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Abstract. We consider network sparsification as an L0-norm regularized
binary optimization problem, where each unit of a neural network (e.g.,
weight, neuron, or channel, etc.) is attached with a stochastic binary gate,
whose parameters are jointly optimized with original network parameters.
The Augment-Reinforce-Merge (ARM) [28], a recently proposed unbiased
gradient estimator, is investigated for this binary optimization problem.
Compared to the hard concrete gradient estimator from Louizos et al. [20],
ARM demonstrates superior performance of pruning network architectures
while retaining almost the same accuracies of baseline methods. Similar to
the hard concrete estimator, ARM also enables conditional computation
during model training but with improved effectiveness due to the exact
binary stochasticity. Thanks to the flexibility of ARM, many smooth or
non-smooth parametric functions, such as scaled sigmoid or hard sigmoid,
can be used to parameterize this binary optimization problem and the
unbiasness of the ARM estimator is retained, while the hard concrete
estimator has to rely on the hard sigmoid function to achieve conditional
computation and thus accelerated training. Extensive experiments on
multiple public datasets demonstrate state-of-the-art pruning rates with
almost the same accuracies of baseline methods. The resulting algorithm
L0-ARM sparsifies the Wide-ResNet models on CIFAR-10 and CIFAR-
100 while the hard concrete estimator cannot. The code is public available
at https://github.com/leo-yangli/l0-arm.

Keywords: Network Sparsification · L0-norm Regularization · Binary
Optimization.

1 Introduction

Deep Neural Networks (DNNs) have achieved great success in a broad range
of applications in image recognition [3], natural language processing [4], and
games [24]. Latest DNN architectures, such as ResNet [9], DenseNet [10] and
Wide-ResNet [29], incorporate hundreds of millions of parameters to achieve state-
of-the-art predictive performance. However, the expanding number of parameters
not only increases the risk of overfitting, but also leads to high computational
costs. Many practical real-time applications of DNNs, such as for smart phones,
drones and the IoT (Internet of Things) devices, call for compute and memory
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efficient models as these devices typically have very limited computation and
memory capacities.

Fortunately, it has been shown that DNNs can be pruned or sparsified
significantly with minor accuracy losses [8, 7], and sometimes sparsified networks
can even achieve higher accuracies due to the regularization effects of the network
sparsification algorithms [23, 20]. Driven by the widely spread applications of
DNNs in real-time systems, there has been an increasing interest in pruning or
sparsifying networks recently [8, 7], [26, 18, 19, 22, 23, 20]. Earlier methods such as
the magnitude-based approaches [8, 7] prune networks by removing the weights
of small magnitudes, and it has been shown that this approach although simple
is very effective at sparsifying network architectures with minor accuracy losses.
Recently, the L0-norm based regularization method [20] is getting attraction
as this approach explicitly penalizes number of non-zero parameters and can
drive redundant or insignificant parameters to be exact zero. However, the
gradient of the L0 regularized objective function is intractable. Louizos et al. [20]
propose to use the hard concrete distribution as a close surrogate to the Bernoulli
distribution, and this leads to a differentiable objective function while still being
able to zeroing out redundant or insignificant weights during training. Due to
the hard concrete substitution, however, the resulting hard concrete estimator is
biased with respect to the original objective function.

In this paper, we propose L0-ARM for network sparsification. L0-ARM is built
on top of the L0 regularization framework of Louizos et al. [20]. However, instead
of using a biased hard concrete gradient estimator, we investigate the Augment-
Reinforce-Merge (ARM) [28], a recently proposed unbiased gradient estimator for
stochastic binary optimization. Because of the unbiasness and flexibility of the
ARM estimator, L0-ARM exhibits a significantly faster rate at pruning network
architectures and reducing FLOPs than the hard concrete estimator. Extensive
experiments on multiple public datasets demonstrate the superior performance
of L0-ARM at sparsifying networks with fully connected layers and convolutional
layers. It achieves state-of-the-art prune rates while retaining similar accuracies
compared to baseline methods. Additionally, it sparsifies the Wide-ResNet models
on CIFAR-10 and CIFAR-100 while the original hard concrete estimator cannot.

The remainder of the paper is organized as follows. In Sec. 2 we describe
the L0 regularized empirical risk minimization for network sparsification and
formulate it as a stochastic binary optimization problem. A new unbiased esti-
mator to this problem L0-ARM is presented in Sec. 3, followed by related work
in Sec. 4. Example results on multiple public datasets are presented in Sec. 5,
with comparisons to baseline methods and the state-of-the-art sparsification
algorithms. Conclusions and future work are discussed in Sec. 6.

2 Formulation

Given a training set D = {(xi, yi) , i = 1, 2, · · · , N}, where xi denotes the input
and yi denotes the target, a neural network is a function h(x;θ) parametrized by
θ that fits to the training data D with the goal of achieving good generalization
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to unseen test data. To optimize θ, typically a regularized empirical risk is
minimized, which contains two terms – a data loss over training data and a
regularization loss over model parameters. Empirically, the regularization term
can be weight decay or Lasso, i.e., the L2 or L1 norm of model parameters.

Since the L2 or L1 norm only imposes shrinkage for large values of θ, the
resulting model parameters θ are often manifested by smaller magnitudes but
none of them are exact zero. Intuitively, a more appealing alternative is the
L0 regularization since the L0-norm measures explicitly the number of non-zero
elements, and minimizing of it over model parameters will drive the redundant or
insignificant weights to be exact zero. With the L0 regularization, the empirical
risk objective can be written as

R(θ) =
1

N

N∑
i=1

L (h(xi;θ), yi) + λ‖θ‖0 (1)

where L(·) denotes the data loss over training data D, such as the cross-entropy
loss for classification or the mean squared error (MSE) for regression, and ‖θ‖0
denotes the L0-norm over model parameters, i.e., the number of non-zero weights,
and λ is a regularization hyper-parameter that balances between data loss and
model complexity.

To represent a sparsified model, we attach a binary random variable z to each
element of model parameters θ. Therefore, we can re-parameterize the model
parameters θ as an element-wise product of non-zero parameters θ̃ and binary
random variables z:

θ = θ̃ � z, (2)

where z ∈ {0, 1}|θ|, and � denotes the element-wise product. As a result, Eq. 1
can be rewritten as:

R(θ̃, z) =
1

N

N∑
i=1

L
(
h
(
xi; θ̃ � z

)
, yi

)
+ λ

|θ̃|∑
j=1

1[zj 6=0], (3)

where 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0
otherwise. Note that both the first term and the second term of Eq. 3 are not
differentiable w.r.t. z. Therefore, further approximations need to be considered.

According to stochastic variational optimization [2], given any function F(z)
and any distribution q(z), the following inequality holds

min
z
F(z) ≤ Ez∼q(z)[F(z)], (4)

i.e., the minimum of a function is upper bounded by the expectation of the
function. With this result, we can derive an upper bound of Eq. 3 as follows.

Since zj ,∀j ∈ {1, · · · , |θ|} is a binary random variable, we assume zj is subject
to a Bernoulli distribution with parameter πj ∈ [0, 1], i.e. zj ∼ Ber(z;πj). Thus,
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we can upper bound minzR(θ̃, z) by the expectation

R̂(θ̃,π) = Ez∼Ber(z;π)R(θ̃, z)

= Ez∼Ber(z;π)

[
1

N

N∑
i=1

L
(
h(xi; θ̃ � z), yi

)]
+ λ

|θ̃|∑
j=1

πj . (5)

As we can see, now the second term is differentiable w.r.t. the new model
parameters π, while the first term is still problematic since the expectation over a
large number of binary random variables z is intractable and so its gradient. Since
z are binary random variables following a Bernoulli distribution with parameters
π, we now formulate the original L0 regularized empirical risk (1) to a stochastic
binary optimization problem (5).

Existing gradient estimators for this kind of discrete latent variable models
include REINFORCE [27], Gumble-Softmax [11, 21], REBAR [25], RELAX [6]
and the Hard Concrete estimator [20]. However, these estimators either are
biased or suffer from high variance or computationally expensive due to auxiliary
modeling. Recently, the Augment-Reinforce-Merge (ARM) [28] gradient estimator
is proposed for the optimization of binary latent variable models, which is
unbiased and exhibits low variance. Extending this gradient estimator to network
sparsification, we find that ARM demonstrates superior performance of prunning
network architectures while retaining almost the same accuracies of baseline
models. More importantly, similar to the hard concrete estimator, ARM also
enables conditional computation [1] that not only sparsifies model architectures
for inference but also accelerates model training.

3 L0-ARM: Stochastic Binary Optimization

To minimize Eq. 5, we propose L0-ARM, a stochastic binary optimization algo-
rithm based on the Augment-Reinforce-Merge (ARM) gradient estimator [28].
We first introduce the main theorem of ARM. Refer readers to [28] for the proof
and other details.

Theorem 1. (ARM) [28]. For a vector of V binary random variables z =
(z1, · · · , zV ), the gradient of

E(φ) = Ez∼∏V
v=1 Ber(zv ;g(φv))[f(z)] (6)

w.r.t. φ = (φ1, · · · , φV ), the logits of the Bernoulli distribution parameters, can
be expressed as

∇φE(φ)=Eu∼∏V
v=1Uniform(uv;0,1)

[(
f(1[u>g(−φ)])− f(1[u<g(φ)])

)
(u− 1/2)

]
, (7)

where 1[u>g(−φ)] :=
(
1[u1>g(−φ1)], · · · ,1[uV >g(−φV )]

)T
and g(φ) = σ(φ) = 1/(1 +

exp(−φ)) is the sigmoid function.
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Parameterizing πj ∈ [0, 1] as g(φj), Eq. 5 can be rewritten as

R̂(θ̃,φ) = Ez∼Ber(z;g(φ)) [f(z)] + λ

|θ̃|∑
j=1

g(φj)

= Eu∼Uniform(u;0,1)

[
f(1[u<g(φ)])

]
+ λ

|θ̃|∑
j=1

g(φj), (8)

where f(z) = 1
N

∑N
i=1 L

(
h(xi; θ̃ � z), yi

)
. Now according to Theorem 1, we can

evaluate the gradient of Eq. 8 w.r.t. φ by

∇ARMφ R̂(θ̃,φ) = Eu∼Uniform(u;0,1)

[(
f(1[u>g(−φ)])− f(1[u<g(φ)])

)
(u− 1/2)

]
+ λ

|θ̃|∑
j=1

∇φj
g(φj), (9)

which is an unbiased and low variance estimator as demonstrated in [28].
Note from Eq. 9 that we need to evaluate f(·) twice to compute the gradient,

the second of which is the same operation required by the data loss of Eq. 8.
Therefore, one extra forward pass f(1[u>g(−φ)]) is required by the L0-ARM
gradient estimator. This additional forward pass might be computationally
expensive, especially for networks with millions of parameters. To reduce the
computational complexity of Eq. 9, we further consider another gradient estimator
– Augment-Reinforce (AR) [28]:

∇ARφ R̂(θ̃,φ) = Eu∼Uniform(u;0,1)

[
f(1[u<g(φ)])(1− 2u)

]
+ λ

|θ̃|∑
j=1

∇φjg(φj), (10)

which requires only one forward pass f(1[u<g(φ)]) that is the same operation
as in Eq. 8. This L0-AR gradient estimator is still unbiased but with higher
variance. Now with L0-AR, we can trade off the variance of the estimator with
the computational complexity. We will evaluate the impact of this trade-off in
our experiments.

3.1 Choice of g(φ)

Theorem 1 of ARM defines g(φ) = σ(φ), where σ(·) is the sigmoid function. For
the purpose of network sparsification, we find that this parametric function isn’t
very effective due to its slow transition between values 0 and 1. Thanks to the
flexibility of ARM, we have a lot of freedom to design this parametric function
g(φ). Apparently, it’s straightforward to generalize Theorem 1 for any parametric
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Fig. 1. The plots of g(φ) with different k for sigmoid and hard sigmoid functions. A
large k tends to be more effective at sparsifying networks. Best viewed in color.

functions (smooth or non-smooth) as long as g : R → [0, 1] and g(−φ) = 1−g(φ) 1.
Example parametric functions that work well in our experiments are the scaled
sigmoid function

gσk
(φ) = σ(kφ) =

1

1 + exp(−kφ)
, (11)

and the centered-scaled hard sigmoid

gσ̄k
(φ) = min(1,max(0,

k

7
φ+ 0.5)), (12)

where 7 is introduced such that gσ̄1
(φ) ≈ gσ1

(φ) = σ(φ). See Fig. 1 for some
example plots of gσk

(φ) and gσ̄k
(φ) with different k. Empirically, we find that

k = 7 works well for all of our experiments.
One important difference between the hard concrete estimator from Louizos

et al. [20] and L0-ARM is that the hard concrete estimator has to rely on the
hard sigmoid gate to zero out some parameters during training (a.k.a. conditional
computation [1]), while L0-ARM achieves conditional computation naturally by
sampling from the Bernoulli distribution, parameterized by g(φ), where g(φ) can
be any parametric function (smooth or non-smooth) as shown in Fig. 1. We
validate this in our experiments.

1 The second condition is not necessary. But for simplicity, we will impose this condition
to select parametric function g(φ) that is antithetic. Designing g(φ) without this
constraint could be a potential area that is worthy of further investigation.



L0-ARM: Network Sparsification via Stochastic Binary Optimization 7

Fig. 2. Evolution of the histogram of g(φ) over training epochs. All g(φ) are initialized
by random samples from a normal distribution N (0.5, 0.01), which are split into two
spikes during training.

3.2 Sparsifying Network Architectures for Inference

After training, we get model parameters θ̃ and φ. At test time, we can use the
expectation of z ∼ Ber(z; g(φ)) as the mask ẑ for the final model parameters θ̂:

ẑ = E[z] = g(φ), θ̂ = θ̃ � ẑ. (13)

However, this will not yield a sparsified network for inference since none of the
element of ẑ = g(φ) is exact zero (unless the hard sigmoid gate gσ̄k

(φ) is used).
A simple approximation is to set the elements of ẑ to zero if the corresponding
values in g(φ) are less than a threshold τ , i.e.,

z̄j =

{
0, g(φj) ≤ τ
g(φj), otherwise

j = 1, 2, · · · , |z| (14)

We find that this approximation is very effective in all of our experiments as the
histogram of g(φ) is widely split into two spikes around values of 0 and 1 after
training because of the sharp transition of the scaled sigmoid (or hard sigmoid)
function. See Fig. 2 for a typical plot of the histograms of g(φ) evolving during
training process. We notice that our algorithm isn’t very sensitive to τ , tuning
which incurs negligible impacts to prune rates and model accuracies. Therefore,
for all of our experiments we set τ = 0.5 by default. Apparently, better designed
τ is possible by considering the histogram of g(φ). However, we find this isn’t
very necessary for all of our experiments in the paper. Therefore, we will consider
this histogram-dependent τ as our future improvement.
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3.3 Imposing Shrinkage on Model Parameters θ

The L0 regularized objective function (8) leads to sparse estimate of model
parameters without imposing any shrinkage on the magnitude of θ. In some
cases it might still be desirable to regularize the magnitude of model parameters
with other norms, such as L1 or L2 (weight decay), to improve the robustness of
model. This can be achieved conveniently by computing the expected L1 or L2

norm of θ under the same Bernoulli distribution: z ∼ Ber(z; g(φ)) as follows:

Ez∼Ber(z;g(φ)) [||θ||1] =

|θ|∑
j=1

Ezj∼Ber(zj ;g(φj))

[
zj |θ̃j |

]
=

|θ|∑
j=1

g(φj)|θ̃j |, (15)

Ez∼Ber(z;g(φ))

[
||θ||22

]
=

|θ|∑
j=1

Ezj∼Ber(zj ;g(φj))

[
z2
j θ̃

2
j

]
=

|θ|∑
j=1

g(φj)θ̃
2
j , (16)

which can be incorporated to Eq. 8 as additional regularization terms.

3.4 Group Sparsity Under L0 and L2 Norms

The formulation so far promotes a weight-level sparsity for network architectures.
This sparsification strategy can compress model and reduce memory footprint of
a network. However, it will usually not lead to effective speedups because weight-
sparsified networks require sparse matrix multiplication and irregular memory
access, which make it extremely challenging to effectively utilize the parallel
computing resources of GPUs and CPUs. For the purpose of computational
efficiency, it’s usually preferable to perform group sparsity instead of weight-level
sparsity. Similar to [26, 23, 20], we can achieve this by sharing a stochastic binary
gate z among all the weights in a group. For example, a group can be all fan-out
weights of a neuron in fully connected layers or all weights of a convolution filter.
With this, the group regularized L0 and L2 norms can be conveniently expressed
as

Ez∼Ber(z;g(φ)) [||θ||0] =

|G|∑
g=1

|g|g(φg) (17)

Ez∼Ber(z;g(φ))

[
||θ||22

]
=

|G|∑
g=1

g(φg)

|g|∑
j=1

θ̃2
j

 (18)

where |G| denotes the number of groups and |g| denotes the number of weights
of group g. For the reason of computational efficiency, we perform this group
sparsity in all of our experiments.

4 Related Work

It is well-known that DNNs are extremely compute and memory intensive.
Recently, there has been an increasing interest to network sparsification [8, 7,
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26, 18, 19, 22, 23, 20] as the applications of DNNs to practical real-time systems,
such as the IoT devices, call for compute and memory efficient networks. One
of the earliest sparsification methods is to prune the redundant weights based
on the magnitudes [17], which is proved to be effective in modern CNN [8].
Although weight sparsification is able to compress networks, it can barely improve
computational efficiency due to unstructured sparsity [26]. Therefore, magnitude-
based group sparsity is proposed [26, 18], which can compress networks while
reducing computation cost significantly. These magnitude-based methods usually
proceed in three stages: pre-train a full network, prune the redundant weights or
filters, and fine-tune the pruned model. As a comparison, our method L0-ARM
trains a sparsified network from scratch without pre-training and fine-tuning,
and therefore is more preferable.

Another category of sparsification methods is based on Bayesian statistics and
information theory [22, 23, 19]. For example, inspired by variational dropout [13],
Molchanov et al. propose a method that unbinds the dropout rate, and also leads
to sparsified networks [22].

Recently, Louizos et al. [20] propose to sparsify networks with L0-norm. Since
the L0 regularization explicitly penalizes number of non-zero parameters, this
method is conceptually very appealing. However, the non-differentiability of L0

norm prevents an effective gradient-based optimization. Therefore, Louizos et
al. [20] propose a hard concrete gradient estimator for this optimization problem.
Our work is built on top of their L0 formulation. However, instead of using a hard
concrete estimator, we investigate the Augment-Reinforce-Merge (ARM) [28], a
recently proposed unbiased estimator, to this binary optimization problem.

5 Experimental Results

We evaluate the performance of L0-ARM and L0-AR on multiple public datasets
and multiple network architectures. Specifically, we evaluate MLP 500-300 [16]
and LeNet 5-Caffe 2 on the MNIST dataset [15], and Wide Residual Networks [29]
on the CIFAR-10 and CIFAR-100 datasets [14]. For baselines, we refer to the
following state-of-the-art sparsification algorithms: Sparse Variational Dropout
(Sparse VD) [22], Bayesian Compression with group normal-Jeffreys (BC-GNJ)
and group horseshoe (BC-GHS) [19], and L0-norm regularization with hard
concrete estimator (L0-HC) [20]. For a fair comparison, we closely follow the
experimental setups of L0-HC 3.

5.1 Implementation Details

We incorporate L0-ARM and L0-AR into the architectures of MLP, LeNet-5 and
Wide ResNet. As we described in Sec. 3.4, instead of sparsifying weights, we
apply group sparsity on neurons in fully-connected layers or on convolution filters

2 https://github.com/BVLC/caffe/tree/master/examples/mnist
3 https://github.com/AMLab-Amsterdam/L0_regularization
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in convolutional layers. Once a neuron or filter is pruned, all related weights are
removed from the networks.

The Multi-Layer Perceptron (MLP) [16] has two hidden layers of size 300
and 100, respectively. We initialize g(φ) = π by random samples from a normal
distribution N (0.8, 0.01) for the input layer and N (0.5, 0.01) for the hidden
layers, which activate around 80% of neurons in input layer and around 50%
of neurons in hidden layers. LeNet-5-Caffe consists of two convolutional layers
of 20 and 50 filters interspersed with max pooling layers, followed by two fully-
connected layers with 500 and 10 neurons. We initialize g(φ) = π for all neurons
and filters by random samples from a normal distribution N (0.5, 0.01). Wide-
ResNets (WRNs) [29] have shown state-of-the-art performance on many image
classification benchmarks. Following [20], we only apply L0 regularization on the
first convolutional layer of each residual block, which allows us to incorporate
L0 regularization without further modifying residual block architecture. The
architectural details of WRN are listed in Table 1. For initialization, we activate
around 70% of convolutional filters.

Table 1. Architectural details of WRN incorporated with L0-ARM. The number in
parenthesis is the size of activation map of each layer. For brevity, only the modified
layers are included.

Group name Layers

conv1 [Original Conv (16)]
conv2 [L0 ARM (160); Original Conv (160)] × 4
conv3 [L0 ARM (320); Original Conv (320)] × 4
conv4 [L0 ARM (640); Original Conv (640)] × 4

For MLP and LeNet-5, we train with a mini-batch of 100 data samples and
use Adam [12] as optimizer with initial learning rate of 0.001, which is halved
every 100 epochs. For Wide-ResNet, we train with a mini-batch of 128 data
samples and use Nesterov Momentum as optimizer with initial learning rate of
0.1, which is decayed by 0.2 at epoch 60 and 120. Each of these experiments run
for 200 epochs in total. For a fair comparison, these experimental setups closely
follow what were described in L0-HC [20] and their open-source implementation
3.

5.2 MNIST Experiments

We run both MLP and LeNet-5 on the MNIST dataset. By tuning the regular-
ization strength λ, we can control the trade off between sparsity and accuracy.
We can use one λ for all layers or a separate λ for each layer to fine-tune the
sparsity preference. In our experiments, we set λ = 0.1/N or λ = (0.1, 0.3, 0.4)/N
for MLP, and set λ = 0.1/N or λ = (10, 0.5, 0.1, 10)/N for LeNet-5, where N
denotes to the number of training datapoints.
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We use three metrics to evaluate the performance of an algorithm: prediction
accuracy, prune rate, and expected number of floating point operations (FLOPs).
Prune rate is defined as the ratio of number of pruned weights to number of all
weights. Prune rate manifests the memory saving of a sparsified network, while
expected FLOPs demonstrates the training / inference cost of a sparsification
algorithm.

Table 2. Performance comparison on MNIST. Each experiment was run five times and
the median (in terms of accuracy) is reported. All the baseline results are taken from
the corresponding papers.

Network Method Pruned Architecture Prune rate (%) Accuracy (%)

MLP
784-300-100

Sparse VD 219-214-100 74.72 98.2
BC-GNJ 278-98-13 89.24 98.2
BC-GHS 311-86-14 89.45 98.2
L0-HC (λ = 0.1/N) 219-214-100 73.98 98.6
L0-HC (λ sep.) 266-88-33 89.99 98.2
L0-AR (λ = 0.1/N) 453-150-68 70.39 98.3
L0-ARM (λ = 0.1/N) 143-153-78 87.00 98.3
L0-AR (λ sep.) 464-114-65 77.10 98.2
L0-ARM (λ sep.) 159-74-73 92.96 98.1

LeNet-5-Caffe
20-50-800-500

Sparse VD 14-19-242-131 90.7 99.0
GL 3-12-192-500 76.3 99.0
GD 7-13-208-16 98.62 99.0
SBP 3-18-284-283 80.34 99.0
BC-GNJ 8-13-88-13 99.05 99.0
BC-GHS 5-10-76-16 99.36 99.0
L0-HC (λ = 0.1/N) 20-25-45-462 91.1 99.1
L0-HC (λ sep.) 9-18-65-25 98.6 99.0
L0-AR (λ = 0.1/N) 18-28-46-249 93.73 98.8
L0-ARM (λ = 0.1/N) 20-16-32-257 95.52 99.1
L0-AR (λ sep.) 5-12-131-22 98.90 98.4
L0-ARM (λ sep.) 6-10-39-11 99.49 98.7

We compare L0-ARM and L0-AR to five state-of-the-art sparsification algo-
rithms on MNIST, with the results shown in Table 2. For the comparison between
L0-HC and L0-AR(M) when λ = 0.1/N , we use the exact same hyper-parameters
for both algorithms (the fairest comparison). In this case, L0-ARM achieve
the same accuracy (99.1%) on LeNet-5 with even sparser pruned architectures
(95.52% vs. 91.1%). When separated λs are considered (λ sep.), since L0-HC
doesn’t disclose the specific λs for the last two fully-connected layers, we tune
them by ourselves and find that λ = (10, 0.5, 0.1, 10)/N yields the best perfor-
mance. In this case, L0-ARM achieves the highest prune rate (99.49% vs. 98.6%)
with very similar accuracies (98.7% vs. 99.1%) on LeNet-5. Similar patterns are
also observed on MLP. Regarding L0-AR, although its performance is not as good
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as L0-ARM, it’s still very competitive to all the other methods. The advantage
of L0-AR over L0-ARM is its lower computational complexity during training.
As we discussed in Sec. 3, L0-ARM needs one extra forward pass to estimate the
gradient w.r.t. φ; for large DNN architectures, this extra cost can be significant.

To evaluate the training cost and network sparsity of different algorithms, we
compare the prune rates of L0-HC and L0-AR(M) on LeNet-5 as a function of
epoch in Fig. 3 (a, b). Similarly, we compare the expected FLOPs of different
algorithms as a function of epoch in Fig. 3 (c, d). As we can see from (a, b),
L0-ARM yields much sparser network architectures over the whole training
epochs, followed by L0-AR and L0-HC. The FLOPs vs. Epoch plots in (c, d)
are more complicated. Because L0-HC and L0-AR only need one forward pass
to compute gradient, they have the same expected FLOPs for training and
inference. L0-ARM needs two forward passes for training. Therefore, L0-ARM
is computationally more expensive during training (red curves), but it leads to
sparser / more efficient architectures for inference (green curves), which pays off
its extra cost in training.

5.3 CIFAR Experiments

We further evaluate the performance of L0-ARM and L0-AR with Wide-ResNet [29]
on CIFAR-10 and CIFAR-100. Following [20], we only apply L0 regularization on
the first convolutional layer of each residual block, which allows us to incorporate
L0 regularization without further modifying residual block architecture.

Table 3 shows the performance comparison between L0-AR(M) and three
baseline methods. We find that L0-HC cannot sparsify the Wide-ResNet archi-
tecture (prune rate 0%) 4, while L0-ARM and L0-AR prune around 50% of the
parameters of the impacted subnet. As we activate 70% convolution filters in
initialization, the around 50% prune rate is not due to initialization. We also
inspect the histograms of g(φ): As expected, they are all split into two spikes
around the values of 0 and 1, similar to the histograms shown in Fig. 2. In terms
of accuracies, both L0-ARM and L0-AR achieve very similar accuracies as the
baseline methods.

To evaluate the training and inference costs of different algorithms, we compare
the expected FLOPs of L0-HC and L0-AR(M) on CIFAR-10 and CIFAR-100 as a
function of iteration in Fig. 4. Similar to Fig. 3, L0-ARM is more computationally
expensive for training, but leads to sparser / more efficient architectures for
inference, which pays off its extra cost in training. It’s worth to emphasize that
for these experiments L0-AR has the lowest training FLOPs and inference FLOPs
(since only one forward pass is needed for training and inference), while achieving
very similar accuracies as the baseline methods (Table 3).

Finally, we compare the test accuracies of different algorithms as a function
of epoch on CIFAR-10, with the results shown in Fig. 5. We apply the exact
same hyper-parameters of L0-HC to L0-AR(M). As L0-AR(M) prunes around

4 This was also reported recently in the appendix of [5], and can be easily reproduced
by using the open-source implementation of L0-HC 3.
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Fig. 3. (a, b) Comparison of prune rate of sparsified network as a function of epoch
for different algorithms. (c, d) Comparison of expected FLOPs as a function of epoch
for different algorithms during training and inference. The results are on LeNet-5 with
L0-HC and L0-AR(M). Because L0-HC and L0-AR only need one forward pass to
compute gradient, they have the same expected FLOPs for training and inference.
L0-ARM needs two forward passes for training. Therefore, L0-ARM is computationally
more expensive during training (red curves), but it leads to sparser / more efficient
architectures for inference (blue curves), which pays off its extra cost in training.

50% parameters during training (while L0-HC prunes 0%), the test accuracies of
the former are lower than the latter before convergence, but all the algorithms
yield very similar accuracies after convergence, demonstrating the effectiveness
of L0-AR(M).

6 Conclusion

We propose L0-ARM, an unbiased and low-variance gradient estimator, to spar-
sify network architectures. Compared to L0-HC [20] and other state-of-the-art
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Table 3. Performance comparison of WRN on CIFAR-10 and CIFAR-100. Each ex-
periment was run five times and the median (in terms of accuracy) is reported. All
the baseline results are taken from the corresponding papers. Only the architectures of
pruned layers are shown.

Network Method Pruned Architecture Prune rate (%) Accuracy (%)

WRN-28-10
CIFAR-10

Original WRN [29] full model 0 96.00
Original WRN-dropout [29] full model 0 96.11
L0-HC (λ = 0.001/N) [20] full model 0 96.17
L0-HC (λ = 0.002/N) [20] full model 0 96.07

L0 AR (λ = 0.001/N)
83-77-83-88-

169-167-153-165-
324-323-314-329

49.49 95.58

L0 ARM (λ = 0.001/N)
74-86-83-83-

164-145-167-153-
333-333-310-330

49.46 95.68

L0 AR (λ = 0.002/N)
82-75-82-87-

164-169-156-161-
317-317-317-324

49.95 95.60

L0 ARM (λ = 0.002/N)
75-72-78-78-

157-165-131-162-
336-325-331-343

49.63 95.70

WRN-28-10
CIFAR-100

Original WRN [29] full model 0 78.82
Original WRN-dropout [29] full model 0 81.15
L0-HC (λ = 0.001/N) [20] full model 0 81.25
L0-HC (λ = 0.002/N) [20] full model 0 80.96

L0-AR (λ = 0.001/N)
78-78-79-85-

168-168-162-164-
308-326-319-330

49.37 80.50

L0-ARM (λ = 0.001/N)
75-83-80-58-

172-156-160-165-
324-311-313-318

50.51 80.74

L0-AR (λ = 0.002/N)
75-76-72-80-

158-158-137-168-
318-295-327-324

50.93 80.09

L0-ARM (λ = 0.002/N)
81-74-77-73-

149-157-156-152-
299-332-305-325

50.78 80.56

sparsification algorithms, L0-ARM demonstrates superior performance of spar-
sifying network architectures while retaining almost the same accuracies of the
baseline methods. Extensive experiments on multiple public datasets and multiple
network architectures validate the effectiveness of L0-ARM. Overall, L0-ARM
yields the sparsest architectures and the lowest inference FLOPs for all the
networks considered with very similar accuracies as the baseline methods.

As for future extensions, we plan to design better (possibly non-antithetic)
parametric function g(φ) to improve the sparsity of solutions. We also plan to
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Fig. 4. Comparison of expected FLOPs as a function of iteration during training and
inference. Similar to Fig. 3, L0-ARM is more computationally expensive for training,
but leads to sparser / more efficient architectures for inference. For these experiments,
L0-AR has the lowest training FLOPs and inference FLOPs, while achieving very similar
accuracies as the baseline methods (Table 3).

investigate more efficient algorithm to evaluate L0-ARM gradient (9) by utilizing
the antithetic structure of two forward passes.
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