
Triangle Completion Time Prediction using
Time-conserving Embedding

Vachik S. Dave1� and Mohammad Al Hasan1

Indiana University Purdue University Indianapolis, IN, USA
vsdave@iupui.edu, alhasan@cs.iupui.edu

Abstract. A triangle is an important building block of social networks,
so the study of triangle formation in a network is critical for better un-
derstanding of the dynamics of such networks. Existing works in this area
mainly focus on triangle counting, or generating synthetic networks by
matching the prevalence of triangles in real-life networks. While these ef-
forts increase our understanding of triangle’s role in a network, they have
limited practical utility. In this work we undertake an interesting problem
relating to triangle formation in a network, which is, to predict the time
by which the third link of a triangle appears in a network. Since the third
link completes a triangle, we name this task as Triangle Completion
Time Prediction (TCTP). Solution to TCTP problem is valuable for
real-life link recommendation in social/e-commerce networks, also it pro-
vides vital information for dynamic network analysis and community
generation study.
An efficient and robust framework (GraNiTE) is proposed for solving
the TCTP problem. GraNiTE uses neural networks based approach for
learning a representation vector of a triangle completing edge, which is
a concatenation of two representation vectors: first one is learnt from
graphlet based local topology around that edge and the second one is
learnt from time-preserving embedding of the constituting vertices of
that edge. A comparison of the proposed solution with several baseline
methods shows that the mean absolute error (MAE) of the proposed
method is at least one-forth of that of the best baseline method.

Keywords: Time prediction · embedding method · edge centric graphlets.

1 Introduction

It is a known fact that the prevalence of triangles in social networks is much
higher than their prevalence in a random network. It is caused predominantly
by the social phenomenon that friends of friends are typically friends themselves.
A large number of triangles in social networks is also due to the “small-world
network” property [23], which suggests that in an evolving social network, new
links are formed between nodes that have short distance between themselves.
Leskovec et al. [17] have found that depending on the kinds of networks, 30 to
60 percent of new links in a network are created between vertices which are only
two-hops apart, i.e., each of these links is the third edge of a new triangle in the

2 V. Dave and M. Hasan

network. High prevalence of triangles is also observed in directed networks, such
as, trust networks, and follow-follower networks—social balance theory [1] can
be attributed for such as observation.

Fig. 1: Simple illustration of the utility of TCTP
problem for providing improved friend recommenda-
tion. In this figure, user A is associated with 4 trian-
gles, whose predicted completion times are noted as
label on the triangles’ final edges (red dotted lines).
The link recommendation order for A at a time T ,
based on the earliest triangle completion time, is
shown in the table on the right.

There exist a number
of works which study tri-
angle statistics and their
distribution in social net-
works. The majority among
these works are focused
on triangle counting; for
a list of such works,
see the survey [14] and
the references therein. A
few other works investi-
gate how different net-
work models perform in
generating synthetic net-
works whose clustering
coefficients match with
those of real-life social
networks [20]. Huang et
al. [16] have analyzed
the triad closure patterns
and provided a graphi-
cal model to predict triad
closing operation. Durak
et al. [11] have studied the
variance of degree values among the nodes forming a triangle in networks arising
from different domains. These works are useful for discovering the local network
context in which triangles appear, but they do not tell us whether local context
can be used to predict when a triangle will appear. In this work, we fill this
void by building a prediction model which uses local context of a network to
predict when a triangle will appear? One of the similar time prediction problem
in directed networks i.e. reciprocal link time prediction (RLTP), is studied and
solved by V. Dave et al. [5, 6], where they used existing survival analysis models
with socially motivated topological features. However, never designed features
that incorporate time information. Also the proposed model utilizes the order-
ing and difference between the edge creation times in an innovative way, which
significantly boost the accuracy of triangle completion time prediction.

The knowledge of triangle completion time is practically useful. For instance,
given that the majority of new links in a network complete a triangle, the
knowledge—whether a link will complete a triangle in a short time—can be
used to improve the performance of a link prediction model [15]. Specifically,
by utilizing this knowledge, a link prediction model can assign a different prior
probability of link formation when such links would complete a triangle in near

Triangle Completion Time Prediction using Time-conserving Embedding 3

future. Besides, link creation time is more informative than a value denoting the
chance of link formation. Say, an online social network platform wants to recom-
mend a friend; it is much better for the platform if it recommends a member who
is likely to accept the friend request in a day or two than recommending another
who may accept the friend request after a week or few weeks (as illustrated in
the Figure 1). In the e-commerce domain, a common product recommendation
criterion is recommending an associated item (say, item2) of an item (say, item1)
that a user u has already purchased. Considering a user-item network, in which
item1−item2 is a triangle’s first edge, item1−u is the triangle’s second edge, the
TCTP task can be used to determine the best time interval for recommending
the user u the item2, whose purchase will complete the u− item1− item2 trian-
gle. Given the high prevalence of triangle in real-life networks, the knowledge of
triangle completion time can also improve the solution of various other network
tasks that use triangles, such as, community structure generation [2], designing
network generation models [17], and generating link recommendation [9].

In this work, we propose a novel framework called GraNiTE 1 for solving the
T riangle Completion T ime Prediction (TCTP) task. GraNiTE is a network
embedding based model, which first obtains latent representation vectors for the
triangle completing edges; the vectors are then fed into a traditional regression
model for predicting the time for the completion of a triangle. The main novelty
of GraNiTE is the design of an edge representation vector learning model, which
embeds edges with similar triangle completion time in close proximity in the
latent space. Obtaining such embedding is a difficult task because the creation
time of an edge depends on both local neighborhood around the edge and the
time of the past activities of incident nodes. So, existing network embedding
models [12, 7, 8] which utilize the neighborhood context of a node for learning
its representation vector cannot solve the TCTP problem accurately. Likewise,
existing network embedding models for dynamic networks [3, 26, 18, 25] are also
ineffective for predicting the triangle completion time, because such embedding
models dynamically encode network growth patterns, not the edge creation time.

To achieve the desired embedding, GraNiTE develops a novel supervised ap-
proach which uses local graphlet frequencies and the edge creation time. The
local graphlet frequencies around an edge is used to obtain a part of the em-
bedding vector, which yields a time-ordering embedding. Also, the edge creation
time of a pair of edges is used for learning the remaining part of the embed-
ding vector, which yields a time-preserving embedding. Combination of these
two brings edges with similar triangle completion time in close proximity of each
other in the embedding space. Both the vectors are learned by using a supervised
deep learning setup. Through experiments 2 on five real-world datasets, we show
that GraNiTE reduces the mean absolute error (MAE) to one-forth of the MAE
value of the best competing method while solving the TCTP problem.

1 GraNiTE is an anagram of the bold letters in Graphlet and Node based Time-
conserving Embedding.

2 Code and data for the experiments are available at https://github.com/Vachik-
Dave/GraNiTE solving triangle completion time prediction

4 V. Dave and M. Hasan

The rest of the paper is organized as follows. In Section 2, we define the
TCTP problem formally. In Section 3, we show some interesting observation
relating to triangle completion time on five real-world datasets. The GraNiTE
framework is discussed in Section 4. In Section 5, we present experimental results
which validate the effectiveness of our model over a collection of baseline models.
Section 6 concludes the work.

2 Problem statement

2.1 Notations.

Throughout this paper, scalars are denoted by lowercase letters (e.g., n). Vectors
are represented by boldface lowercase letters (e.g., x). Bold uppercase letters
(e.g., X) denote matrices, the ith row of a matrix X is denoted as xi and jth

element of the vector xi is represented as xji . ‖X‖F is the Frobenius norm of
matrix X. Calligraphic uppercase letter (e.g., X) is used to denote a set and |X |
is used to denote the cardinality of the set X .

2.2 Problem formulation.

Given, a time-stamped network G = (V, E , T), where V is a set of vertices, E
is a set of edges and T is a set of time-stamps. There also exists a mapping
function τ : E → T , which maps each edge e = (u, v) ∈ E to a time-stamp value,
τ(e) = tuv ∈ T denoting the creation time of the edge e. A triangle formed
by the vertices a, b, c ∈ V and the edges (a, b), (a, c), (b, c) ∈ E is represented as
∆abc. If exactly one of the three edges of a triangle is missing, we call it an open
triple. Say, among the three edges above, (a, b) is missing, then the open triple
is denoted as Λc

ab. We use ∆ for the set of all triangles in a graph.
Given an open triple Λw

uv, the objective of TCTP is to predict the time-
stamp (tuv) of the missing edge (u, v), whose presence would have formed the
triangle ∆uvw. But, predicting the future edge creation time from training data
is difficult as the time values of training data are from the past. So we make
the prediction variable an invariant of the absolute time value by considering
the interval time from a reference time value for each triangle, where reference
time for a triangle is the time-stamp of the second edge in creation time order.
For example, for the open triple Λw

uv the reference time is the latter of the
time-stamps twu, and twv. Thus the interval time (target variable) that we want
to predict is the time difference between tuv and the reference time, which is
max(twu, twv). The interval time is denoted by Iuvw; mathematically, Iuvw =
tuv − max(twu, twv). Then the predicted time for the missing edge creation is
tuv = Iuvw +max(twu, twv).

Predicting the interval time from a triangle specific reference time incurs a
problem, when a single edge completes multiple (say k) open triples, we call such
an edge a k-triangle edge. For such a k-triangle edge, ambiguity arises regard-
ing the choice of triples (out of k triples), whose second edge should be used

Triangle Completion Time Prediction using Time-conserving Embedding 5

for the reference time—for each of the reference time, a different prediction can
be obtained. We solve this problem by using a weighted aggregation approach,
a detailed discussion of this is available in Section 4.4 “Interval time prediction”.

3 Dataset study

The problem of predicting triangle completion time has not been addressed
in any earlier works, so before embarking on the discussion of our prediction
method, we like to present some observations on the triangle completion time in
five real-world datasets.

Table 1: Statistics of datasets (* T in years for
DBLP)

Datasets |V| |E| |T | (days) |∆|
BitcoinOTC 5, 881 35, 592 1, 903 33, 493
Facebook 61, 096 614, 797 869 1, 756, 259
Epinion 131, 580 711, 210 944 4, 910, 076
DBLP 1, 240, 921 5, 068, 544 23∗ 11, 552, 002
Digg-friend 279, 374 1, 546, 540 1, 432 14, 224, 759

Among these datasets, Bit-
coinOTC 3 is a trust net-
work of Bitcoin users, Face-
book 4 and Digg-friend 4

are online friendship net-
works, Epinion 4 is an online
trust network and DBLP 4

is a co-authorship network.
Overall information, such as
the number of vertices (|V|),
edges (|E|), time-stamps (|T |)
and triangles (|∆|) for these
datasets are provided in ta-
ble 1. Note that, we pre-
process these graphs to remove duplicate edges and edges without valid time-
stamps, which leads to removal of disconnected nodes.

3.1 Study of triangle generation rate.

As network grows over time, so do the number of edges and the number of
triangles. In this study our objective is to determine whether there is a temporal
correlation between the growth of edges and the growth of triangles in a network.
To observe this behavior, we plot the number of new edges (green line) and the
number of new triangles (blue line) (y-axis) over different time values (x-axis);
Figure 2 depicts five plots, one for each dataset. The ratio of newly created
triangle count to newly created link count is also shown (red line).

Trend in the plots is similar; as time passes, the number of triangles and the
number of links created at each time stamp steadily increase (except Epinion
dataset), which represents the fact that the network is growing. Interestingly,
triangle to link ratio also increases with time. This happens because as a network
gets more dense, the probability that a new edge will complete one or more

3 http://snap.stanford.edu/data/
4 http://konect.uni-koblenz.de/

6 V. Dave and M. Hasan

0 250 500 750 1000 1250 1500 1750
time (in days)

100

101

102

103

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

10

20

30

40

50

60

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(a) BitcoinOTC
dataset

0 200 400 600 800
time (in days)

100

101

102

103

104

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

5

10

15

20

25

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(b) Facebook dataset

0 200 400 600 800
time (in days)

102

103

104

105

106

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

10

20

30

40

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(c) Epinion dataset

0 5 10 15 20
time (in years)

105

106

tri
an

gl
es

 a
nd

 li
nk

s c
re

at
ed

triangles created
links created

1.0

1.5

2.0

2.5

3.0

3.5

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(d) DBLP dataset

0 200 400 600 800 1000 1200 1400
time (in days)

100

101

102

103

104

105

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

10

20

30

40

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(e) Digg-friend
dataset

Fig. 2: Frequency of new edges (green line) and new triangles (blue line) created
over time. Ratio of newly created triangle to the newly created link frequency is
shown in red line. Y-axis labels on the left show frequency of triangles and link,
and the y-axis labels on right show the triangle to link ratio value.

0 200 400 600 800
1000

1200
1400

1600
1800

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(a) BitcoinOTC
dataset

0 100 200 300 400 500 600 700 800 900

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(b) Facebook
dataset

0 100 200 300 400 500 600 700 800 900

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(c) Epinion
dataset

0 2 4 6 8 10 12 14 16 18 20 22
Interval time

0.7

0.8

0.9

1.0
P(

X
<=

 x
)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(d) DBLP
dataset

0 200 400 600 800
1000

1200
1400

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(e) Digg-friend
dataset

Fig. 3: Plots of cumulative distribution function (CDF) for interval times

triangles increases. This trend is more pronounced in Digg-friend and DBLP
networks. Especially, in Digg-friend network, each link contributes around 20
triangles during the last few time-stamps. On the other hand, for BitcoinOTC,
Facebook and Epinion datasets, the triangle to link ratio increases slowly. For
Facebook dataset, after slow and steady increase, we observe a sudden hike in
all three values around day 570. After investigation, we discovered that, it is a
consequence of a newly introduced recommendation feature by “Facebook” in
2008. This feature, exploits common friends information which leads to create
many links completing multiple open triples.

3.2 Interval time analysis.

For solving TCTP, we predict interval time between the triangle completing edge
and the second edge in time order. In this study, we investigate the distribution

Triangle Completion Time Prediction using Time-conserving Embedding 7

Regression Model

guv

g41

g42

g0

g1

g2

:

g43

𝑑1 = 3

E

𝐞𝑢𝑣 = 𝐠𝑢𝑣
𝐓 ∙ 𝐄

u

v
v

a

b
:

u

𝑑2 = 4

E′

𝐞′𝑢𝑣 = 𝒆′𝑢 − 𝒆′𝑣

P𝐫𝐞𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐟𝐨𝐫 𝑘-triangle links

𝐟𝑢𝑣 = 𝐞𝑢𝑣||𝐞′𝑢𝑣

Interval time prediction
of edge (u,v)

(1 × 𝑑1) (1 × 𝑑2)

(1 × 𝑑)

(a) Interval time prediction for edge (u, v) using
Proposed GraNiTE.

(b) Local graphlets for
given edge (u, v)

Fig. 4: Proposed GraNiTE and local graphlets

of the interval time by plotting the cumulative distribution function (CDF) of
the interval time for all the datasets (blue lines in the plots in Figure 3). For
comparison, these plots also show the interval time between triangle completing
edge and the first edge (red lines).

From Figure 3, we observe that for all real-world datasets the interval time
between the third link and the second link creation follows a distribution from
exponential family; which means most of the third links are created very soon
after the generation of the second link. This observation agrees with the social
balance theory [1]. As per this theory, triangles and individual links are balanced
structures while an open triple is an imbalanced structure. All real-world net-
works (such as social networks) try to create a balanced structure by closing an
open triple as soon as possible; which is validated in Figure 3 as the red curve
quickly reaches to 1.0 compared to the ascent of the blue curve.

4 GraNiTE Framework

GraNiTE framework first obtains a latent representation vector for an edge
such that edges with similar interval time have latent vectors which are in close
proximity. Such a vector for an edge is learned in a supervised fashion via two

8 V. Dave and M. Hasan

kinds of edge embeddings: first, a graphlet-based edge embedding, which embeds
the local graphlets into embedding space such that their embedding vectors
capture the information of edge ordering based on the interval time. So, we call
the edge representation obtained from the graphlet-based embedding method
time-ordering embedding. Second, a node-based edge embedding that learns node
embedding such that proximity of a pair of nodes preserves the interval time of
the triangle completing edge. We call the node-based edge embedding time-
preserving embedding. Concatenation of these two vectors gives the final edge
representation vector, which is used to predict a unique creation time for a given
edge.

The overall architecture of GraNiTE is shown in Figure 4a. Here nodes u, v
and local graphlet frequency vector of edge (u, v) are inputs to the GraNiTE.
E and E′ are graphlet embedding and node embedding matrices, respectively.
For an edge (u, v), corresponding time-ordering embedding euv ∈ IRd1 and time-
preserving embedding e′uv ∈ IRd2 are concatenated to generate final feature

vector fuv = euv||e′uv ∈ IRd(=d1+d2). This feature vector fuv is fed to a regression
model that predicts interval time for (u, v). Lastly, we process the regression
model output to return a unique interval time for (u, v), in case this edge com-
pletes multiple triangles. In the following subsections, we describe graphlet-based
time-ordering embedding and node-based time-preserving embedding.

4.1 Graphlet-based Time-ordering Embedding.

In a real world network, local neighborhood of a vertex is highly influential for
a new link created at that vertex. In existing works, local neighborhood of a
vertex is captured through a collection of random walks originating from that
vertex [19], or by first-level and second level neighbors of that node [21]. For
finding local neighborhood around an edge we can aggregate the local neighbor-
hood of its incident vertices. A better way to capture edge neighborhood is to use
local graphlets (up to a given size), which provide comprehensive information of
local neighborhood of an edge [4]. For an edge (u, v), a graphical structure that
includes nodes u, v and a subset of direct neighbors of u and/or v is called a local
graphlet for the edge (u, v). Then, a vector containing the frequencies of (u, v)’s
local graphlets is a quantitative measure of the local neighborhood of this edge.
In Figure 4b, we show all local graphlets of an edge (u, v) up to size-5, which
we use in our time-ordering embedding task. To calculate frequencies of these
local graphlets, we use E-CLoG algorithm [4], which is very fast and paralleliz-
able algorithm because graphlet counting process is independent for each edge.
After counting frequencies of all 44 graphlets 5, we generate normalized graphlet
frequency (NGF), which is an input to our supervised embedding model.

s = 𝑝=1
𝑑1 e𝑝

si sksj

diffij=|si-sj|

ReLU(diffij − diffik)

diffik=|si-sk|

𝑦𝑖 ≤ 𝑦𝑗 < 𝑦𝑘

g41

g42

g0

g1

g2

:

g43

E

(44 × 𝑑1)

𝐞 = 𝐠𝐓 ∙ 𝐄

(1× d1) = (1× 44) ∙ (44× d1)

𝐞𝒊 𝐞𝒌𝐞𝒋

Graphlet

Frequency

Layer

Graphlet

Embedding

Layer

Output

Layer

gj gi gk

Fig. 5: Learning of the graphlet embed-
ding matrix using three data instances.

Graphlet frequencies mimic edge
features which are highly informative
to capture the local neighborhood of

5 Note that, by strict definition of local graphlet, g3 and g7 are not local, but we
compute their frequencies anyway because these are popular 4-size graphlets.

Triangle Completion Time Prediction using Time-conserving Embedding 9

an edge. For instance, the frequency
of g1 is the common neighbor count
between u and v, frequency of g5 is
the number of 2-length paths, and fre-
quency of g43 is the number of five-size
cliques involving both u and v. These
features can be used for predicting
link probability between the vertex
pair u and v. However, these features
are not much useful when predicting
the interval time of an edge. So, we
learn embedding vector for each of
the local graphlets, such that edge
representation built from these vec-
tors captures the ordering among the
edges based on their interval times, so
that they are effective for solving the
TCTP problem. In the following sub-
section graphlet embedding model is
discussed.

Learning Model. The embedding model has three layers: graphlet frequency
layer, graphlet embedding layer and output layer. As shown in the Figure 5,
graphlet frequency layer takes input, graphlet embedding layer calculates edge
embedding for the given set of edges using graphlet embedding matrix and
graphlet frequencies, and the output layer calculates our loss function for the em-
bedding, which we optimize by using adaptive gradient descent. The loss function
implements the time-ordering objective. Given, three triangle completing edges
i, j and k and their interval times, yi, yj , and yk, such that yi ≤ yj ≤ yk, our
loss function enforces that the distance between the edge representation vectors
of i and j is smaller than the distance between the edge representation vectors
of i and k. Thus, the edges which have similar interval time are being brought
in a close proximity in the embedding space.

Training data for this learning model is the normalized graphlet frequencies
(NGF) of all training instances (triangle completing edges with known interval
values), which are represented as G ∈ IRm×gn , where m is the number of training
instances and gn is equal to 44 representing different types of local graphlets.
Each row of matrix G is an NGF for a single training instance i.e. if ith element
corresponds to the edge (u, v), gi (= guv) is its normalized graphlet frequency.
The target values (interval time) ofm training instances are represented as vector
y ∈ IRm. Now, the layers of the embedding model (Figure 5) are explained below:

Graphlet frequency layer : In input layer we feed triples of three sampled data
instances i, j and k, such that yi ≤ yj ≤ yk with their NGF i.e. gi gj , and gk.

10 V. Dave and M. Hasan

Graphlet embedding layer : This model learns embedding vectors for each local
graphlets, represented with the embedding matrix E ∈ IRgn×d1 , where d1 is the
(user-defined) embedding dimension. For any data instance i in training data G,
corresponding time-ordering edge representation ei ∈ IRd1 is obtained by vector
to matrix multiplication i.e. ei = gT

i ·E. In the embedding layer, for input data
instances i, j and k, we calculate three time-ordering embedding vectors ei, ej

and ek using this vector-matrix multiplication.

Output layer : This layer implements our loss function. For this, first we calculate
the score of each edge representation using vector addition i.e. for ei the score is
si = Σd1

p=1 e
p
i . After that, we pass the score difference between instances i and j

(diffij) and the score difference between i and k (diffik) to an activation function.
The activation function in this layer is ReLU, whose output we minimize. The
objective function after regularizing the graphlet embedding matrix is as below:

Og = min
E

∑
∀(i,j,k)∈Tijk

ReLU(diffij − diffik) + λg · ‖E‖2F (1)

where, diffij = |si − sj |, λg is a regularization constant and Tijk is a training
batch of three qualified edge instances from training data.

4.2 Time-preserving Node Embedding.

This embedding method learns a set of node representation vectors such that the
interval time of an edge is proportional to the l1 norm of incident node vectors.
If an edge has higher interval time, the incident node vectors are pushed farther,
if the edge have short interval time, the incident node vectors are close to each
other in latent space. Thus, by taking the l1 norm of node-pairs, we can obtain
an embedding vector of an edge which is interval time-preserving and is useful
for solving the TCTP problem. As depicted in the Figure 6, this embedding
method is composed of three layers: input layer, node & edge embedding layer,
and time preserving output layer. Functionality of each layer is discussed below:

Input

Layer

Node &

Edge

Embedding

Layer

Time

Preserving

Output

Layer

𝐞′𝒖 𝐞′𝒙

z

a

b

:

y

(|𝑉| × 𝑑2)

E′
𝐞′𝒗 𝐞′𝒚

>𝑦𝑢𝑣 𝑦𝑥𝑦

𝑠diff
′ = 𝐞𝒖𝒗

′
𝟐 − 𝐞𝒙𝒚

′
𝟐

𝑅𝑒𝐿𝑈(𝑦diff − 𝑠diff
′)

𝑦diff = 𝑚 × (𝑦𝑢𝑣 − 𝑦𝑥𝑦)

𝐞′𝒖𝒗 = 𝐞′𝒖 −𝐞′𝒗 𝐞′𝒙𝒚 = 𝐞′𝒙 −𝐞′𝒚

u v x y

Fig. 6: Learning of the node embedding
matrix using two edges (node-pairs).

Input layer : For this embedding
method, input includes two edges,
say (u, v) and (x, y) with their in-
terval times, yuv and yxy. The
selection of these two edges is
based on the criterion that yuv >
yxy.

Node & edge embedding layer : In
this layer, we learn embedding ma-
trix E′ ∈ IR|V|×d2 , where d2 is (user-
defined) embedding dimension. From
the embedding matrix E′, we find

Triangle Completion Time Prediction using Time-conserving Embedding 11

node embedding for a set of 4 nodes
incident to the edges (u, v) and (x, y).
For any node u, node embedding vec-
tor is e′u ∈ IRd2 i.e. uth element of
matrix E′. From the node embedding
vectors e′u and e′v, we calculate cor-
responding time-preserving edge em-
bedding vector for (u, v). The time-
preserving edge embedding is defined
as l1-distance between the node embedding vectors, i.e. e′uv = |e′u − e′v| ∈ IRd2 .

Time-preserving output layer : The objective of this embedding is to preserve the
interval time information into embedding matrix, such that time-preserving edge
vectors are proportional to their interval time. For that, we calculate an edge
score using l2-norm of an edge embedding, i.e. (u, v) edge score s′uv = ‖e′uv‖2.
We design the loss function such that edge score difference s′diff = s′uv − s′xy
between edges (u, v) and (x, y) is proportional to their interval time difference
yuv − yxy. The objective function of the embedding is

On = min
E′

∑
∀(u,v),(x,y)∈Tuv,xy

ReLU(ydiff − s′diff) + λn · ‖E′‖2F (2)

where, ydiff = m×(yuv−yxy), λn is a regularization constant, Tuv,xy is a training
batch of edge pairs, and m is a scale factor.

4.3 Model inference and optimization.

We use mini-batch adaptive gradient decent (AdaGrad) to optimize the objective
functions (Equations 1 and 2) of both embedding methods. Mini-batch AdaGrad
is a modified mini-batch gradient decent approach, where learning rate of each
dimension is different based on gradient values of all previous iterations [10]. This
independent adaption of learning rate for each dimension is especially well suited
for graphlet embedding method as graphlet frequency vector is mostly a sparse
vector which generates sparse edge embedding vectors. For time-preserving node
embedding, independent learning rate helps to learn the embedding vectors more
efficiently such that two node can maintain its proximity in embedding space
proportional to interval time.

For mini-batch AdaGrad, first we generate training batch, say T , from train-
ing instances. For each mini-batch, we uniformly choose training instances that
satisfy the desired constrains: for graphlet embedding, a training instance con-
sists of three edges i, j and k, for which yi ≤ yj ≤ yk and for time-preserving node
embedding, a training instance is an edge pair, i = (u, v) and j = (x, y), such
that, yi ≤ yj . During an iteration, AdaGrad updates each embedding vector, say
e, corresponding to all samples from training batch using following equation:

et+1
i = eti − αt

i ×
∂O

∂eti
(3)

12 V. Dave and M. Hasan

where, eti is an ith element of vector e at iteration t. Here we can see that at each
iteration t, AdaGrad updates embedding vectors using different learning rates
αt
i for each dimension.

For time complexity analysis, given a training batch T , the total cost of cal-
culating gradients of objective functions (Og and On) depends on the dimension
of embedding vector i.e. Θ(di), di ∈ {d1, d2}. Similarly, calculating learning rate
and updating embedding vector also costs Θ(di). In graphlet embedding, we
need to perform vector to matrix multiplication, which costs Θ(44× d1). Hence,
total cost of the both embedding methods is Θ(44× d1 + d2) = Θ(d1 + d2). As
time complexity is linear to embedding dimensions, both embedding methods
are very fast in learning embedding vectors even for large networks.

4.4 Interval time prediction.

We learn both time-ordering graphlet embedding matrix and time-preserving
node embedding matrix from training instances. We generate edge representa-
tion for test instances from these embedding matrices, as shown in Figure 4a.
This edge representation is fed to a traditional regression model (we have used
Support Vector Regression) which predicts an interval time. However, predicting
the interval time of a k-triangle link poses a challenge, as any regression model
predicts multiple (k) creation times for such an edge. The simplest approach to
overcome this issue is to assign the mean of k predictions as the final predicted
value for the k-triangle link. But, as we know mean is highly sensitive to outliers
especially for the small number of samples (mostly k ∈ [2, 20]), so using a mean
value does not yield the best result. From the discussion in Section 3.2 , we
know that triangle interval time follows exponential distribution. Hence we use
exponential decay W (Iuvw) = w0 · exp(−λ · Iuvw) as a weight of each prediction,
where λ is a decay constant and w0 is an initial value. We calculate weighted
mean which serves as a final prediction value for a k-triangle link.

Fig. 7: (u, v) as
4-triangle link

In Figure 7, we show a toy graph with creation time
of each link and (u, v) is a 4-triangle link. Let’s assume
our model predicts 4 interval times (40, 3, 1, 1) correspond-
ing to four open triples (Λa

uv, Λ
b
uv, Λ

c
uv, Λ

d
uv) respectively.

Hence, we have 4 predicted creation times i.e. (5 + 40 =
45, 51, 50, 51) for link (u, v). So, the final prediction for
the edge (u, v) is calculated by using the equation be-
low:

t̂uv = W (40)×45+W (3)×51+W (1)×50+W (1)×51
W (40)+W (3)+W (1)+W (1)

5 Experiments and results

We conduct experiments to show the superior performance of
the proposed GraNiTE in solving the TCTP problem. No ex-

isting works solve the TCTP problem, so we build baseline methods from two

Triangle Completion Time Prediction using Time-conserving Embedding 13

approaches described as below:

The first approach uses features generated directly from the network topology.

1. Topo. Feat. (Topological features) This method uses traditional topolog-
ical features such as common neighbor count, Jaccard coefficient, prefer-
ential attachment, adamic-adar, Katz measure with five different β values
{0.1, 0.05, 0.01, 0.005, 0.001}. These features are well-known for solving the
link prediction task [15]. We generate topological features for an edge (last
edge of triangle) from the snapshot of the network when the second link
of the triangle appears; triangle interval time is also computed from that
temporal snapshot.

2. Graphlet Feat. In this method we use local graphlet frequencies of an edge
(last edge of triangle) as a feature set for the time prediction task. These
graphlet frequencies are also calculated from the temporal snapshot of the
network as mentioned previously in Topo. Feat.

The second approach uses well known network embedding approaches.

3. LINE [21]: LINE embeds the network into a latent space by leveraging both
first-order and second-order proximity of each node.

4. Node2vec [12]: Node2vec utilizes Skip-Gram based language model to an-
alyze the truncated biased random walks on the graph.

5. GraphSAGE [13]: It presents an inductive representation learning frame-
work that learns a function and generates embeddings by sampling and ag-
gregating features from a node’s local neighborhood.

6. AROPE [24]: AROPE is a matrix decomposition based embedding ap-
proach, which preserves different higher-order proximity for different input
graphs and it provides global optimal solution for a given order.

7. VERSE [22]: It is a versatile node embedding method that preserves specific
node similarity measure(s) and also captures global structural information.

5.1 Experiment settings.

For this experiment, we divide the time-stamps of each dataset into three chrono-
logically ordered partitions with the assumption that initial partition is network
growing period, which spans from the beginning up to 50% of total time-stamps.
The second partition, which spans from 50% to 70% of the total time-stamps, is
the train period, and finally, from 70% till the end is the test period. We select
the edges completing triangles during the train period as training instances and
the edges completing triangles during the test period as test instances. We also
retain 5% of test instances for parameter tuning. Note that, this experiment
setting is not suitable for dynamic network embedding methods, so we cannot
compare with them.

There are a few user defined parameters in the proposed GraNiTE. For both
embedding approaches, we fix the embedding dimensions as 50, i.e. d1 = d2 = 50.
Hence, final embedding dimension is d = 100 as discussed in Section 4 “GraNiTE

14 V. Dave and M. Hasan

Framework”. Similarly, regularization rates for both embedding methods are set
as λg = λn = 1e − 5. Initial learning rate for AdaGrad optimization is set as
0.1. The training batch size is 100 and the number of epochs is set to 50. For
time preserving node embedding, the scale factor is set to 0.01 i.e. m = 0.01.
Additionally, for predicting time of k-triangle links, decay constant (λ) and initial
weight (w0) are set to 1.0 for calculating exponential decay weights. Lastly, we
use support vector regression (SVR) with linear kernel and penalty C = 1.0
as a regression method for GraNiTE and for all competing methods. For fair
comparison, SVR is identically configured for all methods.

For all competing embedding methods the embedding dimensions are set as
100, same size of our feature vector (d = 100). We grid search the different tuning
parameters to find the best performance of these embedding methods. We select
learning rate from set {0.0001, 0.001, 0.01, 0.1} for all methods. For Node2vec, we
select walk bias factors p and q from {0.1, 0.5, 1.0} and number of walks per node
is selected from {5, 10, 15, 20}. For AROPE, the order of proximity is selected
from set {1, 2, 3, 4, 5}. For VERSE, we select personalized pagerank parameter
α from set {0.1, 0.5, 0.9}.

5.2 Comparison results.

We evaluate the models using mean absolute error (MAE) over two groups of
interval times: 1-month (≤ 30 days) and 2-months (31 to 60 days) for all datasets,
except DBLP, for which the two intervals are 0-2 years and 3-7 years. Instances
that have higher than 60 days of interval time are outlier instances, hence they
are excluded. Besides, for real-life social network applications, predicting an
interval value beyond two months is probably not very interesting. Within 60
days, we show results in two groups: 1-month, and 2-month, because some of the
competing methods work well for one group, but not the other.

Comparison results for all five datasets are shown in Table 2, where each
column represents a prediction method. Rows are grouped into five, one for each
dataset; each dataset group has three rows: small interval (≤ 30d), large interval
(30-60d) and Average (Avg.) over these two intervals. Results of our proposed
method (GraNiTE) is shown in the last column; besides MAE, in this column
we also show the percentage of improvement of GraNiTE over the best of the
competing methods(underlined). The best results in each row is shown in bold
font.

We can observe from the table that the proposed GraNiTE performs the best
for all the datasets considering the average. The improvements over the compet-
ing methods, at a minimum, 19.34% for the BitcoinOTC dataset, and, to the
maximum, 76.8% for the Epinion dataset. If we consider short and long intervals
(≤ 30d and 30-60d) independently, GraNiTE performs the best in all datasets,
except BitcoinOTC dataset. However, notice that for BitcoinOTC dataset, al-
though Node2vec performs the best for large interval times, for small interval
times its performance is extremely poor (almost thrice MAE compared to GraN-
iTE). Similarly, LINE performs the best for small interval times and incurs huge

Triangle Completion Time Prediction using Time-conserving Embedding 15

Table 2: Comparison experiment results using MAE for interval times in 1st

(≤ 30 days) and 2nd-month (31-60 days). [for DBLP dataset: 0-2 years and 3-7
years]. For GraNiTE, % improvement over the best competing method (under-
lined) is shown in brackets.

Dataset Topo. Feat. Graphlet Feat. LINE Node2vec GraphSAGE AROPE VERSE GraNiTE

Bitcoin-
OTC

≤ 30d 17.22 17.7 8.86 26.68 11.99 28.62 25.81 9.08 (−2.48%)
31-60d 21.92 18.29 34.03 16.55 28.84 21.59 20.56 19.95 (−20.54%)
Avg. 19.57 17.995 21.445 21.615 20.415 25.105 23.185 14.515 (19.34%)

Facebook

≤ 30d 7.78 7.93 8.36 7.95 8.37 7.93 7.98 5.64 (27.51%)
31-60d 32.04 30.9 31.98 32.87 31.96 32.55 32.73 13.65 (55.83%)
Avg. 19.91 19.415 20.17 20.41 20.165 20.24 20.355 9.645 (50.32%)

Epinion
≤ 30d 15.88 14.31 12.52 17.09 13.79 14.3 19.85 3.28 (73.8%)
31-60d 22.02 24.82 25.18 20.17 23.45 23.22 17.9 5.36 (70.06%)
Avg. 18.95 19.565 18.85 18.63 18.62 18.76 18.875 4.32 (76.8%)

DBLP

≤ 30d 0.526 0.525 0.527 0.527 0.526 0.526 0.5267 0.449 (14.48%)
31-60d 3.623 3.618 3.624 3.623 3.623 3.624 3.623 0.969 (73.22%)
Avg. 2.0745 2.0715 2.0755 2.075 2.0745 2.075 2.0748 0.709 (65.77%)

Digg-
friends

≤ 30d 6.75 6.25 6.03 7.73 5.95 7.37 6.95 2.13 (64.2%)
31-60d 41.06 37.34 38.77 32.66 38.85 34.34 34.75 9.76 (70.12%)
Avg. 23.905 21.795 22.4 20.195 22.4 20.855 20.85 5.945 (70.56%)

error for large interval times. Only GraNiTE shows consistently good results for
both small and large interval ranges over all the datasets.

Another observation is that, for all datasets, results of large interval times
(31-60 days) is worse than the results of small interval time (≤ 30 days). For
competing methods, these values are sometimes very poor that it is meaningless
for practical use. For instance, for Epinion, each of the competing methods have
an MAE around 20 or more for large interval, whereas GraNiTE has an MAE
value of 5.36 only. Likewise, for Digg-friends, each of the competing methods have
an MAE more than 32, but GraNiTE’s average MAE is merely 5.95. Overall,
for both intervals over all the datasets, GraNiTEshows significantly (t-test with
p-value � 0.01) lower MAE than the second best method. The main reason
for poor performance of competing methods is that, those methods can capture
the local and/or global structural information of nodes/edges but fail to capture
temporal information. While for GraNiTE, the graphlet embedding method is
able to translate the patterns of local neighborhood into time-ordering edge
vector; at the same time, time preserving node embedding method is able to
capture the interval time information into node embedding vector. Both of the
features help to enhance the performance of GraNiTE.

6 Conclusion

In this paper, we propose a novel problem of triangle completion time prediction
(TCTP) and provide an effective and robust framework GraNiTE to solve this

16 V. Dave and M. Hasan

problem by using graphlet based time-ordering embedding and time-preserving
node embedding methods. Through experiments on five real-world datasets, we
show the superiority of our proposed method compared to baseline methods
which use known graph topological features, graphlet frequency features or pop-
ular and state-of-art network embedding approaches. To the best of our knowl-
edge, we are the first to formulate the TCTP problem and to propose a novel
framework for solving this problem.

References

1. Antal, T., Krapivsky, P., Redner, S.: Social balance on networks: The dynamics of
friendship and enmity. Physica D: Nonlinear Phenomena 224, 130 – 136 (2006)

2. Bianconi, G., Darst, R.K., Iacovacci, J., Fortunato, S.: Triadic closure as a basic
generating mechanism of communities in complex networks. Phys. Rev. E 90(4)
(Oct 2014)

3. Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A.S., Obara,
B.: Temporal graph offset reconstruction: Towards temporally robust graph repre-
sentation learning. In: IEEE Big Data. pp. 3737–3746 (2018)

4. Dave, V.S., Ahmed, N.K., Hasan, M.A.: E-clog: Counting edge-centric local
graphlets. In: IEEE Intl. Conf. on Big Data. pp. 586–595 (Dec 2017)

5. Dave, V.S., Al Hasan, M., Reddy, C.K.: How fast will you get a response? pre-
dicting interval time for reciprocal link creation. In: Eleventh International AAAI
Conference on Web and Social Media. ICWSM ’17 (2017)

6. Dave, V.S., Hasan, M.A., Zhang, B., Reddy, C.K.: Predicting interval time for
reciprocal link creation using survival analysis. Social Network Analysis and Mining
8 (Mar 2018)

7. Dave, V.S., Zhang, B., Al Hasan, M., AlJadda, K., Korayem, M.: A combined
representation learning approach for better job and skill recommendation. In: ACM
International Conference on Information and Knowledge Management. pp. 1997–
2005. CIKM ’18 (2018)

8. Dave, V.S., Zhang, B., Chen, P.Y., Hasan, M.A.: Neural-brane: Neural bayesian
personalized ranking for attributed network embedding. Data Science and Engi-
neering (Jun 2019)

9. Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction
and recommendation across heterogeneous social networks. In: IEEE Intl. Conf. on
Data Mining. pp. 181–190 (2012)

10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. of Machine Learning Research 12(Jul), 2121–2159
(2011)

11. Durak, N., Pinar, A., Kolda, T.G., Seshadhri, C.: Degree relations of triangles in
real-world networks and graph models. In: ACM Intl. Conf. on Information and
Knowledge Management. pp. 1712–1716 (2012)

12. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. pp.
855–864. KDD ’16 (2016)

13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems (NIPS) 30, pp.
1024–1034 (2017)

14. Hasan, M.A., Dave, V.: Triangle counting in large networks: a review. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 8(2) (2018)

Triangle Completion Time Prediction using Time-conserving Embedding 17

15. Hasan, M.A., Zaki, M.J.: A Survey of Link Prediction in Social Networks, pp.
243–275. Springer US, Boston, MA (2011)

16. Huang, H., Tang, J., Liu, L., Luo, J., Fu, X.: Triadic closure pattern analysis
and prediction in social networks. IEEE Transactions on Knowledge and Data
Engineering 27(12), 3374–3389 (Dec 2015)

17. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of
social networks. pp. 462–470. KDD ’08 (2008)

18. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion of the The Web Conference
2018. pp. 969–976 (2018)

19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. pp. 701–710. KDD ’14 (2014)

20. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-
calibrated graph models for social network experiments. In: ACM Intl. Conf. on
World Wide Web. pp. 861–870 (2010)

21. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: International Conference on World Wide Web. pp.
1067–1077 (2015)

22. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph embeddings
from similarity measures. In: The World Wide Web Conference. pp. 539–548 (2018)

23. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. nature
393(6684), 440 (1998)

24. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity
preserved network embedding. pp. 2778–2786. KDD ’18 (2018)

25. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by
modeling triadic closure process. In: Conference on Artificial Intelligence (2018)

26. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via
neighborhood formation. In: ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. pp. 2857–2866 (2018)

