λ of
the labeling model is tuned and optimized once on the first labeling iteration.
Table 3 provides the candidate values of meta-parameters.

For performance evaluation, we use three metrics that capture different di-
mensions of the predictive performance: AUC, Brier Score (BS) and R-Precision
(RP). We use AUC as a well-known indicator of the discriminating ability of a
model. In contrast, BS measures the calibration of the predicted default proba-
bilities. Last, we use RP as it better reflects the business context. The financial
institution that provided data for this study decides on a loan allocation by
approving a certain percentage of the least risky customers. RP measures per-
formance only for cases which will indeed be accepted. In our experiments, we
compute RP in the top 30% of the applications with the lowest predicted PDs.

In Experiment II, we compare different variants of self-learning using grid
search within the cross-validation framework described above. Apart from the
three selected performance measures, we also evaluate reject inference in terms
of the proposed kickout measure. The goal of this experiment is to compare
model rankings based on three evaluation strategies: performance on the accepts,
performance on the unbiased sample and performance in terms of kickout.

4.3 Empirical Results

Experiment I: Assessing the Shallow Self-Learning
Table 4 summarizes the performance of the reject inference techniques on the
accepted cases and on the unbiased sample. Recall that the latter serves as a
proxy for the production-stage environment for a scoring model, whereas perfor-
mance on accepts refers to a conventional approach toward evaluation in credit
scoring. According to the results, not all methods improve on the benchmark of
ignoring rejects: only three out of six techniques achieve higher AUC and lower
BS on the unbiased sample, and only one has a higher RP.

Labeling rejects as bad performs better than disregarding reject inference on
the accepts but does substantially worse on the unbiased sample. In contrast,
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parceling is outperformed by all other techniques on the accepts but has higher
AUC on the unbiased sample. These results support the argument that perfor-
mance on accepts might be a poor indicator of the production-stage performance.

Regular self-learning outperforms ignoring rejects in terms of AUC and BS
but does not improve in terms of RP. The proposed self-learning framework
performs best in all three measures on the unbiased sample as well as on the
accepted applicants. The best performance is achieved by a self-learning model
that includes filtering of rejects (βb = 1 − βt = 0.02). Therefore, the suggested
modifications help to adjust self-learning for the reject inference problem.

Table 3. Reject Inference Techniques: Parameter Grid

Technique Parameter Candidate values

Label all as bad − −
Hard cutoff augmentation probability threshold 0.3, 0.4, 0.5

Parceling
multiplier 1, 2, 3
no. batches 10

CV-based voting
probability threshold 0.3
no. folds 2, 5, 10

Regular self-learning
labeled percentage α 0.01, 0.02, 0.03
max no. iterations 5

Shallow self-learning

filtered percentage βb 0, 0.02
filtered percentage βt 1, 0.98
penalty parameter λ 2−8, 2−7.5, ..., 28

labeled percentage α 0.01, 0.02, 0.03
imbalance parameter θ 1, 2
max no. iterations 5

Performance gains appear to be modest, supporting the prior findings [15]. We
check statistical significance of the differences using Friedman’s rank sum test
and Nemenyi pairwise test [14]. According to Friedman’s test, we reject the null
hypothesis that all reject inference techniques perform the same at 5% level for
AUC (χ2 = 419.82), RP (χ2 = 326.99) and BS (χ2 = 485.59). Nemenyi test
indicates that shallow self-learning performs significantly better than all com-
petitors in terms of AUC and RP, whereas differences in BS between standard
and shallow self-learning are not statistically significant at 5% level.

Even small differences might have a considerable effect on the costs of the
financial institution [27]. Comparing shallow self-learning to ignoring rejects,
0.006 increase in RP translates to 60 less defaulted loans for every 10,000 ac-
cepted clients. Considering the average personal loan size of $17, 100 and interest
rate of 10.36% observed in the US in Q1 20191, potential gains from reject in-
ference could amount for up to $1.13 million depending on the recovery rates.

1 Source: https://www.supermoney.com/studies/personal-loans-industry-study/
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Table 4. Comparing Performance of Reject Inference Techniques

Method
Accepted cases Unbiased sample

AUC BS RP AUC BS RP

Ignore rejects 0.7297 0.1829 0.8436 0.8007 0.2092 0.7936
Label all as bad 0.7332 0.1816 0.8474 0.6797 0.2284 0.7253
Hard cutoff augmentation 0.7295 0.1770 0.8430 0.7994 0.2212 0.7751
Parceling 0.7277 0.1842 0.8430 0.8041 0.1941 0.7851
CV-based voting 0.7293 0.1804 0.8430 0.7167 0.2160 0.7510
Regular self-learning 0.7302 0.1758 0.8434 0.8063 0.1838 0.7929
Shallow self-learning 0.7362 0.1736 0.8492 0.8070 0.1799 0.7996

Table 5. Correlation between Evaluation Strategies

Evaluation strategy (1) (2) (3)

(1) AUC on the accepted cases 1
(2) AUC on the unbiased sample −0.0009 1
(3) The kickout metric 0.0336 0.4069 1

Experiment II: Evaluation Strategy for Model Selection
In the second experiment, we perform model selection on 28 variants of self-
learning with different meta-parameter values. Table 5 displays the correlation
between model ranks in terms of three evaluation measures: AUC on the accepts,
AUC on the unbiased sample and the kickout measure.

The absolute value of rank correlations between the performance on the ac-
cepts and performance on the unbiased data does not exceed 0.01. In contrast,
the rankings based on kickout are positively correlated with those on the un-
biased sample (r = 0.41). Therefore, the common practice to assess reject in-
ference strategies using the model’s performance on the accepted cases provides
misleading results as there is a very small correlation with the performance on
the production stage. In contrast, comparing reject inference techniques using
the proposed kickout measure is more promising.

Figure 3 illustrates the advantages of using kickout instead of the perfor-
mance on the accepts for model selection. Red points indicate the predictive
performance of a scoring model selected by the kickout measure, while green
dots refer to the best-performing model on the accepts in terms of AUC, BS and
RP. As before, we evaluate the selected scoring models on the unbiased sample.

As shown in Figure 3, using the kickout measure results in selecting a better
model in terms of all three performance indicators. By relying on kickout instead
of the performance on the accepts, we are able to identify a scorecard that has
a better performance on the unbiased sample.

These results emphasize the importance of using a suitable evaluation strat-
egy to assess the value of reject inference. Relying on conventional evaluation
measures such as AUC that are estimated on the accepted cases would result
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in selecting a suboptimal scoring model in terms of its production-stage perfor-
mance. Our experiments show that kickout proves to be a suitable measure for
doing model selection. According to the results, the kickout measure identifies a
better scoring model in the absence of an unbiased sample, which is particularly
useful for practitioners.

5 Conclusion

This paper suggests a self-learning framework with distinct training and labeling
regimes for reject inference in credit scoring and develops a novel evaluation
measure for model selection. We evaluate the effectiveness of our approach by
running empirical experiments on a high-dimensional real-world credit scoring
data set with unique properties.
Empirical results indicate that the proposed self-learning framework outper-
forms regular self-learning and conventional reject inference techniques in terms
of three performance measures. These results indicate that the modifications
suggested here help to adjust self-learning to the reject inference problem.

We also develop a novel evaluation measure to perform model selection for re-
ject inference techniques. We show that the standard practice of selecting models
(or meta-parameters) based on their performance on the accepted cases may lead
to choosing a model with a suboptimal predictive performance at the produc-
tion stage. Compared to the standard approach, the proposed kickout measure
exhibits a higher correlation with the performance on the unbiased sample and
allows to identify a scoring model with better performance.

Our results imply that future research on reject inference should not rely on
the model’s performance on the accepted cases to judge the value of a certain re-
ject inference technique. The kickout measure proves to be a good alternative for
practitioners who often do not have access to an unbiased sample that contains
both accepted and rejected applications.
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